Photoplethysmogram (PPG)-Based Biometric Identification Using 2D Signal Transformation and Multi-Scale Feature Fusion

Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 15; p. 4849
Main Authors Xu, Yuanyuan, Wang, Zhi, Liu, Xiaochang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.08.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model’s performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.
AbstractList Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model’s performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.
Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model's performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model's performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.
Author Wang, Zhi
Liu, Xiaochang
Xu, Yuanyuan
AuthorAffiliation 2 School of Information Engineering, Hubei University of Economics, Wuhan 430205, China; xcliu@hbue.edu.cn
3 Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan 430000, China
1 School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China; 2023710650@yangtzeu.edu.cn
AuthorAffiliation_xml – name: 1 School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China; 2023710650@yangtzeu.edu.cn
– name: 3 Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan 430000, China
– name: 2 School of Information Engineering, Hubei University of Economics, Wuhan 430205, China; xcliu@hbue.edu.cn
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Xu
  fullname: Xu, Yuanyuan
– sequence: 2
  givenname: Zhi
  surname: Wang
  fullname: Wang, Zhi
– sequence: 3
  givenname: Xiaochang
  surname: Liu
  fullname: Liu, Xiaochang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40808013$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAQgC1URB9w4A-gSFzaQ8DPrn1CtNCyUhErtT1bE9vJepXYWztB6r_HS8qqRT6M5fn0zWg8x-ggxOAQek_wJ8YU_pypIIJLrl6hI8IpryWl-ODZ_RAd57zBmDLG5Bt0yLEsh7AjNK3WcYzb3o3rxzzELsFQna5W12f1BWRnqwsfBzcmb6qldWH0rTcw-hiq--xDV9Fv1a3vAvTVXYKQ25iGOQ3BVj-nfvT1rYHeVVcOximVOOWSfotet9Bn9-4pnqD7q-93lz_qm1_Xy8uvN7WhC6FqKgXngoBhwKmlTjpFuAUJ1hIjWqa4pIQLaYXjCxAUiGuIFKqxsqX2vGUnaDl7bYSN3iY_QHrUEbz--xBTpyGN3vROlyKtWRjWGK64WJAytvOmFURaxYQEVVxfZtd2agZnTZlGgv6F9GUm-LXu4m9NKOOKsp3h9MmQ4sPk8qgHn43rewguTlmzAnHMKFkU9ON_6CZOqcx5prDChO-EH563tO_l3_cW4GwGTIo5J9fuEYL1bnX0fnXYHxKRtLs
Cites_doi 10.1371/journal.pone.0249278
10.3390/electronics12030693
10.1016/j.compbiomed.2014.03.005
10.3115/v1/D14-1181
10.3390/math11081781
10.1109/ICCKE.2016.7802164
10.1109/CVPR.2016.90
10.1109/JSEN.2022.3146291
10.1109/ITAB.2003.1222403
10.23919/EUSIPCO.2018.8553585
10.1371/journal.pone.0281482
10.3389/felec.2022.906324
10.1109/TBCAS.2019.2892297
10.3390/s23104634
10.1162/neco.1997.9.8.1735
10.3390/app14103963
10.1109/ICBAPS.2015.7292210
10.1016/j.compbiomed.2022.105654
10.1097/00000542-199810000-00023
10.1007/s11633-022-1366-8
10.1109/SIU.2013.6531568
10.36227/techrxiv.22769783.v1
10.1109/TCAD.2017.2682138
10.1109/MSSC.2017.2745818
10.3390/s24010015
10.1109/5.628669
10.1109/TIFS.2020.3006313
10.1002/dac.4685
10.1016/j.bspc.2023.105609
10.1109/CVPR.2018.00716
10.1109/TPAMI.2005.55
10.1155/2020/8849845
10.1145/3603705
10.1109/ICASSP40776.2020.9053604
10.1109/CVPR.2015.7298594
10.1016/j.cose.2023.103488
10.1109/CVPR.2017.243
10.1109/TPAMI.2010.52
10.1109/JIOT.2023.3285796
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25154849
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ac3fc7c3bc4945718226bf518d9358a9
PMC12349239
40808013
10_3390_s25154849
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c2759-2854451ac3a42d2e8e914da8add1c5f394821458d5e47a52a1eb1859bd8f2d6f3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:12 EDT 2025
Thu Aug 21 18:27:01 EDT 2025
Thu Aug 14 17:32:23 EDT 2025
Sat Aug 23 13:04:41 EDT 2025
Thu Aug 28 04:32:59 EDT 2025
Thu Aug 14 00:10:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords biometric recognition
feature fusion
photoplethysmography
2D signal transformation
residual neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2759-2854451ac3a42d2e8e914da8add1c5f394821458d5e47a52a1eb1859bd8f2d6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ac3fc7c3bc4945718226bf518d9358a9
PMID 40808013
PQID 3239090149
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ac3fc7c3bc4945718226bf518d9358a9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349239
proquest_miscellaneous_3239403217
proquest_journals_3239090149
pubmed_primary_40808013
crossref_primary_10_3390_s25154849
PublicationCentury 2000
PublicationDate 20250807
PublicationDateYYYYMMDD 2025-08-07
PublicationDate_xml – month: 8
  year: 2025
  text: 20250807
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wei (ref_25) 2024; 88
Rampil (ref_8) 1998; 89
ref_14
ref_36
Polat (ref_13) 2014; 49
ref_35
Siam (ref_1) 2021; 34
ref_12
ref_34
ref_11
Liu (ref_24) 2023; 20
ref_33
ref_10
ref_32
Pu (ref_22) 2022; 22
ref_31
Hwang (ref_21) 2020; 16
Li (ref_18) 2023; 135
ref_19
ref_17
ref_16
ref_38
He (ref_4) 2005; 27
ref_15
ref_37
Alotaiby (ref_2) 2020; 2020
Andri (ref_41) 2017; 37
Lien (ref_3) 2023; 56
Cappelli (ref_5) 2010; 32
ref_23
Biswas (ref_20) 2019; 13
Verhelst (ref_42) 2017; 9
Wildes (ref_6) 1997; 85
Silva (ref_7) 2011; 2011
Zhang (ref_40) 2023; 11
ref_29
ref_28
ref_27
ref_26
ref_9
Wang (ref_39) 2022; 147
Hochreiter (ref_30) 1997; 9
References_xml – ident: ref_28
  doi: 10.1371/journal.pone.0249278
– ident: ref_17
  doi: 10.3390/electronics12030693
– volume: 49
  start-page: 1
  year: 2014
  ident: ref_13
  article-title: A novel feature ranking algorithm for biometric recognition with PPG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.03.005
– ident: ref_29
  doi: 10.3115/v1/D14-1181
– ident: ref_32
– ident: ref_11
  doi: 10.3390/math11081781
– ident: ref_16
  doi: 10.1109/ICCKE.2016.7802164
– ident: ref_26
  doi: 10.1109/CVPR.2016.90
– volume: 22
  start-page: 4675
  year: 2022
  ident: ref_22
  article-title: Novel robust photoplethysmogram-based authentication
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3146291
– ident: ref_12
  doi: 10.1109/ITAB.2003.1222403
– ident: ref_19
  doi: 10.23919/EUSIPCO.2018.8553585
– ident: ref_27
  doi: 10.1371/journal.pone.0281482
– ident: ref_10
  doi: 10.3389/felec.2022.906324
– volume: 13
  start-page: 282
  year: 2019
  ident: ref_20
  article-title: CorNET: Deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2892297
– ident: ref_23
  doi: 10.3390/s23104634
– volume: 2011
  start-page: 720971
  year: 2011
  ident: ref_7
  article-title: Unveiling the biometric potential of finger-based ECG signals. Computational intelligence and neuroscience
  publication-title: Comput. Intell. Neurosci.
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_30
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_38
  doi: 10.3390/app14103963
– ident: ref_14
  doi: 10.1109/ICBAPS.2015.7292210
– volume: 147
  start-page: 105654
  year: 2022
  ident: ref_39
  article-title: Biometric recognition based on scalable end-to-end convolutional neural network using photoplethysmography: A comparative study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105654
– volume: 89
  start-page: 980
  year: 1998
  ident: ref_8
  article-title: A primer for EEG signal processing in anesthesia
  publication-title: Anesthesiol.-Phila. Then Hagerstown-
  doi: 10.1097/00000542-199810000-00023
– volume: 20
  start-page: 707
  year: 2023
  ident: ref_24
  article-title: Dual-domain and multiscale fusion deep neural network for PPG biometric recognition
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1366-8
– ident: ref_15
  doi: 10.1109/SIU.2013.6531568
– ident: ref_31
– ident: ref_36
  doi: 10.36227/techrxiv.22769783.v1
– volume: 37
  start-page: 48
  year: 2017
  ident: ref_41
  article-title: YodaNN: An architecture for ultralow power binary-weight CNN acceleration
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2017.2682138
– volume: 9
  start-page: 55
  year: 2017
  ident: ref_42
  article-title: Embedded deep neural network processing: Algorithmic and processor techniques bring deep learning to iot and edge devices
  publication-title: IEEE Solid-State Circuits Mag.
  doi: 10.1109/MSSC.2017.2745818
– ident: ref_37
  doi: 10.3390/s24010015
– volume: 85
  start-page: 1348
  year: 1997
  ident: ref_6
  article-title: Iris recognition: An emerging biometric technology
  publication-title: Proc. IEEE
  doi: 10.1109/5.628669
– volume: 16
  start-page: 116
  year: 2020
  ident: ref_21
  article-title: Evaluation of the time stability and uniqueness in PPG-based biometric system
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3006313
– volume: 34
  start-page: e4685
  year: 2021
  ident: ref_1
  article-title: Biosignal classification for human identification based on convolutional neural networks
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4685
– volume: 88
  start-page: 105609
  year: 2024
  ident: ref_25
  article-title: PulseID: Multi-scale photoplethysmographic identification using a deep convolutional neural network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105609
– ident: ref_34
  doi: 10.1109/CVPR.2018.00716
– volume: 27
  start-page: 328
  year: 2005
  ident: ref_4
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– volume: 2020
  start-page: 8849845
  year: 2020
  ident: ref_2
  article-title: A nonfiducial PPG-based subject Authentication Approach using the statistical features of DWT-based filtered signals
  publication-title: J. Sens.
  doi: 10.1155/2020/8849845
– volume: 56
  start-page: 1
  year: 2023
  ident: ref_3
  article-title: Challenges and opportunities of biometric user authentication in the age of iot: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3603705
– ident: ref_9
  doi: 10.1109/ICASSP40776.2020.9053604
– ident: ref_33
  doi: 10.1109/CVPR.2015.7298594
– volume: 135
  start-page: 103488
  year: 2023
  ident: ref_18
  article-title: A Survey of PPG’s Application in Authentication
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103488
– ident: ref_35
  doi: 10.1109/CVPR.2017.243
– volume: 32
  start-page: 2128
  year: 2010
  ident: ref_5
  article-title: Minutia cylinder-code: A new representation and matching technique for fingerprint recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.52
– volume: 11
  start-page: 612
  year: 2023
  ident: ref_40
  article-title: A secure, flexible, and PPG-based biometric scheme for healthy IoT using homomorphic random forest
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3285796
SSID ssj0023338
Score 2.4538004
Snippet Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4849
SubjectTerms 2D signal transformation
Accuracy
Algorithms
Biometric identification
Biometric Identification - methods
biometric recognition
Biometrics
Datasets
Deep learning
Facial recognition technology
feature fusion
Heart rate
Humans
Machine learning
Neural networks
Personal information
photoplethysmography
Photoplethysmography - methods
Physiology
residual neural network
Signal Processing, Computer-Assisted
Wavelet Analysis
SummonAdditionalLinks – databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLQHVKCPUKjcigM9ROBXYp-qLpSiSkUrAdLeIscP4NAEdjf_nxknu-xWVU-R4jxGHntenvmGkMPaFE54kH6M-TqXLtrcCoGFwKI0qozMpqzK35fFxY38NVGTIeA2G9IqFzIxCWrfOoyRHwsO3jme-ZlvD485do3C09WhhcZLsonQZbiqy8mzwyXA_-rRhAS8fDwDXQ4GOsJmruigBNX_L_vy7zTJFb1z_oZsDQYj_d5zeJu8CM0Oeb0CI7hLuvFdO8dEcJz0Pynfih6Nxz-_5iPQUZ6OsMQekfhpX5YbhzgdTfkClJ_Rq_tb_Mn1ihULw7bxNBXo5lfAyUDRXOymcO0wxPaW3Jz_uD69yId2CrnjpTI51kpKxawTVnLPgw6GSW81SDjmVBRGaoQt114FWVrFLQM5rpWpvY7cF1G8IxtN24QPhEos3tPaWOYLaQpuOHjSlqsQnaljbTLyZTHB1UOPmlGBt4FcqJZcyMgIp375AAJdpxvt9LYa9k0F1EZXOlE7aaQCRQrmYh0V0x4PcC18ZH_BuGrYfbPqea1k5PNyGPYNHobYJrRd_4w8EeCRZeR9z-clJfIE0TaZyIheWwFrpK6PNPd3CZsbDAGEvDN7_6frI3nFsZEw5p6U-2RjPu3CAVg38_pTWsJPLND7nw
  priority: 102
  providerName: ProQuest
Title Photoplethysmogram (PPG)-Based Biometric Identification Using 2D Signal Transformation and Multi-Scale Feature Fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/40808013
https://www.proquest.com/docview/3239090149
https://www.proquest.com/docview/3239403217
https://pubmed.ncbi.nlm.nih.gov/PMC12349239
https://doaj.org/article/ac3fc7c3bc4945718226bf518d9358a9
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucChKu-UdmUQBzhErV-JfeyWbiskqhVtpb1Fjh3THsiidvP_mXGyqyxC4sIlkTKW7MzY87BnPgN8rG3hZUDtx3moc-Wjy52UVAgsS6vLyF3Kqvx2WVzcqK8LvRhd9UU5YT08cM-4I-dl9KWXtVdWadSk6C_UUXMT6ATPpdI9tHnrYGoItSRGXj2OkMSg_ugBrTi65gSYObI-CaT_b57lnwmSI4sz24PdwVVkJ_0Qn8Ojpn0Bz0YAgi-hm98uV5QCTuz-mTKt2Kf5_PxzPkXrFNiUiusJg5_1Bblx2KFjKVOAiS_s6u4HdXI98l-R7NrAUmlufoUybBg5it09vjvaXHsFN7Oz69OLfLhIIfei1DanKkmlObLSKRFEYxrLVXAGdRv3OkqrDAGWm6AbVTotHEcNbrStg4kiFFG-hp122TZvgSkq2zPGOh4KZQthBcbQTugmelvH2mbwYc3g6lePl1FhnEFSqDZSyGBKrN80IIjr9AEFXw2Cr_4l-AwO1oKrhnX3UEmBHdHJMJLfb8i4YugYxLXNsuvbqGOJsVgGb3o5b0aijglnk8sMzNYM2BrqNqW9u02o3OgCENid3f8fP_cOngq6aJhyU8oD2Fndd80hej-regKPy0WJTzM7n8CT6dnl_PskTf7fJIcHZw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAgkPU9SuJDwixlO2WPrRSt1JvwfGj7YGk7G6E-FP8RmaSTdhFiFtPkWIrsTwznhnPzDeEvC50YoWD048xV8TSBhMbIbAQWKRapYGZJqvy8CgZn8gvp-p0g_zqamEwrbI7E5uD2lUW78i3BQfvHGN--sPl9xi7RmF0tWuh0bLFvv_5A1y2-fu9HaDvG85Hn6efxvGyq0Bseap0jCWDUjFjhZHccZ95zaQzGQg6syoILTNE786c8jI1ihsGx1mmdOGywF0SBHz3GrkuBWhyrEwf7fYOngB_r0UvgsHB9hxsB3AIEKZzRec1rQH-Zc_-nZa5oudGd8jtpYFKP7YcdZds-PIeubUCW3if1JPzaoGJ50jkb01-F307mey-i4egEx0dYkk_Iv_Ttgw4LO8FaZOfQPkOPb44w59MV6xmGDalo01BcHwMnOMpmqf1DJ41Xuk9ICdXstEPyWZZlf4xoRKLBbNMG-YSqROuOXjuhisfrC5CoSPyqtvg_LJF6cjBu0Eq5D0VIjLEre8nILB286KaneVLOc1htcGmVhRWaqlAcYN5WgTFMocBYwMf2eoIly-lfZ7_4c2IvOyHQU4x-GJKX9XtHDkQ4AFG5FFL534lcoDonkxEJFvjgLWlro-UF-cNFjgYHgixp5_8f10vyI3x9PAgP9g72n9KbnJsYox5L-kW2VzMav8MLKtF8bxhZ0q-XrX8_AY4KTfs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLxxKbAgkOBgpd6H7T0gREhDSyGKaCv1ZtZeb9tD7ZLEQvw1fh0zfpEgxK2nSF7LGe3M7M63O_MNwMtUh5mwuPoFgU19mTnjGyGoEFhEWkUuMHVW5ZdpuHcsP52okw341dXCUFpltybWC7UtMzojHwqO6Jzu_PTQtWkRs_Hk3eV3nzpI0U1r106jMZGD_OcPhG-Lt_tj1PUrzie7Rx_2_LbDgJ_xSGmfygelCkwmjOSW53GuA2lNjE4fZMoJLWNi8o6tymVkFDcBLm2x0qmNHbehE_jda7AZESoawOZodzr72sM9geiv4TISKPpwgZEEwgMi7VzZAetGAf-Kbv9O0lzZ9Sa34VYbrrL3jX3dgY28uAs3V0gM70E1OyuXlIZOKr-os73Y69ns4xt_hDukZSMq8Kc-AKwpCnbtKSGrsxUYH7PD81P6k6OVGBqHTWFZXR7sH6Id5YyC1WqOvxUd8N2H4yuZ6gcwKMoifwRMUulgHGsT2FDqkGuOON5wlbtMpy7VHrzoJji5bDg7EsQ6pIWk14IHI5r6_gWi2a4flPPTpPXaBKV1WZSJNJNaKtzGMVhNnQpiS9fHBj-y3SkuaX1_kfyxVA-e98PotXQVY4q8rJp35I5APOjBw0bPvSRyh7g-A-FBvGYBa6KujxTnZzUzOIYhRLint_4v1zO4jr6TfN6fHjyGG5w6GlMSTLQNg-W8yp9gmLVMn7b2zODbVbvQb79hPX4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoplethysmogram+%28PPG%29-Based+Biometric+Identification+Using+2D+Signal+Transformation+and+Multi-Scale+Feature+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Yuanyuan&rft.au=Wang%2C+Zhi&rft.au=Liu%2C+Xiaochang&rft.date=2025-08-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft_id=info:doi/10.3390%2Fs25154849&rft.externalDocID=PMC12349239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon