Methanolysis of ammonia borane catalyzed by NiO–CuO heterostructured nanosheets: cooperation of visible light and oxygen vacancy
Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can impr...
Saved in:
Published in | Rare metals Vol. 44; no. 1; pp. 389 - 403 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Springer Nature B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-0521 1867-7185 |
DOI | 10.1007/s12598-024-02949-6 |
Cover
Loading…
Abstract | Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can improve the efficiency of hydrogen production as well. In the present study, a Z-scheme heterostructured VO–Cu0.5Ni0.5O catalysts were constructed by introducing a plenteous phase interface and oxygen vacancy (Vo). The catalytic activity of as-prepared VO–Cu0.5Ni0.5O toward AB methanolysis has been improved dramatically with the assistance of visible light irradiation. The turnover frequency (TOF) under visible light irradiation was measured to be 29 molH2·molcat.−1·min−1, which is 1.4 times larger than the TOF in the absence of visible light. Systematic characterization experiments and density functional theory (DFT) calculations were conducted to unveil the causation of enhanced catalytic activity. The results demonstrated that the enhancement of the catalytic activity of VO–Cu0.5Ni0.5O originated from the electronic structure modification induced by the formation of heterojunctions, the introduction of oxygen vacancies, and the assistance of visible light cooperatively. The formation of heterojunction and the introduction of oxygen vacancies provoked the upshift of the d-band center; while the visible light irradiation induced the photogenerated electrons to transfer from Cu to Ni sites at the interface. Such electron structure modulation is beneficial for the construction of abundant active sites, thereby enhancing the adsorption of methanol on the Ni sites, which is considered as the rate-determine step for the methanolysis of AB. The strong interaction between Ni and O weakened the O–H bond of methanol, accelerating the methanolysis of AB. These results demonstrate the utilization of combined heterojunction, oxygen vacancy, and visible light to explore highly active AB methanolysis catalysts, which should shed light on the exploration of more effective catalysts for AB methanolysis. |
---|---|
AbstractList | Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can improve the efficiency of hydrogen production as well. In the present study, a Z-scheme heterostructured VO–Cu0.5Ni0.5O catalysts were constructed by introducing a plenteous phase interface and oxygen vacancy (Vo). The catalytic activity of as-prepared VO–Cu0.5Ni0.5O toward AB methanolysis has been improved dramatically with the assistance of visible light irradiation. The turnover frequency (TOF) under visible light irradiation was measured to be 29 molH2·molcat.−1·min−1, which is 1.4 times larger than the TOF in the absence of visible light. Systematic characterization experiments and density functional theory (DFT) calculations were conducted to unveil the causation of enhanced catalytic activity. The results demonstrated that the enhancement of the catalytic activity of VO–Cu0.5Ni0.5O originated from the electronic structure modification induced by the formation of heterojunctions, the introduction of oxygen vacancies, and the assistance of visible light cooperatively. The formation of heterojunction and the introduction of oxygen vacancies provoked the upshift of the d-band center; while the visible light irradiation induced the photogenerated electrons to transfer from Cu to Ni sites at the interface. Such electron structure modulation is beneficial for the construction of abundant active sites, thereby enhancing the adsorption of methanol on the Ni sites, which is considered as the rate-determine step for the methanolysis of AB. The strong interaction between Ni and O weakened the O–H bond of methanol, accelerating the methanolysis of AB. These results demonstrate the utilization of combined heterojunction, oxygen vacancy, and visible light to explore highly active AB methanolysis catalysts, which should shed light on the exploration of more effective catalysts for AB methanolysis. |
Author | Lian, Xue-Qi Wang, Hui-Ze Li, Yuan-Zhong Li, Hao Shao, You-Xiang Che, Xiao-Ting Li, Qian-Yi Feng, Yu-Fa Liao, Jin-Yun Liu, Quan-Bing |
Author_xml | – sequence: 1 givenname: You-Xiang surname: Shao fullname: Shao, You-Xiang – sequence: 2 givenname: Yuan-Zhong surname: Li fullname: Li, Yuan-Zhong – sequence: 3 givenname: Xue-Qi surname: Lian fullname: Lian, Xue-Qi – sequence: 4 givenname: Xiao-Ting surname: Che fullname: Che, Xiao-Ting – sequence: 5 givenname: Qian-Yi surname: Li fullname: Li, Qian-Yi – sequence: 6 givenname: Yu-Fa surname: Feng fullname: Feng, Yu-Fa – sequence: 7 givenname: Hui-Ze surname: Wang fullname: Wang, Hui-Ze – sequence: 8 givenname: Jin-Yun surname: Liao fullname: Liao, Jin-Yun – sequence: 9 givenname: Quan-Bing surname: Liu fullname: Liu, Quan-Bing – sequence: 10 givenname: Hao surname: Li fullname: Li, Hao |
BookMark | eNp9kM9O3DAQxq0KpPLvBXqy1HOo7XXiuLdqVSgSdC9wtibOhDXK2lvbQYQT6iv0DXkSDNsTBw6jGWnm-0bf75Ds-eCRkC-cnXLG1LfERa3biglZSktdNZ_IAW8bVSne1ntlZoxXrBb8MzlM6Y4xKZuGHZC_V5jX4MM4J5doGChsNsE7oF2I4JFayDDOj9jTbqa_3er56d9yWtE1Zowh5TjZPMWy9cUjrRFz-k5tCFuMkF3wr473LrluRDq623Wm4HsaHuZb9PQeLHg7H5P9AcaEJ__7Ebk5-3m9_FVdrs4vlj8uKytUnSsp5cA1sqHtoAfea-S1qmWnoVOqEzUMtZAKewGAglnGoFGDsK3QuOiU1osj8nXnu43hz4Qpm7swRV9emgWXmjVCKFmu2t2VLflSxMFYl9-y5AhuNJyZV-JmR9wU4uaNuGmKVLyTbqPbQJw_Er0A1v-Jlw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_10_177 |
Cites_doi | 10.1016/j.ijhydene.2009.05.093 10.1002/smll.201303507 10.1002/anie.202305371 10.1007/s12598-023-02305-0 10.1021/acsami.9b16981 10.1016/j.ijhydene.2009.01.002 10.1002/adfm.202308345 10.1039/B718842K 10.1016/S0360-3199(02)00150-7 10.1016/j.apcatb.2023.122484 10.1039/C4DT02873B 10.1039/C6TA08987A 10.1039/B703053C 10.1002/anie.200703150 10.1021/acsanm.1c03706 10.1016/j.ijhydene.2018.02.190 10.1021/ic700772a 10.1039/C8NR09005J 10.1021/jz1015372 10.1016/j.jpowsour.2005.05.043 10.1007/s40843-020-1305-6 10.1016/j.cej.2022.140376 10.1098/rsta.2006.1965 10.1016/j.apcatb.2022.121973 10.3866/PKU.WHXB202111021 10.1002/cphc.200300835 10.1021/cs300211y 10.1021/jacs.3c08311 10.1016/j.apcatb.2020.118775 10.1039/D0QI01366H 10.1002/solr.202000037 10.1016/j.apcatb.2022.121494 10.1002/smll.202001812 10.1016/j.cej.2020.126312 10.1002/aenm.202203290 10.1016/j.ijhydene.2019.04.125 10.1021/cr100088b 10.1016/j.ijhydene.2019.12.059 10.1039/C7CY02365K 10.1002/anie.200806293 10.1021/acscatal.6b02209 10.1007/s12598-023-02330-z 10.1007/s10853-020-05493-7 10.1038/35104634 10.1016/j.fuel.2022.126045 10.1021/acssuschemeng.9b06862 10.1021/acsami.9b18917 10.1039/B814216E 10.1016/j.cclet.2023.108313 10.1016/j.cclet.2023.108280 10.1002/adfm.202109503 10.1002/cssc.201100318 10.1002/advs.201901970 10.1021/acsami.2c06234 10.1016/j.cej.2022.137755 10.1016/j.jpowsour.2006.09.043 10.1002/cctc.202001769 10.1007/s12598-022-02224-6 10.1016/j.ijhydene.2019.05.119 10.1039/C9TA06987A 10.1016/j.ensm.2020.01.010 10.1039/D2TA03180A 10.1016/j.ijhydene.2022.10.156 10.1016/S1369-7021(08)70251-7 10.1039/D2TA08396E 10.1021/acscatal.0c03766 10.1016/S1369-7021(03)00922-2 10.1021/ja0518777 10.1016/j.cclet.2020.12.059 10.1016/j.ijhydene.2017.01.154 10.1016/j.ijhydene.2016.08.164 10.1016/j.apcatb.2015.08.038 10.1021/acs.energyfuels.2c02314 10.1016/j.apcatb.2014.10.011 10.1038/s41467-021-24882-3 10.1016/j.jpowsour.2010.06.031 10.1039/C2DT11778A 10.3390/catal10070788 10.1016/j.ijhydene.2020.08.131 10.1016/j.ijhydene.2021.01.217 10.1039/D2SE01542K 10.1021/acssuschemeng.0c01475 10.1007/s12274-018-2031-y 10.1039/C9GC03986D 10.1021/jacs.0c00257 10.1016/j.jmst.2022.01.030 10.1007/s12598-022-02029-7 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1007/s12598-024-02949-6 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1867-7185 |
EndPage | 403 |
ExternalDocumentID | 10_1007_s12598_024_02949_6 |
GroupedDBID | --K -SB -S~ 06D 0R~ 0VY 1B1 29P 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYXX AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACSTC ACZOJ ADHHG ADHIR ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGII AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATHPR AXYYD AYFIA BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP CITATION COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PHGZM PHGZT PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UOJIU UTJUX UY8 UZXMN VC2 VFIZW W48 WK8 ZMTXR ~A9 8BQ 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c275t-444f19e0f8bada1d9e15754b9ab77b25af5247ed2aae20c00a67f2c829e3b7993 |
ISSN | 1001-0521 |
IngestDate | Fri Jul 25 12:09:15 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 01:30:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c275t-444f19e0f8bada1d9e15754b9ab77b25af5247ed2aae20c00a67f2c829e3b7993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3149062274 |
PQPubID | 326325 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3149062274 crossref_citationtrail_10_1007_s12598_024_02949_6 crossref_primary_10_1007_s12598_024_02949_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Rare metals |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | QL Yao (2949_CR49) 2015; 44 F Dawood (2949_CR8) 2020; 45 KO Amoo (2949_CR40) 2016; 41 L Yan (2949_CR82) 2024; 34 QL Yao (2949_CR12) 2018; 8 ZX Yang (2949_CR15) 2022; 41 CY Wang (2949_CR51) 2021; 56 WW Zhan (2949_CR35) 2016; 6 PV Ramachandran (2949_CR38) 2007; 46 UB Demirci (2949_CR26) 2017; 42 ZW Peng (2949_CR70) 2023; 7 G Pacchioni (2949_CR57) 2003; 4 C Wan (2949_CR73) 2023; 62 HQ Liang (2949_CR76) 2021; 11 ZL Wang (2949_CR60) 2022; 32 YM Huang (2949_CR58) 2020; 4 B Su (2949_CR81) 2023; 13 M Muzzio (2949_CR47) 2020; 8 HH Zhang (2949_CR33) 2023; 42 TB Marder (2949_CR21) 2007; 46 JH Shi (2949_CR4) 2021; 403 HJ Li (2949_CR43) 2022; 36 YF Feng (2949_CR87) 2023; 332 SH Zhao (2949_CR65) 2023; 454 JB Li (2949_CR61) 2020; 16 P Wang (2949_CR29) 2012; 41 JB Zhang (2949_CR75) 2021; 13 QL Yao (2949_CR14) 2018; 11 YP Zheng (2949_CR42) 2021; 4 H Zhang (2949_CR71) 2017; 5 IP Jain (2949_CR6) 2009; 34 A Staubitz (2949_CR22) 2010; 110 P Chen (2949_CR17) 2008; 11 M Chandra (2949_CR23) 2006; 156 GX Zhuang (2949_CR64) 2020; 63 JY Liao (2949_CR85) 2022; 449 MA Aminudin (2949_CR7) 2023; 48 U Eberle (2949_CR9) 2009; 48 GA Karim (2949_CR5) 2003; 28 K Maeda (2949_CR77) 2005; 127 SY Guan (2949_CR67) 2020; 269 L Schlapbach (2949_CR19) 2001; 414 RF Shen (2949_CR68) 2023; 328 T Umegaki (2949_CR24) 2009; 34 D Özhava (2949_CR45) 2016; 181 DH Sun (2949_CR39) 2012; 2 QL Yao (2949_CR36) 2023; 42 Y Kojima (2949_CR10) 2019; 44 Z Xiong (2949_CR80) 2022; 38 YX Luo (2949_CR2) 2020; 12 K Yu (2949_CR56) 2020; 7 CY Wang (2949_CR69) 2022; 314 UB Demirci (2949_CR28) 2011; 196 P Jena (2949_CR13) 2011; 2 B Su (2949_CR78) 2022; 124 Q Xu (2949_CR50) 2006; 163 F Wei (2949_CR79) 2024; 35 UB Demirci (2949_CR30) 2021; 8 M Liu (2949_CR44) 2020; 10 NX Kang (2949_CR74) 2023; 11 YF Zheng (2949_CR66) 2022; 10 S Özkar (2949_CR41) 2020; 45 S Akbayrak (2949_CR25) 2018; 43 U Sanyal (2949_CR31) 2011; 4 R Ding (2949_CR37) 2020; 22 HZ Wang (2949_CR63) 2023; 42 S Eken Korkut (2949_CR48) 2020; 12 M Yurderi (2949_CR55) 2015; 165 JY Liao (2949_CR86) 2023; 320 J Graetz (2949_CR18) 2009; 38 FH Stephens (2949_CR20) 2007; 25 CY Wang (2949_CR54) 2020; 8 XF Su (2949_CR53) 2021; 46 ZH Xiao (2949_CR62) 2020; 142 B Su (2949_CR83) 2023; 145 H Wu (2949_CR32) 2020; 45 A Züttel (2949_CR11) 2003; 6 YF Feng (2949_CR84) 2022; 14 CG Lang (2949_CR16) 2020; 26 EK Abo-Hamed (2949_CR46) 2014; 10 SB Kalidindi (2949_CR52) 2009; 11 JR Huo (2949_CR34) 2021; 32 HJ Yu (2949_CR59) 2021; 12 ZJ Zhang (2949_CR1) 2019; 7 JR Huo (2949_CR27) 2023; 34 MY Gao (2949_CR72) 2019; 11 PP Edwards (2949_CR3) 1853; 2007 |
References_xml | – volume: 34 start-page: 7368 issue: 17 year: 2009 ident: 2949_CR6 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.05.093 – volume: 10 start-page: 3145 issue: 15 year: 2014 ident: 2949_CR46 publication-title: Small doi: 10.1002/smll.201303507 – volume: 62 start-page: e202305371 issue: 40 year: 2023 ident: 2949_CR73 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202305371 – volume: 42 start-page: 3013 issue: 9 year: 2023 ident: 2949_CR63 publication-title: Rare Met doi: 10.1007/s12598-023-02305-0 – volume: 12 start-page: 8082 issue: 7 year: 2020 ident: 2949_CR2 publication-title: ACS Appl Mater Interf doi: 10.1021/acsami.9b16981 – volume: 34 start-page: 2303 issue: 5 year: 2009 ident: 2949_CR24 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.01.002 – volume: 34 start-page: 2308345 issue: 4 year: 2024 ident: 2949_CR82 publication-title: Adv Funct Mater doi: 10.1002/adfm.202308345 – volume: 38 start-page: 73 issue: 1 year: 2009 ident: 2949_CR18 publication-title: Chem Soc Rev doi: 10.1039/B718842K – volume: 28 start-page: 569 issue: 5 year: 2003 ident: 2949_CR5 publication-title: Int J Hydrog Energy doi: 10.1016/S0360-3199(02)00150-7 – volume: 328 start-page: 122484 year: 2023 ident: 2949_CR68 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122484 – volume: 44 start-page: 1070 issue: 3 year: 2015 ident: 2949_CR49 publication-title: Dalton Trans doi: 10.1039/C4DT02873B – volume: 5 start-page: 2288 issue: 5 year: 2017 ident: 2949_CR71 publication-title: J Mater Chem A doi: 10.1039/C6TA08987A – volume: 25 start-page: 2613 year: 2007 ident: 2949_CR20 publication-title: Dalton Trans doi: 10.1039/B703053C – volume: 46 start-page: 8116 year: 2007 ident: 2949_CR21 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200703150 – volume: 4 start-page: 14208 issue: 12 year: 2021 ident: 2949_CR42 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.1c03706 – volume: 43 start-page: 18592 issue: 40 year: 2018 ident: 2949_CR25 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2018.02.190 – volume: 46 start-page: 7810 issue: 19 year: 2007 ident: 2949_CR38 publication-title: Inorg Chem doi: 10.1021/ic700772a – volume: 11 start-page: 3506 issue: 8 year: 2019 ident: 2949_CR72 publication-title: Nanoscale doi: 10.1039/C8NR09005J – volume: 2 start-page: 206 issue: 3 year: 2011 ident: 2949_CR13 publication-title: J Phys Chem Lett doi: 10.1021/jz1015372 – volume: 156 start-page: 190 issue: 2 year: 2006 ident: 2949_CR23 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2005.05.043 – volume: 63 start-page: 2089 issue: 11 year: 2020 ident: 2949_CR64 publication-title: Sci China Mater doi: 10.1007/s40843-020-1305-6 – volume: 454 start-page: 140376 year: 2023 ident: 2949_CR65 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140376 – volume: 2007 start-page: 1043 issue: 365 year: 1853 ident: 2949_CR3 publication-title: Philos T R Soc A doi: 10.1098/rsta.2006.1965 – volume: 320 start-page: 121973 year: 2023 ident: 2949_CR86 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2022.121973 – volume: 38 start-page: 2111021 issue: 7 year: 2022 ident: 2949_CR80 publication-title: Acta Phys-Chim Sin doi: 10.3866/PKU.WHXB202111021 – volume: 4 start-page: 1041 issue: 10 year: 2003 ident: 2949_CR57 publication-title: ChemPhysChem doi: 10.1002/cphc.200300835 – volume: 2 start-page: 1290 issue: 6 year: 2012 ident: 2949_CR39 publication-title: ACS Catal doi: 10.1021/cs300211y – volume: 145 start-page: 27415 issue: 50 year: 2023 ident: 2949_CR83 publication-title: J Am Chem Soc doi: 10.1021/jacs.3c08311 – volume: 269 start-page: 118775 year: 2020 ident: 2949_CR67 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.118775 – volume: 8 start-page: 1900 issue: 7 year: 2021 ident: 2949_CR30 publication-title: Inorg Chem Front doi: 10.1039/D0QI01366H – volume: 4 start-page: 2000037 issue: 8 year: 2020 ident: 2949_CR58 publication-title: Solar RRL doi: 10.1002/solr.202000037 – volume: 314 start-page: 121494 year: 2022 ident: 2949_CR69 publication-title: Applied Catalysis B doi: 10.1016/j.apcatb.2022.121494 – volume: 16 start-page: 2001812 issue: 24 year: 2020 ident: 2949_CR61 publication-title: Small doi: 10.1002/smll.202001812 – volume: 403 start-page: 126312 year: 2021 ident: 2949_CR4 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126312 – volume: 13 start-page: 2203290 issue: 15 year: 2023 ident: 2949_CR81 publication-title: Adv Energy Mater doi: 10.1002/aenm.202203290 – volume: 45 start-page: 7881 issue: 14 year: 2020 ident: 2949_CR41 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.04.125 – volume: 110 start-page: 4079 issue: 7 year: 2010 ident: 2949_CR22 publication-title: Chem Rev doi: 10.1021/cr100088b – volume: 45 start-page: 3847 issue: 7 year: 2020 ident: 2949_CR8 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.12.059 – volume: 8 start-page: 870 issue: 3 year: 2018 ident: 2949_CR12 publication-title: Catal Sci Technol doi: 10.1039/C7CY02365K – volume: 48 start-page: 6608 issue: 36 year: 2009 ident: 2949_CR9 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200806293 – volume: 6 start-page: 6892 issue: 10 year: 2016 ident: 2949_CR35 publication-title: ACS Catal doi: 10.1021/acscatal.6b02209 – volume: 42 start-page: 3410 issue: 10 year: 2023 ident: 2949_CR36 publication-title: Rare Met doi: 10.1007/s12598-023-02330-z – volume: 56 start-page: 2856 year: 2021 ident: 2949_CR51 publication-title: J Mater Sci doi: 10.1007/s10853-020-05493-7 – volume: 414 start-page: 353 issue: 6861 year: 2001 ident: 2949_CR19 publication-title: Nature doi: 10.1038/35104634 – volume: 332 start-page: 126045 year: 2023 ident: 2949_CR87 publication-title: Fuel doi: 10.1016/j.fuel.2022.126045 – volume: 8 start-page: 2814 issue: 7 year: 2020 ident: 2949_CR47 publication-title: ACS Sust Chem Eng doi: 10.1021/acssuschemeng.9b06862 – volume: 12 start-page: 8130 issue: 7 year: 2020 ident: 2949_CR48 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b18917 – volume: 11 start-page: 770 issue: 5 year: 2009 ident: 2949_CR52 publication-title: Phys Chem Chem Phys doi: 10.1039/B814216E – volume: 35 start-page: 108313 issue: 3 year: 2024 ident: 2949_CR79 publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2023.108313 – volume: 34 start-page: 108280 issue: 12 year: 2023 ident: 2949_CR27 publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2023.108280 – volume: 32 start-page: 2109503 issue: 7 year: 2022 ident: 2949_CR60 publication-title: Adv Funct Mater doi: 10.1002/adfm.202109503 – volume: 4 start-page: 1731 issue: 12 year: 2011 ident: 2949_CR31 publication-title: Chemsuschem doi: 10.1002/cssc.201100318 – volume: 7 start-page: 1901970 issue: 2 year: 2020 ident: 2949_CR56 publication-title: Adv Sci doi: 10.1002/advs.201901970 – volume: 14 start-page: 27979 issue: 24 year: 2022 ident: 2949_CR84 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c06234 – volume: 449 start-page: 137755 year: 2022 ident: 2949_CR85 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137755 – volume: 163 start-page: 364 issue: 1 year: 2006 ident: 2949_CR50 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2006.09.043 – volume: 13 start-page: 1146 issue: 4 year: 2021 ident: 2949_CR75 publication-title: ChemCatChem doi: 10.1002/cctc.202001769 – volume: 42 start-page: 1935 issue: 6 year: 2023 ident: 2949_CR33 publication-title: Rare Met doi: 10.1007/s12598-022-02224-6 – volume: 44 start-page: 18179 issue: 33 year: 2019 ident: 2949_CR10 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2019.05.119 – volume: 7 start-page: 21438 issue: 37 year: 2019 ident: 2949_CR1 publication-title: J Mater Chem A doi: 10.1039/C9TA06987A – volume: 26 start-page: 290 year: 2020 ident: 2949_CR16 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2020.01.010 – volume: 10 start-page: 14171 issue: 27 year: 2022 ident: 2949_CR66 publication-title: J Mater Chem A doi: 10.1039/D2TA03180A – volume: 48 start-page: 4371 issue: 11 year: 2023 ident: 2949_CR7 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.10.156 – volume: 11 start-page: 36 issue: 12 year: 2008 ident: 2949_CR17 publication-title: Mater Today doi: 10.1016/S1369-7021(08)70251-7 – volume: 11 start-page: 5245 issue: 10 year: 2023 ident: 2949_CR74 publication-title: J Mater Chem A doi: 10.1039/D2TA08396E – volume: 11 start-page: 958 issue: 2 year: 2021 ident: 2949_CR76 publication-title: ACS Catal doi: 10.1021/acscatal.0c03766 – volume: 6 start-page: 24 issue: 9 year: 2003 ident: 2949_CR11 publication-title: Mater Today doi: 10.1016/S1369-7021(03)00922-2 – volume: 127 start-page: 8286 issue: 23 year: 2005 ident: 2949_CR77 publication-title: J Am Chem Soc doi: 10.1021/ja0518777 – volume: 32 start-page: 2269 issue: 7 year: 2021 ident: 2949_CR34 publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2020.12.059 – volume: 42 start-page: 9978 issue: 15 year: 2017 ident: 2949_CR26 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2017.01.154 – volume: 41 start-page: 21221 issue: 46 year: 2016 ident: 2949_CR40 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2016.08.164 – volume: 181 start-page: 716 year: 2016 ident: 2949_CR45 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2015.08.038 – volume: 36 start-page: 11745 issue: 19 year: 2022 ident: 2949_CR43 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c02314 – volume: 165 start-page: 169 year: 2015 ident: 2949_CR55 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2014.10.011 – volume: 12 start-page: 4594 issue: 1 year: 2021 ident: 2949_CR59 publication-title: Nat Commun doi: 10.1038/s41467-021-24882-3 – volume: 196 start-page: 279 issue: 1 year: 2011 ident: 2949_CR28 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.06.031 – volume: 41 start-page: 4296 issue: 15 year: 2012 ident: 2949_CR29 publication-title: Dalton Trans doi: 10.1039/C2DT11778A – volume: 10 start-page: 788 issue: 7 year: 2020 ident: 2949_CR44 publication-title: Catalysts doi: 10.3390/catal10070788 – volume: 45 start-page: 30325 issue: 55 year: 2020 ident: 2949_CR32 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.08.131 – volume: 46 start-page: 14384 issue: 27 year: 2021 ident: 2949_CR53 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.01.217 – volume: 7 start-page: 821 issue: 3 year: 2023 ident: 2949_CR70 publication-title: Sustain Energ Fuels doi: 10.1039/D2SE01542K – volume: 8 start-page: 8256 issue: 22 year: 2020 ident: 2949_CR54 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.0c01475 – volume: 11 start-page: 4412 issue: 8 year: 2018 ident: 2949_CR14 publication-title: Nano Res doi: 10.1007/s12274-018-2031-y – volume: 22 start-page: 835 issue: 3 year: 2020 ident: 2949_CR37 publication-title: Green Chem doi: 10.1039/C9GC03986D – volume: 142 start-page: 12087 issue: 28 year: 2020 ident: 2949_CR62 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c00257 – volume: 124 start-page: 164 year: 2022 ident: 2949_CR78 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2022.01.030 – volume: 41 start-page: 3251 issue: 10 year: 2022 ident: 2949_CR15 publication-title: Rare Met doi: 10.1007/s12598-022-02029-7 |
SSID | ssj0044660 |
Score | 2.3551848 |
Snippet | Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 389 |
SubjectTerms | Ammonia Boranes Catalysts Catalytic activity Construction sites Density functional theory Electronic structure Electrons Heterojunctions Hydrogen bonds Hydrogen production Light Light irradiation Methanol Oxygen |
Title | Methanolysis of ammonia borane catalyzed by NiO–CuO heterostructured nanosheets: cooperation of visible light and oxygen vacancy |
URI | https://www.proquest.com/docview/3149062274 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtemkPJX3RR1J06G1xsGXJj95CSAgh2YWyC3szkiXRQGqHZlO6OZX-hf7D_pLMSLLXuw2h7cHGaNeS0TcazUjzjQj5IHMttJVxpDJtIs5tFhWWqygWuojLQotUIsH5bJwdz_jJXMxXp406dslC7dU3d_JK_gdVKANckSX7D8j2lUIBPAO-cAeE4f5XGJ8ZXPhu-6wiEps-lyPEtcGALrCslzfexhyfT7rAhvTgegIWIvRo69PHXmMQegM1XX02ZuGC5Oq2vTRfe3sSKejIsbpAX95tOLTfl_Bdo2-yRv08tHE_YTDZFwNtr60pMLGxptCtKWLANG5j9JwXpyJdEJbwvOY948sKULcwy4mhXvV5HdfkxyvJ1B8aFOZb7nIc_KnK40BtBv-siMCSgKvkZXRH3uzxpDqanZ5W08P59CF5xMBhwLMsZmy_m5Nx09rnpQjfHuhTnkS52cK6ibI-QzuzY7pNngZ_ge578J-RB6Z5Tp4Mski-ID-HYkBbS4MYUC8GtBcDqpYUxOD3j18gAHRTAOhKAD7SAfxYY4CfOvgpwE89_DTA_5LMjg6nB8dROFojqlkuFjAouU1KE9tCSS0TXZoE7HauSqnyXDEhrWA8N5pJaVhcx7HMcsvqgpUmVTnYtK_IVtM25jWhpTVFqrWs08RwlXNlRFmnQoLraRV0_BuSdL1Z1SHvPB5_clGtMmYjAhUgUDkEKnhn1L9z6bOu3PvvnQ6kKozOqyoF1z_OGMv52_t_fkcer4bADtmCbje7YGgu1HsnQ7cY7YE4 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanolysis+of+ammonia+borane+catalyzed+by+NiO%E2%80%93CuO+heterostructured+nanosheets%3A+cooperation+of+visible+light+and+oxygen+vacancy&rft.jtitle=Rare+metals&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=44&rft.issue=1&rft.spage=389&rft.epage=403&rft_id=info:doi/10.1007%2Fs12598-024-02949-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |