Exploring Multiconnectivity and Subdivision Functions of Brain Network via Heterogeneous Graph Network for Cognitive Disorder Identification
Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 36; no. 7; pp. 12400 - 12414 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders. |
---|---|
AbstractList | Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders. Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders.Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders. |
Author | Yuan, Haolei Yao, Linlin Song, Zhiyun Shen, Zhenrong Chen, Dongdong Wang, Qian Zhang, Lichi Zhao, Xiangyu Liu, Mengjun |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0003-4334-9475 surname: Chen fullname: Chen, Dongdong email: chendongdong@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Mengjun orcidid: 0000-0002-6940-3575 surname: Liu fullname: Liu, Mengjun email: mjliu2020@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Zhenrong surname: Shen fullname: Shen, Zhenrong email: zhenrongshen@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Linlin orcidid: 0000-0002-7252-3834 surname: Yao fullname: Yao, Linlin email: yaolinlin23@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Xiangyu orcidid: 0000-0002-5269-3182 surname: Zhao fullname: Zhao, Xiangyu email: xiangyu.zhao@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Zhiyun orcidid: 0000-0002-6223-1766 surname: Song fullname: Song, Zhiyun email: zhiyunsung@gmail.com organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 7 givenname: Haolei surname: Yuan fullname: Yuan, Haolei email: yuanhaolei@hotmail.com organization: GeneScience Pharmaceutical Company Ltd., Shanghai, China – sequence: 8 givenname: Qian orcidid: 0000-0002-3490-3836 surname: Wang fullname: Wang, Qian email: wangqian2@shanghaitech.edu.cn organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China – sequence: 9 givenname: Lichi orcidid: 0000-0003-4396-4566 surname: Zhang fullname: Zhang, Lichi email: lichizhang@sjtu.edu.cn organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39453798$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkUtPAyEUhYnR-P4DxhiWblp5zAzDUuszqXWhJu4mFC4VnUKFGR__wR_t1NZGNnBzvnNyw9lB6z54QOiAkj6lRJ48jEbD-z4jLOvzrKRFIdbQNqMF6zFeluurt3jaQvspvZDuFCQvMrmJtrjMci5kuY2-Lz5ndYjOT_BtWzdOB-9BN-7dNV9YeYPv27HppuSCx5et76TgEw4Wn0XlPB5B8xHiK353Cl9DAzFMwENoE76Kava80m2IeBAm3nXRgM9dCtFAxDcGfOOs02qeu4c2rKoT7C_vXfR4efEwuO4N765uBqfDnmYib3qslIzn40KOC12C1VwCk5CXgoGxmlKWa6VoxlkOUltmiQZpysyKzDAijea76HiRO4vhrYXUVFOXNNS1-l294rTjKBGCdOjREm3HUzDVLLqpil_V3w92AFsAOoaUItgVQkk1b6r6baqaN1Utm-pMhwuTA4B_BsFzxgv-A08ikok |
CODEN | ITNNAL |
Cites_doi | 10.1109/TMI.2022.3218745 10.1038/nrd3628 10.1103/PhysRevE.69.066138 10.1109/TMI.2022.3187141 10.1109/TMI.2019.2928790 10.1016/j.patcog.2022.109242 10.1016/j.neuropsychologia.2010.11.024 10.1016/j.media.2020.101947 10.1016/j.knosys.2022.109082 10.1073/pnas.1418031112 10.1109/TMI.2022.3219260 10.1016/S2215-0366(19)30405-5 10.1007/978-3-031-16431-6_23 10.3389/fnins.2014.00405 10.1007/978-3-031-16431-6_25 10.1109/JBHI.2021.3100559 10.1109/TMI.2022.3171778 10.1016/j.conb.2012.11.010 10.1006/nimg.2001.0978 10.1007/s00259-009-1060-x 10.1109/TMI.2024.3368064 10.1016/j.media.2021.102244 10.4324/9780429313301-3 10.1007/978-3-031-16431-6_40 10.1016/j.compmedimag.2019.101663 10.1086/683436 10.1109/TNNLS.2022.3225179 10.1371/journal.pone.0277175 10.1145/3366423.3380027 10.1109/TNNLS.2022.3220220 10.1016/j.tins.2013.03.001 10.1007/978-3-030-87602-9_15 10.3389/conf.fninf.2013.09.00041 10.1007/s00521-013-1465-0 10.1093/cercor/bhs410 10.1109/tnnls.2021.3129649 10.1089/brain.2014.0230 10.1016/j.media.2022.102707 10.2147/dnnd.s228939 10.1007/978-94-007-0753-5_426 10.1145/3308558.3313562 10.3390/biology12070971 10.1016/j.neunet.2023.04.025 10.1007/978-3-031-16431-6_27 10.1007/978-3-031-16452-1_36 10.1103/PhysRevE.96.052410 10.1016/j.irbm.2021.02.007 10.14336/ad.2022.1206 10.3389/fnins.2019.00585 10.31887/DCNS.2013.15.3/osporns 10.1038/nn.4135 10.1007/978-3-319-32554-5_27 10.1609/aaai.v37i9.26283 10.1109/TNNLS.2023.3243000 10.1109/TMI.2023.3309874 10.1007/978-3-031-43993-3_6 10.1109/TKDE.2021.3106804 10.1002/hbm.22759 10.14336/ad.2022.0818 10.1016/j.neuroimage.2008.10.031 10.1038/s41598-019-43885-1 10.1016/j.artmed.2020.102004 10.1002/hbm.25175 10.1038/s42003-022-03974-w 10.3389/fnsys.2012.00062 10.1007/978-3-031-16452-1_39 10.1109/TMI.2022.3203899 10.1109/tnnls.2023.3282961 10.1007/s12021-016-9299-4 10.1109/TMI.2021.3051604 10.1016/j.media.2021.102233 10.1016/j.jad.2022.05.055 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TNNLS.2024.3481667 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 12414 |
ExternalDocumentID | 39453798 10_1109_TNNLS_2024_3481667 10735236 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Fund of National Natural Science Foundation of China grantid: 62471288 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c275t-289235b69b6c8efc39e29e5872edfc1125caa14325e9cf2f0ce9d84f74d209dc3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:20:48 EDT 2025 Sat Aug 02 01:40:47 EDT 2025 Wed Jul 16 16:43:44 EDT 2025 Wed Aug 27 02:14:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c275t-289235b69b6c8efc39e29e5872edfc1125caa14325e9cf2f0ce9d84f74d209dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7252-3834 0000-0002-5269-3182 0000-0002-3490-3836 0000-0002-6940-3575 0000-0002-6223-1766 0000-0003-4396-4566 0000-0003-4334-9475 |
PMID | 39453798 |
PQID | 3120910770 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_39453798 proquest_miscellaneous_3120910770 ieee_primary_10735236 crossref_primary_10_1109_TNNLS_2024_3481667 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Velickovic (ref34) 2017; 1050 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref75 ref30 ref74 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Shi (ref41) 2021 Kipf (ref33) ref60 ref62 ref61 |
References_xml | – ident: ref7 doi: 10.1109/TMI.2022.3218745 – ident: ref3 doi: 10.1038/nrd3628 – ident: ref24 doi: 10.1103/PhysRevE.69.066138 – ident: ref60 doi: 10.1109/TMI.2022.3187141 – ident: ref55 doi: 10.1109/TMI.2019.2928790 – ident: ref12 doi: 10.1016/j.patcog.2022.109242 – volume: 1050 start-page: 1 issue: 20 year: 2017 ident: ref34 article-title: Graph attention networks publication-title: Stat – ident: ref22 doi: 10.1016/j.neuropsychologia.2010.11.024 – ident: ref39 doi: 10.1016/j.media.2020.101947 – ident: ref74 doi: 10.1016/j.knosys.2022.109082 – ident: ref18 doi: 10.1073/pnas.1418031112 – ident: ref6 doi: 10.1109/TMI.2022.3219260 – ident: ref20 doi: 10.1016/S2215-0366(19)30405-5 – ident: ref28 doi: 10.1007/978-3-031-16431-6_23 – ident: ref75 doi: 10.3389/fnins.2014.00405 – ident: ref29 doi: 10.1007/978-3-031-16431-6_25 – ident: ref67 doi: 10.1109/JBHI.2021.3100559 – ident: ref70 doi: 10.1109/TMI.2022.3171778 – ident: ref25 doi: 10.1016/j.conb.2012.11.010 – ident: ref49 doi: 10.1006/nimg.2001.0978 – ident: ref71 doi: 10.1007/s00259-009-1060-x – ident: ref58 doi: 10.1109/TMI.2024.3368064 – ident: ref56 doi: 10.1016/j.media.2021.102244 – ident: ref27 doi: 10.4324/9780429313301-3 – ident: ref44 doi: 10.1007/978-3-031-16431-6_40 – ident: ref59 doi: 10.1016/j.compmedimag.2019.101663 – ident: ref15 doi: 10.1086/683436 – ident: ref69 doi: 10.1109/TNNLS.2022.3225179 – ident: ref4 doi: 10.1371/journal.pone.0277175 – ident: ref37 doi: 10.1145/3366423.3380027 – ident: ref11 doi: 10.1109/TNNLS.2022.3220220 – ident: ref17 doi: 10.1016/j.tins.2013.03.001 – ident: ref40 doi: 10.1007/978-3-030-87602-9_15 – year: 2021 ident: ref41 article-title: Heterogeneous graph-based multimodal brain network learning publication-title: arXiv:2110.08465 – ident: ref46 doi: 10.3389/conf.fninf.2013.09.00041 – ident: ref10 doi: 10.1007/s00521-013-1465-0 – ident: ref72 doi: 10.1093/cercor/bhs410 – ident: ref35 doi: 10.1109/tnnls.2021.3129649 – ident: ref16 doi: 10.1089/brain.2014.0230 – ident: ref62 doi: 10.1016/j.media.2022.102707 – ident: ref2 doi: 10.2147/dnnd.s228939 – ident: ref19 doi: 10.1007/978-94-007-0753-5_426 – ident: ref38 doi: 10.1145/3308558.3313562 – ident: ref54 doi: 10.3390/biology12070971 – ident: ref68 doi: 10.1016/j.neunet.2023.04.025 – ident: ref30 doi: 10.1007/978-3-031-16431-6_27 – ident: ref52 doi: 10.1007/978-3-031-16452-1_36 – ident: ref9 doi: 10.1103/PhysRevE.96.052410 – ident: ref42 doi: 10.1016/j.irbm.2021.02.007 – ident: ref73 doi: 10.14336/ad.2022.1206 – ident: ref8 doi: 10.3389/fnins.2019.00585 – ident: ref13 doi: 10.31887/DCNS.2013.15.3/osporns – ident: ref23 doi: 10.1038/nn.4135 – ident: ref26 doi: 10.1007/978-3-319-32554-5_27 – ident: ref43 doi: 10.1609/aaai.v37i9.26283 – ident: ref65 doi: 10.1109/TNNLS.2023.3243000 – ident: ref66 doi: 10.1109/TMI.2023.3309874 – ident: ref32 doi: 10.1007/978-3-031-43993-3_6 – ident: ref36 doi: 10.1109/TKDE.2021.3106804 – ident: ref50 doi: 10.1002/hbm.22759 – ident: ref1 doi: 10.14336/ad.2022.0818 – ident: ref45 doi: 10.1016/j.neuroimage.2008.10.031 – ident: ref21 doi: 10.1038/s41598-019-43885-1 – ident: ref63 doi: 10.1016/j.artmed.2020.102004 – ident: ref53 doi: 10.1002/hbm.25175 – ident: ref14 doi: 10.1038/s42003-022-03974-w – ident: ref47 doi: 10.3389/fnsys.2012.00062 – ident: ref61 doi: 10.1007/978-3-031-16452-1_39 – ident: ref64 doi: 10.1109/TMI.2022.3203899 – ident: ref57 doi: 10.1109/tnnls.2023.3282961 – ident: ref48 doi: 10.1007/s12021-016-9299-4 – ident: ref51 doi: 10.1109/TMI.2021.3051604 – ident: ref31 doi: 10.1016/j.media.2021.102233 – ident: ref5 doi: 10.1016/j.jad.2022.05.055 – volume-title: Int. Conf. Learn. Represent ident: ref33 article-title: Semi-supervised classification with graph convolutional networks |
SSID | ssj0000605649 |
Score | 2.4778864 |
Snippet | Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12400 |
SubjectTerms | Algorithms Alzheimer Disease Brain Brain - diagnostic imaging Brain - physiopathology Brain modeling Brain network analysis Cause effect analysis Cognition Disorders - diagnosis Cognition Disorders - diagnostic imaging Cognition Disorders - physiopathology Cognitive processes Feature extraction Functional magnetic resonance imaging graph neural network (GNN) Graph neural networks heterogeneous graph Humans Magnetic Resonance Imaging Models, Neurological Nerve Net - diagnostic imaging Nerve Net - physiopathology Network analyzers Neural Networks, Computer Neural Pathways - physiopathology Neurons self-attention Vectors |
Title | Exploring Multiconnectivity and Subdivision Functions of Brain Network via Heterogeneous Graph Network for Cognitive Disorder Identification |
URI | https://ieeexplore.ieee.org/document/10735236 https://www.ncbi.nlm.nih.gov/pubmed/39453798 https://www.proquest.com/docview/3120910770 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nbw4f0ydv4jgTTq7pE2aow7nEO3FDXYrbZqACKvo5sG_wT_al6QdKgy8FdqGtu-l78vL970HcGESQWluRIDgOwwwHougEBEPOONFHJXRQDl59GPKx9PofhbParG608JorR35TPftodvLLyu1tKkynOEC8QLjLWjhys2LtVYJlRCBOXdwlw44DSgTs0YkE8qrSZo-POFykEZ9Kz3l3HbfYzKKmZDJr5jkmqysx5su7ow6kDZP7OkmL_3louirzz_FHP_9StuwVSNQcu1dZgc29HwXOk13B1JP9j34WtHziFPpKkuJUb7ZBMnnJcF_jhVz2XQbGWF4dB5MKkNubNsJknqCOfl4zsnYkm4q9FVdLd_JnS2SvTqPqJkMGxITaaqBEq8gNnVKsQvT0e1kOA7q3g2BoiJeBLiOoywuuCy4SrRRTGoqdYyeoUujEOTFKs8Rq9FYS2WoCZWWZRIZEZU0lKVi-9CeV3N9CGQgc8NpoRCoaYyeCQ6qyoERdosyTxLdg8vGetmrL9GRuaVNKDNn9syaPavN3oOutcKPK70BenDeWDzDGWa3TXL3UTJm5cV4mQh7cOBdYXV340FHa0Y9hk1qGwY7fu8JtBdvS32KKGZRnDnv_QZCDO46 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gCXfrHAQj9cqTeUJbFjOz7CqtsUtrl0V9pblDi2hJA2iO5y4DfwoxnbSQSVVuIWKYmVZMaZ5_F7MwDXNpOUVlZGCL7jCOOxjGqZikgwUfO0SRPt5dH3hciX6ecVX3Vida-FMcZ48pmZuEO_l9-0eutSZTjDJeIFJp7BAQZ-ngS51pBSiRGaCw94aSJoRJlc9TKZWH1YFMX8AReENJ048akQrv8eUylnUmX_RCXfZmU34vSRZ3YERf_MgXDybbLd1BP960k5x_9-qWM47DAo-Ric5gT2zPoUjvr-DqSb7i_h90DQI16nqx0pRod2E6RaNwT_Ok7O5RJuZIYB0vswaS355BpPkCJQzMnPrxXJHe2mRW817faR3Loy2cN5xM1k2tOYSF8PlAQNse2SiiNYzm4W0zzqujdEmkq-iXAlRxmvhaqFzozVTBmqDEffMI3VCPO4ripEa5QbpS21sTaqyVIr04bGqtHsFeyv27V5AyRRlRW01gjVDMbPDAfVTWKl26SsssyM4X1vvfJ7KNJR-sVNrEpv9tKZvezMPoaRs8JfVwYDjOGqt3iJc8xtnFT-o5TMCYzxMhmP4XVwheHu3oPe7hj1Ep7ni_t5Ob8rvryDF9S1D_Zs3zPY3_zYmnPENJv6wnvyH9HM8YM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Multiconnectivity+and+Subdivision+Functions+of+Brain+Network+via+Heterogeneous+Graph+Network+for+Cognitive+Disorder+Identification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chen%2C+Dongdong&rft.au=Liu%2C+Mengjun&rft.au=Shen%2C+Zhenrong&rft.au=Yao%2C+Linlin&rft.date=2025-07-01&rft.eissn=2162-2388&rft.volume=36&rft.issue=7&rft.spage=12400&rft_id=info:doi/10.1109%2FTNNLS.2024.3481667&rft_id=info%3Apmid%2F39453798&rft.externalDocID=39453798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |