Exploring Multiconnectivity and Subdivision Functions of Brain Network via Heterogeneous Graph Network for Cognitive Disorder Identification

Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 7; pp. 12400 - 12414
Main Authors Chen, Dongdong, Liu, Mengjun, Shen, Zhenrong, Yao, Linlin, Zhao, Xiangyu, Song, Zhiyun, Yuan, Haolei, Wang, Qian, Zhang, Lichi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders.
AbstractList Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders.
Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders.Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of various functions in the brain network. In recent years, brain network analysis methods based on graph neural networks (GNNs) have attracted increasing attention for the identification of brain disorders. However, these methods generally assume that the brain network is a homogeneous graph while ignoring its heterogeneity among human brain activities, which is reflected in both the complex connectivity of the brain network and distinctive brain functions. To overcome this problem, we propose a heterogeneous subdivision GNN (HSGNN), which captures the heterogeneous connections and functions of the brain network simultaneously. Specifically, we first employ two fundamental brain connectivity patterns to capture both statistical dependency and directional information flow among different brain regions and construct a heterogeneous brain connectivity network for each subject. Then, we develop a functional subdivision method that encodes brain networks into multiple latent feature subspaces corresponding to heterogeneous brain functions and extracts features of brain networks accordingly. Considering the intricate interactions of brain functions to facilitate cognitive activities within the brain network, we further employ the self-attention mechanism to obtain comprehensive representations of brain networks in a joint latent space. Finally, we propose a composite loss function to train the model for obtaining the heterogeneous brain network representation, which can be utilized for disease classification. The experimental results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Autism Brain Imaging Data Exchange (ABIDE) datasets demonstrate that our method outperforms several state-of-the-art (SOTA) methods to identify different types of brain cognitive-related disorders.
Author Yuan, Haolei
Yao, Linlin
Song, Zhiyun
Shen, Zhenrong
Chen, Dongdong
Wang, Qian
Zhang, Lichi
Zhao, Xiangyu
Liu, Mengjun
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0003-4334-9475
  surname: Chen
  fullname: Chen, Dongdong
  email: chendongdong@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Mengjun
  orcidid: 0000-0002-6940-3575
  surname: Liu
  fullname: Liu, Mengjun
  email: mjliu2020@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Zhenrong
  surname: Shen
  fullname: Shen, Zhenrong
  email: zhenrongshen@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Linlin
  orcidid: 0000-0002-7252-3834
  surname: Yao
  fullname: Yao, Linlin
  email: yaolinlin23@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Xiangyu
  orcidid: 0000-0002-5269-3182
  surname: Zhao
  fullname: Zhao, Xiangyu
  email: xiangyu.zhao@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Zhiyun
  orcidid: 0000-0002-6223-1766
  surname: Song
  fullname: Song, Zhiyun
  email: zhiyunsung@gmail.com
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 7
  givenname: Haolei
  surname: Yuan
  fullname: Yuan, Haolei
  email: yuanhaolei@hotmail.com
  organization: GeneScience Pharmaceutical Company Ltd., Shanghai, China
– sequence: 8
  givenname: Qian
  orcidid: 0000-0002-3490-3836
  surname: Wang
  fullname: Wang, Qian
  email: wangqian2@shanghaitech.edu.cn
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 9
  givenname: Lichi
  orcidid: 0000-0003-4396-4566
  surname: Zhang
  fullname: Zhang, Lichi
  email: lichizhang@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39453798$$D View this record in MEDLINE/PubMed
BookMark eNpNkUtPAyEUhYnR-P4DxhiWblp5zAzDUuszqXWhJu4mFC4VnUKFGR__wR_t1NZGNnBzvnNyw9lB6z54QOiAkj6lRJ48jEbD-z4jLOvzrKRFIdbQNqMF6zFeluurt3jaQvspvZDuFCQvMrmJtrjMci5kuY2-Lz5ndYjOT_BtWzdOB-9BN-7dNV9YeYPv27HppuSCx5et76TgEw4Wn0XlPB5B8xHiK353Cl9DAzFMwENoE76Kava80m2IeBAm3nXRgM9dCtFAxDcGfOOs02qeu4c2rKoT7C_vXfR4efEwuO4N765uBqfDnmYib3qslIzn40KOC12C1VwCk5CXgoGxmlKWa6VoxlkOUltmiQZpysyKzDAijea76HiRO4vhrYXUVFOXNNS1-l294rTjKBGCdOjREm3HUzDVLLqpil_V3w92AFsAOoaUItgVQkk1b6r6baqaN1Utm-pMhwuTA4B_BsFzxgv-A08ikok
CODEN ITNNAL
Cites_doi 10.1109/TMI.2022.3218745
10.1038/nrd3628
10.1103/PhysRevE.69.066138
10.1109/TMI.2022.3187141
10.1109/TMI.2019.2928790
10.1016/j.patcog.2022.109242
10.1016/j.neuropsychologia.2010.11.024
10.1016/j.media.2020.101947
10.1016/j.knosys.2022.109082
10.1073/pnas.1418031112
10.1109/TMI.2022.3219260
10.1016/S2215-0366(19)30405-5
10.1007/978-3-031-16431-6_23
10.3389/fnins.2014.00405
10.1007/978-3-031-16431-6_25
10.1109/JBHI.2021.3100559
10.1109/TMI.2022.3171778
10.1016/j.conb.2012.11.010
10.1006/nimg.2001.0978
10.1007/s00259-009-1060-x
10.1109/TMI.2024.3368064
10.1016/j.media.2021.102244
10.4324/9780429313301-3
10.1007/978-3-031-16431-6_40
10.1016/j.compmedimag.2019.101663
10.1086/683436
10.1109/TNNLS.2022.3225179
10.1371/journal.pone.0277175
10.1145/3366423.3380027
10.1109/TNNLS.2022.3220220
10.1016/j.tins.2013.03.001
10.1007/978-3-030-87602-9_15
10.3389/conf.fninf.2013.09.00041
10.1007/s00521-013-1465-0
10.1093/cercor/bhs410
10.1109/tnnls.2021.3129649
10.1089/brain.2014.0230
10.1016/j.media.2022.102707
10.2147/dnnd.s228939
10.1007/978-94-007-0753-5_426
10.1145/3308558.3313562
10.3390/biology12070971
10.1016/j.neunet.2023.04.025
10.1007/978-3-031-16431-6_27
10.1007/978-3-031-16452-1_36
10.1103/PhysRevE.96.052410
10.1016/j.irbm.2021.02.007
10.14336/ad.2022.1206
10.3389/fnins.2019.00585
10.31887/DCNS.2013.15.3/osporns
10.1038/nn.4135
10.1007/978-3-319-32554-5_27
10.1609/aaai.v37i9.26283
10.1109/TNNLS.2023.3243000
10.1109/TMI.2023.3309874
10.1007/978-3-031-43993-3_6
10.1109/TKDE.2021.3106804
10.1002/hbm.22759
10.14336/ad.2022.0818
10.1016/j.neuroimage.2008.10.031
10.1038/s41598-019-43885-1
10.1016/j.artmed.2020.102004
10.1002/hbm.25175
10.1038/s42003-022-03974-w
10.3389/fnsys.2012.00062
10.1007/978-3-031-16452-1_39
10.1109/TMI.2022.3203899
10.1109/tnnls.2023.3282961
10.1007/s12021-016-9299-4
10.1109/TMI.2021.3051604
10.1016/j.media.2021.102233
10.1016/j.jad.2022.05.055
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2024.3481667
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 12414
ExternalDocumentID 39453798
10_1109_TNNLS_2024_3481667
10735236
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Fund of National Natural Science Foundation of China
  grantid: 62471288
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c275t-289235b69b6c8efc39e29e5872edfc1125caa14325e9cf2f0ce9d84f74d209dc3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:20:48 EDT 2025
Sat Aug 02 01:40:47 EDT 2025
Wed Jul 16 16:43:44 EDT 2025
Wed Aug 27 02:14:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-289235b69b6c8efc39e29e5872edfc1125caa14325e9cf2f0ce9d84f74d209dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7252-3834
0000-0002-5269-3182
0000-0002-3490-3836
0000-0002-6940-3575
0000-0002-6223-1766
0000-0003-4396-4566
0000-0003-4334-9475
PMID 39453798
PQID 3120910770
PQPubID 23479
PageCount 15
ParticipantIDs pubmed_primary_39453798
proquest_miscellaneous_3120910770
ieee_primary_10735236
crossref_primary_10_1109_TNNLS_2024_3481667
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Velickovic (ref34) 2017; 1050
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref75
ref30
ref74
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Shi (ref41) 2021
Kipf (ref33)
ref60
ref62
ref61
References_xml – ident: ref7
  doi: 10.1109/TMI.2022.3218745
– ident: ref3
  doi: 10.1038/nrd3628
– ident: ref24
  doi: 10.1103/PhysRevE.69.066138
– ident: ref60
  doi: 10.1109/TMI.2022.3187141
– ident: ref55
  doi: 10.1109/TMI.2019.2928790
– ident: ref12
  doi: 10.1016/j.patcog.2022.109242
– volume: 1050
  start-page: 1
  issue: 20
  year: 2017
  ident: ref34
  article-title: Graph attention networks
  publication-title: Stat
– ident: ref22
  doi: 10.1016/j.neuropsychologia.2010.11.024
– ident: ref39
  doi: 10.1016/j.media.2020.101947
– ident: ref74
  doi: 10.1016/j.knosys.2022.109082
– ident: ref18
  doi: 10.1073/pnas.1418031112
– ident: ref6
  doi: 10.1109/TMI.2022.3219260
– ident: ref20
  doi: 10.1016/S2215-0366(19)30405-5
– ident: ref28
  doi: 10.1007/978-3-031-16431-6_23
– ident: ref75
  doi: 10.3389/fnins.2014.00405
– ident: ref29
  doi: 10.1007/978-3-031-16431-6_25
– ident: ref67
  doi: 10.1109/JBHI.2021.3100559
– ident: ref70
  doi: 10.1109/TMI.2022.3171778
– ident: ref25
  doi: 10.1016/j.conb.2012.11.010
– ident: ref49
  doi: 10.1006/nimg.2001.0978
– ident: ref71
  doi: 10.1007/s00259-009-1060-x
– ident: ref58
  doi: 10.1109/TMI.2024.3368064
– ident: ref56
  doi: 10.1016/j.media.2021.102244
– ident: ref27
  doi: 10.4324/9780429313301-3
– ident: ref44
  doi: 10.1007/978-3-031-16431-6_40
– ident: ref59
  doi: 10.1016/j.compmedimag.2019.101663
– ident: ref15
  doi: 10.1086/683436
– ident: ref69
  doi: 10.1109/TNNLS.2022.3225179
– ident: ref4
  doi: 10.1371/journal.pone.0277175
– ident: ref37
  doi: 10.1145/3366423.3380027
– ident: ref11
  doi: 10.1109/TNNLS.2022.3220220
– ident: ref17
  doi: 10.1016/j.tins.2013.03.001
– ident: ref40
  doi: 10.1007/978-3-030-87602-9_15
– year: 2021
  ident: ref41
  article-title: Heterogeneous graph-based multimodal brain network learning
  publication-title: arXiv:2110.08465
– ident: ref46
  doi: 10.3389/conf.fninf.2013.09.00041
– ident: ref10
  doi: 10.1007/s00521-013-1465-0
– ident: ref72
  doi: 10.1093/cercor/bhs410
– ident: ref35
  doi: 10.1109/tnnls.2021.3129649
– ident: ref16
  doi: 10.1089/brain.2014.0230
– ident: ref62
  doi: 10.1016/j.media.2022.102707
– ident: ref2
  doi: 10.2147/dnnd.s228939
– ident: ref19
  doi: 10.1007/978-94-007-0753-5_426
– ident: ref38
  doi: 10.1145/3308558.3313562
– ident: ref54
  doi: 10.3390/biology12070971
– ident: ref68
  doi: 10.1016/j.neunet.2023.04.025
– ident: ref30
  doi: 10.1007/978-3-031-16431-6_27
– ident: ref52
  doi: 10.1007/978-3-031-16452-1_36
– ident: ref9
  doi: 10.1103/PhysRevE.96.052410
– ident: ref42
  doi: 10.1016/j.irbm.2021.02.007
– ident: ref73
  doi: 10.14336/ad.2022.1206
– ident: ref8
  doi: 10.3389/fnins.2019.00585
– ident: ref13
  doi: 10.31887/DCNS.2013.15.3/osporns
– ident: ref23
  doi: 10.1038/nn.4135
– ident: ref26
  doi: 10.1007/978-3-319-32554-5_27
– ident: ref43
  doi: 10.1609/aaai.v37i9.26283
– ident: ref65
  doi: 10.1109/TNNLS.2023.3243000
– ident: ref66
  doi: 10.1109/TMI.2023.3309874
– ident: ref32
  doi: 10.1007/978-3-031-43993-3_6
– ident: ref36
  doi: 10.1109/TKDE.2021.3106804
– ident: ref50
  doi: 10.1002/hbm.22759
– ident: ref1
  doi: 10.14336/ad.2022.0818
– ident: ref45
  doi: 10.1016/j.neuroimage.2008.10.031
– ident: ref21
  doi: 10.1038/s41598-019-43885-1
– ident: ref63
  doi: 10.1016/j.artmed.2020.102004
– ident: ref53
  doi: 10.1002/hbm.25175
– ident: ref14
  doi: 10.1038/s42003-022-03974-w
– ident: ref47
  doi: 10.3389/fnsys.2012.00062
– ident: ref61
  doi: 10.1007/978-3-031-16452-1_39
– ident: ref64
  doi: 10.1109/TMI.2022.3203899
– ident: ref57
  doi: 10.1109/tnnls.2023.3282961
– ident: ref48
  doi: 10.1007/s12021-016-9299-4
– ident: ref51
  doi: 10.1109/TMI.2021.3051604
– ident: ref31
  doi: 10.1016/j.media.2021.102233
– ident: ref5
  doi: 10.1016/j.jad.2022.05.055
– volume-title: Int. Conf. Learn. Represent
  ident: ref33
  article-title: Semi-supervised classification with graph convolutional networks
SSID ssj0000605649
Score 2.4778864
Snippet Brain serves as a critical cornerstone of human intelligence, which involves a series of complex neuropsychological activities that lead to the coordination of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 12400
SubjectTerms Algorithms
Alzheimer Disease
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain modeling
Brain network analysis
Cause effect analysis
Cognition Disorders - diagnosis
Cognition Disorders - diagnostic imaging
Cognition Disorders - physiopathology
Cognitive processes
Feature extraction
Functional magnetic resonance imaging
graph neural network (GNN)
Graph neural networks
heterogeneous graph
Humans
Magnetic Resonance Imaging
Models, Neurological
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
Network analyzers
Neural Networks, Computer
Neural Pathways - physiopathology
Neurons
self-attention
Vectors
Title Exploring Multiconnectivity and Subdivision Functions of Brain Network via Heterogeneous Graph Network for Cognitive Disorder Identification
URI https://ieeexplore.ieee.org/document/10735236
https://www.ncbi.nlm.nih.gov/pubmed/39453798
https://www.proquest.com/docview/3120910770
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nbw4f0ydv4jgTTq7pE2aow7nEO3FDXYrbZqACKvo5sG_wT_al6QdKgy8FdqGtu-l78vL970HcGESQWluRIDgOwwwHougEBEPOONFHJXRQDl59GPKx9PofhbParG608JorR35TPftodvLLyu1tKkynOEC8QLjLWjhys2LtVYJlRCBOXdwlw44DSgTs0YkE8qrSZo-POFykEZ9Kz3l3HbfYzKKmZDJr5jkmqysx5su7ow6kDZP7OkmL_3louirzz_FHP_9StuwVSNQcu1dZgc29HwXOk13B1JP9j34WtHziFPpKkuJUb7ZBMnnJcF_jhVz2XQbGWF4dB5MKkNubNsJknqCOfl4zsnYkm4q9FVdLd_JnS2SvTqPqJkMGxITaaqBEq8gNnVKsQvT0e1kOA7q3g2BoiJeBLiOoywuuCy4SrRRTGoqdYyeoUujEOTFKs8Rq9FYS2WoCZWWZRIZEZU0lKVi-9CeV3N9CGQgc8NpoRCoaYyeCQ6qyoERdosyTxLdg8vGetmrL9GRuaVNKDNn9syaPavN3oOutcKPK70BenDeWDzDGWa3TXL3UTJm5cV4mQh7cOBdYXV340FHa0Y9hk1qGwY7fu8JtBdvS32KKGZRnDnv_QZCDO46
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gCXfrHAQj9cqTeUJbFjOz7CqtsUtrl0V9pblDi2hJA2iO5y4DfwoxnbSQSVVuIWKYmVZMaZ5_F7MwDXNpOUVlZGCL7jCOOxjGqZikgwUfO0SRPt5dH3hciX6ecVX3Vida-FMcZ48pmZuEO_l9-0eutSZTjDJeIFJp7BAQZ-ngS51pBSiRGaCw94aSJoRJlc9TKZWH1YFMX8AReENJ048akQrv8eUylnUmX_RCXfZmU34vSRZ3YERf_MgXDybbLd1BP960k5x_9-qWM47DAo-Ric5gT2zPoUjvr-DqSb7i_h90DQI16nqx0pRod2E6RaNwT_Ok7O5RJuZIYB0vswaS355BpPkCJQzMnPrxXJHe2mRW817faR3Loy2cN5xM1k2tOYSF8PlAQNse2SiiNYzm4W0zzqujdEmkq-iXAlRxmvhaqFzozVTBmqDEffMI3VCPO4ripEa5QbpS21sTaqyVIr04bGqtHsFeyv27V5AyRRlRW01gjVDMbPDAfVTWKl26SsssyM4X1vvfJ7KNJR-sVNrEpv9tKZvezMPoaRs8JfVwYDjOGqt3iJc8xtnFT-o5TMCYzxMhmP4XVwheHu3oPe7hj1Ep7ni_t5Ob8rvryDF9S1D_Zs3zPY3_zYmnPENJv6wnvyH9HM8YM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Multiconnectivity+and+Subdivision+Functions+of+Brain+Network+via+Heterogeneous+Graph+Network+for+Cognitive+Disorder+Identification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chen%2C+Dongdong&rft.au=Liu%2C+Mengjun&rft.au=Shen%2C+Zhenrong&rft.au=Yao%2C+Linlin&rft.date=2025-07-01&rft.eissn=2162-2388&rft.volume=36&rft.issue=7&rft.spage=12400&rft_id=info:doi/10.1109%2FTNNLS.2024.3481667&rft_id=info%3Apmid%2F39453798&rft.externalDocID=39453798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon