Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor

Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 18; no. 4; pp. 771 - 782
Main Authors Orlandi, Mattia, Rapa, Pierangelo Maria, Zanghieri, Marcello, Frey, Sebastian, Kartsch, Victor, Benini, Luca, Benatti, Simone
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2024.3410840

Cover

Loading…
Abstract Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58 <inline-formula id="ilm1"><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 14.91% and macro-F1 score of 85.86 <inline-formula id="ilm2"><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
AbstractList Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58±14.91% and macro-F1 score of 85.86±14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58±14.91% and macro-F1 score of 85.86±14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58 <inline-formula id="ilm1"><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 14.91% and macro-F1 score of 85.86 <inline-formula id="ilm2"><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58±14.91% and macro-F1 score of 85.86±14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
Author Kartsch, Victor
Zanghieri, Marcello
Rapa, Pierangelo Maria
Frey, Sebastian
Benatti, Simone
Benini, Luca
Orlandi, Mattia
Author_xml – sequence: 1
  givenname: Mattia
  orcidid: 0000-0002-8553-3273
  surname: Orlandi
  fullname: Orlandi, Mattia
  email: mattia.orlandi@unibo.it
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 2
  givenname: Pierangelo Maria
  orcidid: 0000-0003-4596-0374
  surname: Rapa
  fullname: Rapa, Pierangelo Maria
  email: pierangelomaria.rapa@unibo.it, pierangelomaria.rapa@unimore.it
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 3
  givenname: Marcello
  orcidid: 0000-0002-4303-8389
  surname: Zanghieri
  fullname: Zanghieri, Marcello
  email: marcello.zanghieri2@unibo.it
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 4
  givenname: Sebastian
  orcidid: 0009-0000-6948-4363
  surname: Frey
  fullname: Frey, Sebastian
  email: sebastian.frey@iis.ee.ethz.ch
  organization: Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
– sequence: 5
  givenname: Victor
  orcidid: 0000-0003-3325-6347
  surname: Kartsch
  fullname: Kartsch, Victor
  email: victor.kartsch@iis.ee.ethz.ch
  organization: Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
– sequence: 6
  givenname: Luca
  orcidid: 0000-0001-8068-3806
  surname: Benini
  fullname: Benini, Luca
  email: luca.benini@unibo.it, lbenini@iis.ee.ethz.ch
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
– sequence: 7
  givenname: Simone
  orcidid: 0000-0002-5700-5342
  surname: Benatti
  fullname: Benatti, Simone
  email: simone.benatti@unibo.it, simone.benatti@unimore.it
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38848226$$D View this record in MEDLINE/PubMed
BookMark eNpNkU1PwkAQhjcGI4L-AWPMHr0U97PdHpEomkAkAvHYbNsprrZd3C0S_71F0HiaOTzvm8w8PdSpbQ0IXVAyoJTEN4vb0XA-YISJAReUKEGO0CmNBQniOCad3c5ZIKSQXdTz_o0QGbKYnaAuV0ooxsJTZJ5Bl8HCVICntrEOL2vT4IXT2bupV_je2Qr7u-kYz82q1qXHL6Z5xcNcrxvzCfhxNMS2xhrPtNNlCSVelo3TwcRu8cxuweGZsxl4b90ZOi7aAjg_zD5a3t8tRg_B5Gnc1kyCjEWyCSQHwqhWMtUFD4tc8JBCe14kSZjnMuK0UEzSlKUaWMQUgyjNYx4VmmgpVcb76Hrfu3b2YwO-SSrjMyhLXYPd-ISTUMaK0vY5fXR1QDdpBXmydqbS7iv5fU8LsD2QOeu9g-IPoSTZOUh-HCQ7B8nBQRu63IcMAPwLSMmoiPg3leSAJA
CODEN ITBCCW
Cites_doi 10.1109/TBCAS.2023.3314053
10.1109/sas51076.2021.9530007
10.1109/thms.2021.3086003
10.1109/TNSRE.2017.2759664
10.1109/TBME.2020.2989311
10.1523/eneuro.0064-23.2023
10.1109/TBCAS.2019.2914476
10.1109/72.761722
10.1109/ISCAS.2012.6271896
10.1109/TBCAS.2019.2955641
10.1016/j.bspc.2023.105178
10.1109/tbcas.2019.2959160
10.3389/fncom.2019.00014
10.1007/s11263-007-0075-7
10.1109/tbcas.2019.2955641
10.1109/TBCAS.2019.2925454
10.1109/tsp.2020.2985299
10.1109/BioCAS58349.2023.10388538
10.1109/TNSRE.2018.2885283
10.1109/tbcas.2019.2953998
10.3390/bdcc2030021
10.1088/1741-2560/13/2/026027
10.1109/tbme.1985.325532
10.1007/978-3-540-74494-8_77
10.1007/s11265-015-1070-9
10.1109/coins51742.2021.9524188
10.1007/s00422-008-0278-1
10.1109/ICABME53305.2021.9604876
10.1109/TSP.2007.896108
10.1023/a:1010933404324
10.1098/rsta.2019.0155
10.1109/tbcas.2020.2974154
10.1109/TNSRE.2015.2508759
10.1109/COINS57856.2023.10189286
10.1109/TNSRE.2015.2412038
10.1109/lsp.2005.863638
10.1109/MSP.2013.2251072
10.1016/j.jelekin.2020.102426
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TBCAS.2024.3410840
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 782
ExternalDocumentID 38848226
10_1109_TBCAS_2024_3410840
10552147
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ETH Zürich's Future Computing Laboratory
– fundername: EU Horizon Europe project IntelliMan
  grantid: 101070136
– fundername: Huawei Technologies
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c275t-53e021a85baf36fd4361e3417506dd5731f8251b2bae27282e7bd937fa0a558c3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 04:33:53 EDT 2025
Thu Jan 02 22:29:08 EST 2025
Tue Jul 01 05:12:39 EDT 2025
Wed Aug 27 02:04:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-53e021a85baf36fd4361e3417506dd5731f8251b2bae27282e7bd937fa0a558c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4596-0374
0000-0002-5700-5342
0000-0002-4303-8389
0009-0000-6948-4363
0000-0003-3325-6347
0000-0001-8068-3806
0000-0002-8553-3273
PMID 38848226
PQID 3065981119
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_38848226
proquest_miscellaneous_3065981119
ieee_primary_10552147
crossref_primary_10_1109_TBCAS_2024_3410840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Hyvärinen (ref25) 2001
ref24
ref23
(ref29) 2022
Amari (ref34) 1995; 8
ref26
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume-title: Independent Component Analysis (Adaptive and LearningSystems for Signal Processing, Communications, and Control)
  year: 2001
  ident: ref25
– ident: ref11
  doi: 10.1109/TBCAS.2023.3314053
– ident: ref39
  doi: 10.1109/sas51076.2021.9530007
– ident: ref3
  doi: 10.1109/thms.2021.3086003
– ident: ref19
  doi: 10.1109/TNSRE.2017.2759664
– ident: ref22
  doi: 10.1109/TBME.2020.2989311
– ident: ref32
  doi: 10.1523/eneuro.0064-23.2023
– ident: ref23
  doi: 10.1109/TBCAS.2019.2914476
– ident: ref17
  doi: 10.1109/72.761722
– ident: ref26
  doi: 10.1109/ISCAS.2012.6271896
– ident: ref40
  doi: 10.1109/TBCAS.2019.2955641
– ident: ref20
  doi: 10.1016/j.bspc.2023.105178
– ident: ref7
  doi: 10.1109/tbcas.2019.2959160
– ident: ref15
  doi: 10.3389/fncom.2019.00014
– ident: ref33
  doi: 10.1007/s11263-007-0075-7
– ident: ref8
  doi: 10.1109/tbcas.2019.2955641
– ident: ref24
  doi: 10.1109/TBCAS.2019.2925454
– ident: ref6
  doi: 10.1109/tsp.2020.2985299
– ident: ref10
  doi: 10.1109/BioCAS58349.2023.10388538
– ident: ref21
  doi: 10.1109/TNSRE.2018.2885283
– ident: ref5
  doi: 10.1109/tbcas.2019.2953998
– ident: ref9
  doi: 10.1109/TBCAS.2023.3314053
– ident: ref1
  doi: 10.3390/bdcc2030021
– ident: ref16
  doi: 10.1088/1741-2560/13/2/026027
– ident: ref35
  doi: 10.1109/tbme.1985.325532
– ident: ref14
  doi: 10.1007/978-3-540-74494-8_77
– ident: ref36
  doi: 10.1007/s11265-015-1070-9
– ident: ref41
  doi: 10.1109/coins51742.2021.9524188
– ident: ref2
  doi: 10.1007/s00422-008-0278-1
– ident: ref12
  doi: 10.1109/ICABME53305.2021.9604876
– ident: ref13
  doi: 10.1109/TSP.2007.896108
– ident: ref38
  doi: 10.1023/a:1010933404324
– ident: ref37
  doi: 10.1098/rsta.2019.0155
– ident: ref4
  doi: 10.1109/tbcas.2020.2974154
– ident: ref27
  doi: 10.1109/TNSRE.2015.2508759
– ident: ref28
  doi: 10.1109/COINS57856.2023.10189286
– ident: ref18
  doi: 10.1109/TNSRE.2015.2412038
– ident: ref31
  doi: 10.1109/lsp.2005.863638
– year: 2022
  ident: ref29
  article-title: Inference: tiny. v1.0 Results
– ident: ref42
  doi: 10.1109/MSP.2013.2251072
– volume: 8
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 1995
  ident: ref34
  article-title: A new learning algorithm for blind signal separation
– ident: ref30
  doi: 10.1016/j.jelekin.2020.102426
SSID ssj0056292
Score 2.3845656
Snippet Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 771
SubjectTerms Blind source separation
Electrodes
Electromyography
Graphical user interfaces
human-machine interfaces
Independent component analysis
low-power
Machine learning
Motors
Muscles
on-device learning
online learning
PULP
Real-time systems
surface EMG
Title Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor
URI https://ieeexplore.ieee.org/document/10552147
https://www.ncbi.nlm.nih.gov/pubmed/38848226
https://www.proquest.com/docview/3065981119
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8IDwYeFBH0FM2Q8GZ69Lq3_Xg8L5xIOEKAi7w1-1W5gC0pvZj41zuzbQ2akPjWh37ubGd-v52d-QEcRCYa6VRb-tMSG5DDC4PUpTaQWkfSRrGShoni_Cw-XoxPruV1V6zua2Gcc37zmRvyoc_l28qseKnskMUcWVdnDdaIubXFWr3bpTjuFZAZkHAjb9lXyITZ4dXn6eSSuGA0HpLTDonTbMBzkaZjio7xXwHJK6w8DTZ90Jm9hLP-ddu9JrfDVaOH5tc_nRz_-3u24EUHP3HSzpdX8MyV27D5qCnha1heEHYMuDQE5xUxcmRYihTTDK-q46yufuDD0fwLXi6_c_Nl_LZsbnBi1T17Tvw6nWBVosJzVbNOyx0u7ppaBafVTzxnSTbsahOqegcWs6Or6XHQCTIEJkpkE0jhCBKoVGpViLiwYxGPHI0ooY7YWpmIUcGVsDrSykUJkTmXaEv4p1ChkjI1YhfWy6p0bwHjTMUZcUvBAuwjo5XlhKspQhOKROlkAJ96q-T3bd-N3POVMMu9OXM2Z96ZcwA7PLqPzmwHdgD7vSVz-m04F6JKV60ecsH55JQcfTaAN62J_1zdz4x3T9z1PWzww9ttgHuw3tQr94GgSaM_-in5G0S52pY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVoJygAJtCa8uEjfk1PF6_TiGqCFtk6iiiejN2pfbqMWuXEdI_Hpm1jYqSJW4-WBb653dmW88-80H8CnQwUAlyuBOi42HDs_3EpsYTygVCBNEUmhKFGfzaLIMTy7ERUtWd1wYa607fGb7dOlq-abUa_pVdkhijqSr8wi2MPCHaUPX6hwvRnKngUyQhFp5i44j46eHiy-j4Tlmg0HYR7ftY1azDY95koQYH6O_QpLTWHkYbrqwM34O827AzWmT6_66Vn39659ejv_9RTvwrAWgbNismBewYYuX8PReW8JXsPqG6NEjcgiblZiTMwKmDKOapv_qbFyVP9jd0ewrO19dUvtl9n1VX7GhkbfkO9nxaMjKgkl2JitSarlhy5u6kt60_MnOSJSNteyEstqF5fhoMZp4rSSDp4NY1J7gFkGBTISSOY9yE_JoYHFGEXdExoiYD3LiwqpASRvEmM7ZWBlEQLn0pRCJ5nuwWZSFfQ0sSmWUYnbJSYJ9oJU0VHLVua99HksV9-BzZ5Xstum8kbmMxU8zZ86MzJm15uzBLs3uvTubie3Bx86SGW4cqobIwpbru4xTRTlBV5_2YL8x8Z-nu5Xx5oG3HsCTyWI2zabH89O3sE0DaQ4FvoPNulrb9whUavXBLc_f7QTd5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Motor+Unit+Tracking+From+sEMG+Signals+With+Adaptive+ICA+on+a+Parallel+Ultra-Low+Power+Processor&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Orlandi%2C+Mattia&rft.au=Rapa%2C+Pierangelo+Maria&rft.au=Zanghieri%2C+Marcello&rft.au=Frey%2C+Sebastian&rft.date=2024-08-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=18&rft.issue=4&rft.spage=771&rft.epage=782&rft_id=info:doi/10.1109%2FTBCAS.2024.3410840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2024_3410840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon