Methanolysis of ammonia borane catalyzed by NiO–CuO heterostructured nanosheets: cooperation of visible light and oxygen vacancy

Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can impr...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 44; no. 1; pp. 389 - 403
Main Authors Shao, You-Xiang, Li, Yuan-Zhong, Lian, Xue-Qi, Che, Xiao-Ting, Li, Qian-Yi, Feng, Yu-Fa, Wang, Hui-Ze, Liao, Jin-Yun, Liu, Quan-Bing, Li, Hao
Format Journal Article
LanguageEnglish
Published Beijing Springer Nature B.V 01.01.2025
Subjects
Online AccessGet full text
ISSN1001-0521
1867-7185
DOI10.1007/s12598-024-02949-6

Cover

Loading…
Abstract Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can improve the efficiency of hydrogen production as well. In the present study, a Z-scheme heterostructured VO–Cu0.5Ni0.5O catalysts were constructed by introducing a plenteous phase interface and oxygen vacancy (Vo). The catalytic activity of as-prepared VO–Cu0.5Ni0.5O toward AB methanolysis has been improved dramatically with the assistance of visible light irradiation. The turnover frequency (TOF) under visible light irradiation was measured to be 29 molH2·molcat.−1·min−1, which is 1.4 times larger than the TOF in the absence of visible light. Systematic characterization experiments and density functional theory (DFT) calculations were conducted to unveil the causation of enhanced catalytic activity. The results demonstrated that the enhancement of the catalytic activity of VO–Cu0.5Ni0.5O originated from the electronic structure modification induced by the formation of heterojunctions, the introduction of oxygen vacancies, and the assistance of visible light cooperatively. The formation of heterojunction and the introduction of oxygen vacancies provoked the upshift of the d-band center; while the visible light irradiation induced the photogenerated electrons to transfer from Cu to Ni sites at the interface. Such electron structure modulation is beneficial for the construction of abundant active sites, thereby enhancing the adsorption of methanol on the Ni sites, which is considered as the rate-determine step for the methanolysis of AB. The strong interaction between Ni and O weakened the O–H bond of methanol, accelerating the methanolysis of AB. These results demonstrate the utilization of combined heterojunction, oxygen vacancy, and visible light to explore highly active AB methanolysis catalysts, which should shed light on the exploration of more effective catalysts for AB methanolysis.
AbstractList Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy recently. Besides the modification of the electronic structure of the catalysts, external factors such as visible light irradiation can improve the efficiency of hydrogen production as well. In the present study, a Z-scheme heterostructured VO–Cu0.5Ni0.5O catalysts were constructed by introducing a plenteous phase interface and oxygen vacancy (Vo). The catalytic activity of as-prepared VO–Cu0.5Ni0.5O toward AB methanolysis has been improved dramatically with the assistance of visible light irradiation. The turnover frequency (TOF) under visible light irradiation was measured to be 29 molH2·molcat.−1·min−1, which is 1.4 times larger than the TOF in the absence of visible light. Systematic characterization experiments and density functional theory (DFT) calculations were conducted to unveil the causation of enhanced catalytic activity. The results demonstrated that the enhancement of the catalytic activity of VO–Cu0.5Ni0.5O originated from the electronic structure modification induced by the formation of heterojunctions, the introduction of oxygen vacancies, and the assistance of visible light cooperatively. The formation of heterojunction and the introduction of oxygen vacancies provoked the upshift of the d-band center; while the visible light irradiation induced the photogenerated electrons to transfer from Cu to Ni sites at the interface. Such electron structure modulation is beneficial for the construction of abundant active sites, thereby enhancing the adsorption of methanol on the Ni sites, which is considered as the rate-determine step for the methanolysis of AB. The strong interaction between Ni and O weakened the O–H bond of methanol, accelerating the methanolysis of AB. These results demonstrate the utilization of combined heterojunction, oxygen vacancy, and visible light to explore highly active AB methanolysis catalysts, which should shed light on the exploration of more effective catalysts for AB methanolysis.
Author Lian, Xue-Qi
Wang, Hui-Ze
Li, Yuan-Zhong
Li, Hao
Shao, You-Xiang
Che, Xiao-Ting
Li, Qian-Yi
Feng, Yu-Fa
Liao, Jin-Yun
Liu, Quan-Bing
Author_xml – sequence: 1
  givenname: You-Xiang
  surname: Shao
  fullname: Shao, You-Xiang
– sequence: 2
  givenname: Yuan-Zhong
  surname: Li
  fullname: Li, Yuan-Zhong
– sequence: 3
  givenname: Xue-Qi
  surname: Lian
  fullname: Lian, Xue-Qi
– sequence: 4
  givenname: Xiao-Ting
  surname: Che
  fullname: Che, Xiao-Ting
– sequence: 5
  givenname: Qian-Yi
  surname: Li
  fullname: Li, Qian-Yi
– sequence: 6
  givenname: Yu-Fa
  surname: Feng
  fullname: Feng, Yu-Fa
– sequence: 7
  givenname: Hui-Ze
  surname: Wang
  fullname: Wang, Hui-Ze
– sequence: 8
  givenname: Jin-Yun
  surname: Liao
  fullname: Liao, Jin-Yun
– sequence: 9
  givenname: Quan-Bing
  surname: Liu
  fullname: Liu, Quan-Bing
– sequence: 10
  givenname: Hao
  surname: Li
  fullname: Li, Hao
BookMark eNp9kM9O3DAQxq0KpPLvBXqy1HOo7XXiuLdqVSgSdC9wtibOhDXK2lvbQYQT6iv0DXkSDNsTBw6jGWnm-0bf75Ds-eCRkC-cnXLG1LfERa3biglZSktdNZ_IAW8bVSne1ntlZoxXrBb8MzlM6Y4xKZuGHZC_V5jX4MM4J5doGChsNsE7oF2I4JFayDDOj9jTbqa_3er56d9yWtE1Zowh5TjZPMWy9cUjrRFz-k5tCFuMkF3wr473LrluRDq623Wm4HsaHuZb9PQeLHg7H5P9AcaEJ__7Ebk5-3m9_FVdrs4vlj8uKytUnSsp5cA1sqHtoAfea-S1qmWnoVOqEzUMtZAKewGAglnGoFGDsK3QuOiU1osj8nXnu43hz4Qpm7swRV9emgWXmjVCKFmu2t2VLflSxMFYl9-y5AhuNJyZV-JmR9wU4uaNuGmKVLyTbqPbQJw_Er0A1v-Jlw
CitedBy_id crossref_primary_10_1016_j_jcis_2024_10_177
Cites_doi 10.1016/j.ijhydene.2009.05.093
10.1002/smll.201303507
10.1002/anie.202305371
10.1007/s12598-023-02305-0
10.1021/acsami.9b16981
10.1016/j.ijhydene.2009.01.002
10.1002/adfm.202308345
10.1039/B718842K
10.1016/S0360-3199(02)00150-7
10.1016/j.apcatb.2023.122484
10.1039/C4DT02873B
10.1039/C6TA08987A
10.1039/B703053C
10.1002/anie.200703150
10.1021/acsanm.1c03706
10.1016/j.ijhydene.2018.02.190
10.1021/ic700772a
10.1039/C8NR09005J
10.1021/jz1015372
10.1016/j.jpowsour.2005.05.043
10.1007/s40843-020-1305-6
10.1016/j.cej.2022.140376
10.1098/rsta.2006.1965
10.1016/j.apcatb.2022.121973
10.3866/PKU.WHXB202111021
10.1002/cphc.200300835
10.1021/cs300211y
10.1021/jacs.3c08311
10.1016/j.apcatb.2020.118775
10.1039/D0QI01366H
10.1002/solr.202000037
10.1016/j.apcatb.2022.121494
10.1002/smll.202001812
10.1016/j.cej.2020.126312
10.1002/aenm.202203290
10.1016/j.ijhydene.2019.04.125
10.1021/cr100088b
10.1016/j.ijhydene.2019.12.059
10.1039/C7CY02365K
10.1002/anie.200806293
10.1021/acscatal.6b02209
10.1007/s12598-023-02330-z
10.1007/s10853-020-05493-7
10.1038/35104634
10.1016/j.fuel.2022.126045
10.1021/acssuschemeng.9b06862
10.1021/acsami.9b18917
10.1039/B814216E
10.1016/j.cclet.2023.108313
10.1016/j.cclet.2023.108280
10.1002/adfm.202109503
10.1002/cssc.201100318
10.1002/advs.201901970
10.1021/acsami.2c06234
10.1016/j.cej.2022.137755
10.1016/j.jpowsour.2006.09.043
10.1002/cctc.202001769
10.1007/s12598-022-02224-6
10.1016/j.ijhydene.2019.05.119
10.1039/C9TA06987A
10.1016/j.ensm.2020.01.010
10.1039/D2TA03180A
10.1016/j.ijhydene.2022.10.156
10.1016/S1369-7021(08)70251-7
10.1039/D2TA08396E
10.1021/acscatal.0c03766
10.1016/S1369-7021(03)00922-2
10.1021/ja0518777
10.1016/j.cclet.2020.12.059
10.1016/j.ijhydene.2017.01.154
10.1016/j.ijhydene.2016.08.164
10.1016/j.apcatb.2015.08.038
10.1021/acs.energyfuels.2c02314
10.1016/j.apcatb.2014.10.011
10.1038/s41467-021-24882-3
10.1016/j.jpowsour.2010.06.031
10.1039/C2DT11778A
10.3390/catal10070788
10.1016/j.ijhydene.2020.08.131
10.1016/j.ijhydene.2021.01.217
10.1039/D2SE01542K
10.1021/acssuschemeng.0c01475
10.1007/s12274-018-2031-y
10.1039/C9GC03986D
10.1021/jacs.0c00257
10.1016/j.jmst.2022.01.030
10.1007/s12598-022-02029-7
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-024-02949-6
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 403
ExternalDocumentID 10_1007_s12598_024_02949_6
GroupedDBID --K
-SB
-S~
06D
0R~
0VY
1B1
29P
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGII
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AXYYD
AYFIA
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
CITATION
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PHGZM
PHGZT
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UOJIU
UTJUX
UY8
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
~A9
8BQ
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c275t-444f19e0f8bada1d9e15754b9ab77b25af5247ed2aae20c00a67f2c829e3b7993
ISSN 1001-0521
IngestDate Fri Jul 25 12:09:15 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 01:30:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-444f19e0f8bada1d9e15754b9ab77b25af5247ed2aae20c00a67f2c829e3b7993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3149062274
PQPubID 326325
PageCount 15
ParticipantIDs proquest_journals_3149062274
crossref_citationtrail_10_1007_s12598_024_02949_6
crossref_primary_10_1007_s12598_024_02949_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References QL Yao (2949_CR49) 2015; 44
F Dawood (2949_CR8) 2020; 45
KO Amoo (2949_CR40) 2016; 41
L Yan (2949_CR82) 2024; 34
QL Yao (2949_CR12) 2018; 8
ZX Yang (2949_CR15) 2022; 41
CY Wang (2949_CR51) 2021; 56
WW Zhan (2949_CR35) 2016; 6
PV Ramachandran (2949_CR38) 2007; 46
UB Demirci (2949_CR26) 2017; 42
ZW Peng (2949_CR70) 2023; 7
G Pacchioni (2949_CR57) 2003; 4
C Wan (2949_CR73) 2023; 62
HQ Liang (2949_CR76) 2021; 11
ZL Wang (2949_CR60) 2022; 32
YM Huang (2949_CR58) 2020; 4
B Su (2949_CR81) 2023; 13
M Muzzio (2949_CR47) 2020; 8
HH Zhang (2949_CR33) 2023; 42
TB Marder (2949_CR21) 2007; 46
JH Shi (2949_CR4) 2021; 403
HJ Li (2949_CR43) 2022; 36
YF Feng (2949_CR87) 2023; 332
SH Zhao (2949_CR65) 2023; 454
JB Li (2949_CR61) 2020; 16
P Wang (2949_CR29) 2012; 41
JB Zhang (2949_CR75) 2021; 13
QL Yao (2949_CR14) 2018; 11
YP Zheng (2949_CR42) 2021; 4
H Zhang (2949_CR71) 2017; 5
IP Jain (2949_CR6) 2009; 34
A Staubitz (2949_CR22) 2010; 110
P Chen (2949_CR17) 2008; 11
M Chandra (2949_CR23) 2006; 156
GX Zhuang (2949_CR64) 2020; 63
JY Liao (2949_CR85) 2022; 449
MA Aminudin (2949_CR7) 2023; 48
U Eberle (2949_CR9) 2009; 48
GA Karim (2949_CR5) 2003; 28
K Maeda (2949_CR77) 2005; 127
SY Guan (2949_CR67) 2020; 269
L Schlapbach (2949_CR19) 2001; 414
RF Shen (2949_CR68) 2023; 328
T Umegaki (2949_CR24) 2009; 34
D Özhava (2949_CR45) 2016; 181
DH Sun (2949_CR39) 2012; 2
QL Yao (2949_CR36) 2023; 42
Y Kojima (2949_CR10) 2019; 44
Z Xiong (2949_CR80) 2022; 38
YX Luo (2949_CR2) 2020; 12
K Yu (2949_CR56) 2020; 7
CY Wang (2949_CR69) 2022; 314
UB Demirci (2949_CR28) 2011; 196
P Jena (2949_CR13) 2011; 2
B Su (2949_CR78) 2022; 124
Q Xu (2949_CR50) 2006; 163
F Wei (2949_CR79) 2024; 35
UB Demirci (2949_CR30) 2021; 8
M Liu (2949_CR44) 2020; 10
NX Kang (2949_CR74) 2023; 11
YF Zheng (2949_CR66) 2022; 10
S Özkar (2949_CR41) 2020; 45
S Akbayrak (2949_CR25) 2018; 43
U Sanyal (2949_CR31) 2011; 4
R Ding (2949_CR37) 2020; 22
HZ Wang (2949_CR63) 2023; 42
S Eken Korkut (2949_CR48) 2020; 12
M Yurderi (2949_CR55) 2015; 165
JY Liao (2949_CR86) 2023; 320
J Graetz (2949_CR18) 2009; 38
FH Stephens (2949_CR20) 2007; 25
CY Wang (2949_CR54) 2020; 8
XF Su (2949_CR53) 2021; 46
ZH Xiao (2949_CR62) 2020; 142
B Su (2949_CR83) 2023; 145
H Wu (2949_CR32) 2020; 45
A Züttel (2949_CR11) 2003; 6
YF Feng (2949_CR84) 2022; 14
CG Lang (2949_CR16) 2020; 26
EK Abo-Hamed (2949_CR46) 2014; 10
SB Kalidindi (2949_CR52) 2009; 11
JR Huo (2949_CR34) 2021; 32
HJ Yu (2949_CR59) 2021; 12
ZJ Zhang (2949_CR1) 2019; 7
JR Huo (2949_CR27) 2023; 34
MY Gao (2949_CR72) 2019; 11
PP Edwards (2949_CR3) 1853; 2007
References_xml – volume: 34
  start-page: 7368
  issue: 17
  year: 2009
  ident: 2949_CR6
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2009.05.093
– volume: 10
  start-page: 3145
  issue: 15
  year: 2014
  ident: 2949_CR46
  publication-title: Small
  doi: 10.1002/smll.201303507
– volume: 62
  start-page: e202305371
  issue: 40
  year: 2023
  ident: 2949_CR73
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202305371
– volume: 42
  start-page: 3013
  issue: 9
  year: 2023
  ident: 2949_CR63
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02305-0
– volume: 12
  start-page: 8082
  issue: 7
  year: 2020
  ident: 2949_CR2
  publication-title: ACS Appl Mater Interf
  doi: 10.1021/acsami.9b16981
– volume: 34
  start-page: 2303
  issue: 5
  year: 2009
  ident: 2949_CR24
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2009.01.002
– volume: 34
  start-page: 2308345
  issue: 4
  year: 2024
  ident: 2949_CR82
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202308345
– volume: 38
  start-page: 73
  issue: 1
  year: 2009
  ident: 2949_CR18
  publication-title: Chem Soc Rev
  doi: 10.1039/B718842K
– volume: 28
  start-page: 569
  issue: 5
  year: 2003
  ident: 2949_CR5
  publication-title: Int J Hydrog Energy
  doi: 10.1016/S0360-3199(02)00150-7
– volume: 328
  start-page: 122484
  year: 2023
  ident: 2949_CR68
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2023.122484
– volume: 44
  start-page: 1070
  issue: 3
  year: 2015
  ident: 2949_CR49
  publication-title: Dalton Trans
  doi: 10.1039/C4DT02873B
– volume: 5
  start-page: 2288
  issue: 5
  year: 2017
  ident: 2949_CR71
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA08987A
– volume: 25
  start-page: 2613
  year: 2007
  ident: 2949_CR20
  publication-title: Dalton Trans
  doi: 10.1039/B703053C
– volume: 46
  start-page: 8116
  year: 2007
  ident: 2949_CR21
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200703150
– volume: 4
  start-page: 14208
  issue: 12
  year: 2021
  ident: 2949_CR42
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.1c03706
– volume: 43
  start-page: 18592
  issue: 40
  year: 2018
  ident: 2949_CR25
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.02.190
– volume: 46
  start-page: 7810
  issue: 19
  year: 2007
  ident: 2949_CR38
  publication-title: Inorg Chem
  doi: 10.1021/ic700772a
– volume: 11
  start-page: 3506
  issue: 8
  year: 2019
  ident: 2949_CR72
  publication-title: Nanoscale
  doi: 10.1039/C8NR09005J
– volume: 2
  start-page: 206
  issue: 3
  year: 2011
  ident: 2949_CR13
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz1015372
– volume: 156
  start-page: 190
  issue: 2
  year: 2006
  ident: 2949_CR23
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2005.05.043
– volume: 63
  start-page: 2089
  issue: 11
  year: 2020
  ident: 2949_CR64
  publication-title: Sci China Mater
  doi: 10.1007/s40843-020-1305-6
– volume: 454
  start-page: 140376
  year: 2023
  ident: 2949_CR65
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.140376
– volume: 2007
  start-page: 1043
  issue: 365
  year: 1853
  ident: 2949_CR3
  publication-title: Philos T R Soc A
  doi: 10.1098/rsta.2006.1965
– volume: 320
  start-page: 121973
  year: 2023
  ident: 2949_CR86
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.121973
– volume: 38
  start-page: 2111021
  issue: 7
  year: 2022
  ident: 2949_CR80
  publication-title: Acta Phys-Chim Sin
  doi: 10.3866/PKU.WHXB202111021
– volume: 4
  start-page: 1041
  issue: 10
  year: 2003
  ident: 2949_CR57
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200300835
– volume: 2
  start-page: 1290
  issue: 6
  year: 2012
  ident: 2949_CR39
  publication-title: ACS Catal
  doi: 10.1021/cs300211y
– volume: 145
  start-page: 27415
  issue: 50
  year: 2023
  ident: 2949_CR83
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.3c08311
– volume: 269
  start-page: 118775
  year: 2020
  ident: 2949_CR67
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.118775
– volume: 8
  start-page: 1900
  issue: 7
  year: 2021
  ident: 2949_CR30
  publication-title: Inorg Chem Front
  doi: 10.1039/D0QI01366H
– volume: 4
  start-page: 2000037
  issue: 8
  year: 2020
  ident: 2949_CR58
  publication-title: Solar RRL
  doi: 10.1002/solr.202000037
– volume: 314
  start-page: 121494
  year: 2022
  ident: 2949_CR69
  publication-title: Applied Catalysis B
  doi: 10.1016/j.apcatb.2022.121494
– volume: 16
  start-page: 2001812
  issue: 24
  year: 2020
  ident: 2949_CR61
  publication-title: Small
  doi: 10.1002/smll.202001812
– volume: 403
  start-page: 126312
  year: 2021
  ident: 2949_CR4
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126312
– volume: 13
  start-page: 2203290
  issue: 15
  year: 2023
  ident: 2949_CR81
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202203290
– volume: 45
  start-page: 7881
  issue: 14
  year: 2020
  ident: 2949_CR41
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.04.125
– volume: 110
  start-page: 4079
  issue: 7
  year: 2010
  ident: 2949_CR22
  publication-title: Chem Rev
  doi: 10.1021/cr100088b
– volume: 45
  start-page: 3847
  issue: 7
  year: 2020
  ident: 2949_CR8
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.12.059
– volume: 8
  start-page: 870
  issue: 3
  year: 2018
  ident: 2949_CR12
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY02365K
– volume: 48
  start-page: 6608
  issue: 36
  year: 2009
  ident: 2949_CR9
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200806293
– volume: 6
  start-page: 6892
  issue: 10
  year: 2016
  ident: 2949_CR35
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02209
– volume: 42
  start-page: 3410
  issue: 10
  year: 2023
  ident: 2949_CR36
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02330-z
– volume: 56
  start-page: 2856
  year: 2021
  ident: 2949_CR51
  publication-title: J Mater Sci
  doi: 10.1007/s10853-020-05493-7
– volume: 414
  start-page: 353
  issue: 6861
  year: 2001
  ident: 2949_CR19
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 332
  start-page: 126045
  year: 2023
  ident: 2949_CR87
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126045
– volume: 8
  start-page: 2814
  issue: 7
  year: 2020
  ident: 2949_CR47
  publication-title: ACS Sust Chem Eng
  doi: 10.1021/acssuschemeng.9b06862
– volume: 12
  start-page: 8130
  issue: 7
  year: 2020
  ident: 2949_CR48
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b18917
– volume: 11
  start-page: 770
  issue: 5
  year: 2009
  ident: 2949_CR52
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B814216E
– volume: 35
  start-page: 108313
  issue: 3
  year: 2024
  ident: 2949_CR79
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2023.108313
– volume: 34
  start-page: 108280
  issue: 12
  year: 2023
  ident: 2949_CR27
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2023.108280
– volume: 32
  start-page: 2109503
  issue: 7
  year: 2022
  ident: 2949_CR60
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202109503
– volume: 4
  start-page: 1731
  issue: 12
  year: 2011
  ident: 2949_CR31
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201100318
– volume: 7
  start-page: 1901970
  issue: 2
  year: 2020
  ident: 2949_CR56
  publication-title: Adv Sci
  doi: 10.1002/advs.201901970
– volume: 14
  start-page: 27979
  issue: 24
  year: 2022
  ident: 2949_CR84
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c06234
– volume: 449
  start-page: 137755
  year: 2022
  ident: 2949_CR85
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137755
– volume: 163
  start-page: 364
  issue: 1
  year: 2006
  ident: 2949_CR50
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2006.09.043
– volume: 13
  start-page: 1146
  issue: 4
  year: 2021
  ident: 2949_CR75
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001769
– volume: 42
  start-page: 1935
  issue: 6
  year: 2023
  ident: 2949_CR33
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02224-6
– volume: 44
  start-page: 18179
  issue: 33
  year: 2019
  ident: 2949_CR10
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2019.05.119
– volume: 7
  start-page: 21438
  issue: 37
  year: 2019
  ident: 2949_CR1
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA06987A
– volume: 26
  start-page: 290
  year: 2020
  ident: 2949_CR16
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2020.01.010
– volume: 10
  start-page: 14171
  issue: 27
  year: 2022
  ident: 2949_CR66
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA03180A
– volume: 48
  start-page: 4371
  issue: 11
  year: 2023
  ident: 2949_CR7
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.10.156
– volume: 11
  start-page: 36
  issue: 12
  year: 2008
  ident: 2949_CR17
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(08)70251-7
– volume: 11
  start-page: 5245
  issue: 10
  year: 2023
  ident: 2949_CR74
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA08396E
– volume: 11
  start-page: 958
  issue: 2
  year: 2021
  ident: 2949_CR76
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03766
– volume: 6
  start-page: 24
  issue: 9
  year: 2003
  ident: 2949_CR11
  publication-title: Mater Today
  doi: 10.1016/S1369-7021(03)00922-2
– volume: 127
  start-page: 8286
  issue: 23
  year: 2005
  ident: 2949_CR77
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0518777
– volume: 32
  start-page: 2269
  issue: 7
  year: 2021
  ident: 2949_CR34
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2020.12.059
– volume: 42
  start-page: 9978
  issue: 15
  year: 2017
  ident: 2949_CR26
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2017.01.154
– volume: 41
  start-page: 21221
  issue: 46
  year: 2016
  ident: 2949_CR40
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2016.08.164
– volume: 181
  start-page: 716
  year: 2016
  ident: 2949_CR45
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2015.08.038
– volume: 36
  start-page: 11745
  issue: 19
  year: 2022
  ident: 2949_CR43
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.2c02314
– volume: 165
  start-page: 169
  year: 2015
  ident: 2949_CR55
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2014.10.011
– volume: 12
  start-page: 4594
  issue: 1
  year: 2021
  ident: 2949_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24882-3
– volume: 196
  start-page: 279
  issue: 1
  year: 2011
  ident: 2949_CR28
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.06.031
– volume: 41
  start-page: 4296
  issue: 15
  year: 2012
  ident: 2949_CR29
  publication-title: Dalton Trans
  doi: 10.1039/C2DT11778A
– volume: 10
  start-page: 788
  issue: 7
  year: 2020
  ident: 2949_CR44
  publication-title: Catalysts
  doi: 10.3390/catal10070788
– volume: 45
  start-page: 30325
  issue: 55
  year: 2020
  ident: 2949_CR32
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.08.131
– volume: 46
  start-page: 14384
  issue: 27
  year: 2021
  ident: 2949_CR53
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.01.217
– volume: 7
  start-page: 821
  issue: 3
  year: 2023
  ident: 2949_CR70
  publication-title: Sustain Energ Fuels
  doi: 10.1039/D2SE01542K
– volume: 8
  start-page: 8256
  issue: 22
  year: 2020
  ident: 2949_CR54
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c01475
– volume: 11
  start-page: 4412
  issue: 8
  year: 2018
  ident: 2949_CR14
  publication-title: Nano Res
  doi: 10.1007/s12274-018-2031-y
– volume: 22
  start-page: 835
  issue: 3
  year: 2020
  ident: 2949_CR37
  publication-title: Green Chem
  doi: 10.1039/C9GC03986D
– volume: 142
  start-page: 12087
  issue: 28
  year: 2020
  ident: 2949_CR62
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c00257
– volume: 124
  start-page: 164
  year: 2022
  ident: 2949_CR78
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2022.01.030
– volume: 41
  start-page: 3251
  issue: 10
  year: 2022
  ident: 2949_CR15
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02029-7
SSID ssj0044660
Score 2.3551848
Snippet Developing cost-effective and high-activity catalysts for the methanolysis of ammonia borane (AB) has attracted great attention in the field of hydrogen energy...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 389
SubjectTerms Ammonia
Boranes
Catalysts
Catalytic activity
Construction sites
Density functional theory
Electronic structure
Electrons
Heterojunctions
Hydrogen bonds
Hydrogen production
Light
Light irradiation
Methanol
Oxygen
Title Methanolysis of ammonia borane catalyzed by NiO–CuO heterostructured nanosheets: cooperation of visible light and oxygen vacancy
URI https://www.proquest.com/docview/3149062274
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtemkPJX3RR1J06G1xsGXJj95CSAgh2YWyC3szkiXRQGqHZlO6OZX-hf7D_pLMSLLXuw2h7cHGaNeS0TcazUjzjQj5IHMttJVxpDJtIs5tFhWWqygWuojLQotUIsH5bJwdz_jJXMxXp406dslC7dU3d_JK_gdVKANckSX7D8j2lUIBPAO-cAeE4f5XGJ8ZXPhu-6wiEps-lyPEtcGALrCslzfexhyfT7rAhvTgegIWIvRo69PHXmMQegM1XX02ZuGC5Oq2vTRfe3sSKejIsbpAX95tOLTfl_Bdo2-yRv08tHE_YTDZFwNtr60pMLGxptCtKWLANG5j9JwXpyJdEJbwvOY948sKULcwy4mhXvV5HdfkxyvJ1B8aFOZb7nIc_KnK40BtBv-siMCSgKvkZXRH3uzxpDqanZ5W08P59CF5xMBhwLMsZmy_m5Nx09rnpQjfHuhTnkS52cK6ibI-QzuzY7pNngZ_ge578J-RB6Z5Tp4Mski-ID-HYkBbS4MYUC8GtBcDqpYUxOD3j18gAHRTAOhKAD7SAfxYY4CfOvgpwE89_DTA_5LMjg6nB8dROFojqlkuFjAouU1KE9tCSS0TXZoE7HauSqnyXDEhrWA8N5pJaVhcx7HMcsvqgpUmVTnYtK_IVtM25jWhpTVFqrWs08RwlXNlRFmnQoLraRV0_BuSdL1Z1SHvPB5_clGtMmYjAhUgUDkEKnhn1L9z6bOu3PvvnQ6kKozOqyoF1z_OGMv52_t_fkcer4bADtmCbje7YGgu1HsnQ7cY7YE4
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methanolysis+of+ammonia+borane+catalyzed+by+NiO%E2%80%93CuO+heterostructured+nanosheets%3A+cooperation+of+visible+light+and+oxygen+vacancy&rft.jtitle=Rare+metals&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=44&rft.issue=1&rft.spage=389&rft.epage=403&rft_id=info:doi/10.1007%2Fs12598-024-02949-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon