PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet
Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagatio...
Saved in:
Published in | International transactions on electrical energy systems Vol. 2024; pp. 1 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2024
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness. |
---|---|
AbstractList | Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness. |
Author | Li, Xujiong Yang, Guoming Gou, Jun |
Author_xml | – sequence: 1 givenname: Xujiong orcidid: 0000-0002-6083-0829 surname: Li fullname: Li, Xujiong organization: Lanzhou Resources & Environment Voc-Tech UniversityYellow River Basin Ecotope Integration of Industry and Education Research InstituteKey Laboratory of Climate Resources Utilization and Disaster Prevention and Mitigation of Gansu ProvinceLanzhou 730021China – sequence: 2 givenname: Guoming surname: Yang fullname: Yang, Guoming organization: Lanzhou Power Supply CompanyState Grid Gansu Electric Power CompanyLanzhou 730000China – sequence: 3 givenname: Jun surname: Gou fullname: Gou, Jun organization: Lanzhou Power Supply CompanyState Grid Gansu Electric Power CompanyLanzhou 730000China |
BookMark | eNp9UU1LAzEQDaJgrd78AQGPWptsks3uUYu2haLFr4uHkM1O2pSaaLL149-7bUU8OZcZZt689-AdoF0fPCB0TMk5pUL0M5Lxfp7nUop8B3UyIkhPElbs_pn30VFKC9JWySmVRQc9T5_wNHxAxNchgtGpcX6GncfNHPAIPh2-g5kLHgeLh9qnFZ7G8O68AXypE9S4PV1M8WC5Sg3E9a_2NZ7cP9xAc4j2rF4mOPrpXfR4ffUwGPUmt8Px4GLSM1nrtVdXWpSWM123NnOQktjMcA6sokQTIQSrmBDUipJSU1FuOHCRi7IAyTJmKOui8Za3DnqhXqN70fFLBe3UZhHiTOnYOLMEVZsSQOeWb4iAlSQzTEpprcgKU5Yt18mW6zWGtxWkRi3CKvrWvmKUcko4zdeKZ1uUiSGlCPZXlRK1TkOt01A_abTw0y187nytP9z_6G81Qod3 |
Cites_doi | 10.1016/j.renene.2021.05.095 10.53106/160792642022012301002 10.1007/s10115-016-0996-y 10.1016/j.enconman.2020.112766 10.1016/j.renene.2023.01.118 10.1049/gtd2.12309 10.1016/j.energy.2023.128135 10.1016/j.renene.2021.02.166 10.1080/02522667.2021.1960545 10.1016/j.egyr.2022.08.180 10.1016/j.ijepes.2019.105651 10.1016/j.energy.2021.121212 10.1063/5.0014016 10.3390/app9153192 10.1016/j.renene.2020.01.150 10.1080/02522667.2020.1714181 10.1109/access.2020.2978404 10.1109/tste.2017.2747765 10.1016/j.apenergy.2022.120127 10.3390/en15062243 10.1109/access.2019.2923006 10.3390/electronics10010078 10.1016/j.procs.2023.01.109 10.1016/j.renene.2021.10.102 10.3390/en15218233 10.1016/j.energy.2019.116225 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Xujiong Li et al. Copyright © 2024 Xujiong Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2024 Xujiong Li et al. – notice: Copyright © 2024 Xujiong Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SP 7TB 8FD AEUYN AFKRA BENPR BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L7M PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1155/2024/6667756 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Engineering Research Database ProQuest One Academic ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7038 |
Editor | C., Dhanamjayulu |
Editor_xml | – sequence: 1 givenname: Dhanamjayulu surname: C. fullname: C., Dhanamjayulu |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_dc9eea6f4cb14ce3902c3777ff528c99 10_1155_2024_6667756 |
GeographicLocations | Gansu China China |
GeographicLocations_xml | – name: China – name: Gansu China |
GrantInformation_xml | – fundername: 2023 Lanzhou Resources & Environment Voc-Tech University Research Capacity Enhancement Project grantid: X2023A-13 – fundername: Lanzhou Science and Technology Bureau grantid: 2022-2-22 – fundername: 2020 University-Level Scientific Research Project grantid: Y2020B-02 – fundername: Lanzhou Resources & Environment Voc-Tech University, Yellow River Basin Ecotope Integration of Industry and Education R&D Fund grantid: XHYF2023-02 – fundername: Science and Technology Development Guiding Plan Project Lanzhou grantid: 2022-5-36 |
GroupedDBID | 1OC 8-1 8-4 8-5 AAEVG AAJEY AAZKR ABCUV ACAHQ ACPOU ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIMD AENEX AEUQT AFBPY AFGKR AFPWT AFZJQ AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZFZN BHBCM BMNLL BMXJE BRXPI D-F DCZOG DPXWK DRFUL DRSTM EBS F00 F01 F04 F21 G-S GODZA GROUPED_DOAJ IX1 L8X LATKE LEEKS LITHE LOXES LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E QB0 RHU RHW RHX SUPJJ WIH WIK 24P AAYXX ACCMX ADMLS AEUYN AFKRA BENPR BHPHI BKSAR CCPQU CITATION HCIFZ PCBAR PHGZM PHGZT 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY DWQXO FR3 H8D KR7 L7M PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2756-dba59f43ad0506e770f2c44e3b10a05553b3551f5911cb14c4e456598e7323c13 |
IEDL.DBID | BENPR |
ISSN | 2050-7038 |
IngestDate | Wed Aug 27 01:08:51 EDT 2025 Fri Jul 25 20:48:17 EDT 2025 Tue Jul 01 04:18:54 EDT 2025 Sun Jun 02 18:52:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2756-dba59f43ad0506e770f2c44e3b10a05553b3551f5911cb14c4e456598e7323c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6083-0829 |
OpenAccessLink | https://dx.doi.org/10.1155/2024/6667756 |
PQID | 3114104161 |
PQPubID | 2034359 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc9eea6f4cb14ce3902c3777ff528c99 proquest_journals_3114104161 crossref_primary_10_1155_2024_6667756 hindawi_primary_10_1155_2024_6667756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International transactions on electrical energy systems |
PublicationYear | 2024 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | F. Wang (14) 2020; 212 22 Y. Q. Zhu (43) 2022; 23 44 23 45 Y. Qiao (26) 2021; 5 G. Li (25) N. Chen (18) 28 29 T. L. Jiao (24) 2019; 43 C. Zhang (34) Y. Jin (4) S. Li (33) 2023; 2418 10 32 11 12 Y. Liu (30) 2023; 343 13 35 A. Koirala (40) 36 15 37 S. Ransome (41) 16 38 19 H. Zhang (9) 2022; 2022 J. Simeunović (31) 2022; 327 L. Shan (5) G. Lai (42) G. Wang (39) 2022; 49 L. Zhang (2) 2021; 42 G. Yu (17) 3 G. Wang (6) 7 8 M. Paulescu (27) 2023; 279 A. Arguello (1) 2017; 99 B. Liu (20) 2019; 43 21 |
References_xml | – ident: 10 doi: 10.1016/j.renene.2021.05.095 – volume: 23 start-page: 11 issue: 1 year: 2022 ident: 43 article-title: Motion capture data denoising based on LSTNet autoencoder publication-title: Journal of Internet Technology doi: 10.53106/160792642022012301002 – ident: 37 doi: 10.1007/s10115-016-0996-y – start-page: 246 ident: 34 article-title: Sensitivity analysis of weather factors affecting PV module output power based on artificial neural network and sobol algorithm – volume: 343 year: 2023 ident: 30 article-title: An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network publication-title: Applied Energy – volume: 99 start-page: 1 year: 2017 ident: 1 article-title: Impact of rooftop PV integration in distribution systems considering socioeconomic factors publication-title: IEEE Systems Journal – volume: 212 year: 2020 ident: 14 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2020.112766 – ident: 28 doi: 10.1016/j.renene.2023.01.118 – volume: 49 issue: 2 year: 2022 ident: 39 article-title: Clustering validity evaluation functions of fuzzy C-means clustering algorithm publication-title: IAENG International Journal of Computer Science – volume: 43 start-page: 97 year: 2019 ident: 24 article-title: Spatial clustering method for large-scale distribution user photovoltaic based on spatial correlation publication-title: Automation of Electric Power Systems – ident: 21 doi: 10.1049/gtd2.12309 – volume: 279 year: 2023 ident: 27 article-title: Intra-hour PV power forecasting based on sky imagery publication-title: Energy doi: 10.1016/j.energy.2023.128135 – ident: 11 doi: 10.1016/j.renene.2021.02.166 – volume: 2022 year: 2022 ident: 9 article-title: Multi-input deep convolutional neural network model for short-term power prediction of photovoltaics publication-title: Computational Intelligence and Neuroscience – ident: 23 doi: 10.1080/02522667.2021.1960545 – start-page: 1 ident: 17 article-title: An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction – ident: 22 doi: 10.1016/j.egyr.2022.08.180 – start-page: 643 ident: 5 article-title: Short-term forecasting of PV power based on the fuzzy clustering algorithm and support vector machine in smart distribution planning – start-page: 922 ident: 18 article-title: Analysis and discussion on technical requirements for operation of photovoltaic power generation – ident: 38 doi: 10.1016/j.ijepes.2019.105651 – volume: 42 start-page: 125 year: 2021 ident: 2 article-title: Virtual acquisition method for operation data of distributed PV applying the mixture of grey relational theory and bp neural work publication-title: Electr. Power Constr – ident: 7 doi: 10.1016/j.energy.2021.121212 – ident: 8 doi: 10.1063/5.0014016 – start-page: 1114 ident: 25 article-title: Ultra short-term output forecasting of distributed photovoltaic power station based on feature extraction – start-page: 0375 ident: 41 article-title: Benchmarking PV performance models with high quality IEC 61853 Matrix measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode) – volume: 5 start-page: 1799 year: 2021 ident: 26 article-title: Distributed photovoltaic station cluster gridding short-term power forecasting Part I: methodology and data augmentation publication-title: Power System Technology – ident: 44 doi: 10.3390/app9153192 – ident: 3 doi: 10.1016/j.renene.2020.01.150 – start-page: 903 ident: 4 article-title: Short term photovoltaic output prediction based on singular spectrum analysis – start-page: 1 ident: 6 article-title: A short-term forecasting method for photovoltaic power based on ensemble adaptive boosting random forests – volume: 43 start-page: 111 issue: 19 year: 2019 ident: 20 article-title: Identification method of distributed photovoltaic power in low-voltage distribution networks publication-title: Automation of Electric Power Systems – ident: 35 doi: 10.1080/02522667.2020.1714181 – ident: 36 doi: 10.1109/access.2020.2978404 – ident: 19 doi: 10.1109/tste.2017.2747765 – volume: 2418 issue: 1 year: 2023 ident: 33 article-title: Research of distributed photovoltaic output fluctuation suppression method based on improved FPA publication-title: Journal of Physics: Conference Series – volume: 327 year: 2022 ident: 31 article-title: Interpretable temporal-spatial graph attention network for multi-site PV power forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2022.120127 – start-page: 1 ident: 40 article-title: Representative feeders for spatial scaling of stochastic PV hosting capacity – ident: 15 doi: 10.3390/en15062243 – ident: 16 doi: 10.1109/access.2019.2923006 – ident: 45 doi: 10.3390/electronics10010078 – ident: 29 doi: 10.1016/j.procs.2023.01.109 – ident: 32 doi: 10.1016/j.renene.2021.10.102 – ident: 13 doi: 10.3390/en15218233 – ident: 12 doi: 10.1016/j.energy.2019.116225 – start-page: 95 ident: 42 article-title: Modeling long-and short-term temporal patterns with deep neural networks |
SSID | ssj0000941178 |
Score | 2.3256314 |
Snippet | Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power... |
SourceID | doaj proquest crossref hindawi |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Affinity Algorithms Cluster analysis Clustering Correlation coefficient Correlation coefficients Forecasting Machine learning Meteorological data Neural networks Photovoltaic cells Photovoltaics Power plants Power supply Prediction models Spacetime Statistical methods Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xW2YMeQ5PubjY5tqIWUSlaRfAQ9mMWK5KKbdGf70ySSsGDF6_52uVNsvPeMnnD2IkNznrkAVGubBpJI3Rk4sRFqbTKhxwpQ6CtgZvbdPAgr57U01KrL6oJq-2Ba-A63uUAJg3S2UQ6QInedUJrHYLqZi6vft3DnLckpl7rerkk0dmi0l0pEvmyg1xda-pVvZSDKqt-ZL8vpIE_x7_W5CrRXGyyjYYh8l49sy22AuU2W1_yDdxhz8NHPqT2Zpw6azozpdplPi45sjk-gK8xvwOqM-aTwC8xF835sNo5cMD7mLU8x1O9IT97m5NNAt1rSs-v70e3MNtlDxfno7NB1HRJiBxZt0feGpUHKQxCHqegdRy6TkoQNokN2XkJi5wiCQqXtQpDCcTi8gy06AqXiD22Wk5K2GccZBob43PQykvpUotiDR-fGS-Fhsy12OkCt-K9NsMoKhGhVEH4Fg2-LdYnUH-uIQvr6gAGtmgCW_wV2BY7aULyx1jtRbyK5vObFiKh8lXSbgf_MZVDtkZD1jsvbbY6-5jDEXKRmT2uXrtvk5HYqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExwQqyibfCjHiKS24_gIiFIhQBWbKnGIvIxFJRQQbQWfz0yaIpYDHLPYiWYcz3uT0RvG2i56FxAHJEa5PJFW6MSmmU9y6VSIBiFDpNTA5VXeu5PnAzVoRJJGv3_hY7Qjei4PEWVrrfJ5No8LjEh5b_CZSkGGkmW6mJW1_xjyLeDUuvwIdR-J8L4Nf23AdVTprrDlBg7yo6n_VtkcVGts6YtI4Dp76N_zPvUy49RG09sRFSrzYcURuvEevA_5NVBRMX-O_AwDz4T36zSBB36MISpwvHTU5ydPE9JEoLG2Cvzi5vYKxhvsrnt6e9JLmpYIiSed9iQ4q0yUwqJ90xy0TmPHSwnCZakl7S7hEEBkUeEe5l0mvQSCbKYALTrCZ2KTLVTPFWwxDjJPrQ0GtApS-twhM8PpCxuk0FD4FjuY2a18mSpflDVjUKok-5aNfVvsmIz6eQ_pVdcn0Idls_zL4A2AzaOsXwqESTteaK1jVJ3CG9Ni7cYlfzxrd-avsvnWRqXIqFaViNr2_2bZYYt0OE2k7LKF8esE9hBajN1-vbA-AMOdxQA priority: 102 providerName: Hindawi Publishing |
Title | PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet |
URI | https://dx.doi.org/10.1155/2024/6667756 https://www.proquest.com/docview/3114104161 https://doaj.org/article/dc9eea6f4cb14ce3902c3777ff528c99 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwELUoXNpDRWmrbgvIBzhGJGs7jk8Vi4BVBatogWqlHiJ_jGEllKXsrtqf35msF5AqtZcc8uFEY3vmvcnoDWMHLnoXEAdkRrkyk1bozOaFz0rpVIgGIUOk1MDlqBzeyG8TNUkJt3kqq1z7xM5Rh5mnHPmRKKgikeD414efGXWNor-rqYXGK7aFLrhC8rU1OB3V46csC5KXotDVuuJdKSL78ggxu9bUs_pFLOok-xEF3xEX_jX9yzd3Aedsm71NSJEfr6b2HduAdoe9eaEf-J79qL_zmtqcceqw6e2capj5tOWI6vgQfk_5GKjemM8iP8eYtOR1l0HwwAcYvQLHS8c1P7lfklwCPWvbwC-urkew-MBuzk6vT4ZZ6paQeZJwz4KzykQpLJo-L0HrPPa9lCBckVuS9RIOsUURFbo37wrpJRCaMxVo0Re-EB_ZZjtr4RPjIMvc2mBAqyClLx2SNhy-skEKDZXvscO13ZqHlShG05EJpRqyb5Ps22MDMurTPSRl3Z2YPd42aWc0wRsAW0bZfRQIk_e90FrHqPqVN6bHDtKU_Oddu-v5atI2nDfPi-bzvy9_Ya9psFVuZZdtLh6XsIdoY-H205La79g6HsfDyR8LJ9Ju |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE8RKLCH9mjV9u567QNCTWlJaRpZJUWVOJh90kiVU5pEhT_Fb2TGsUslJDj16rXHq9nZnW_G4_kANk2wxiEOiAppskhoriIdJzbKhJEuFAgZAqUGjsbZ8ER8PJWna_Cr-xeGyiq7M7E5qN3MUo58mydUkUhw_N3F94hYo-jrakehsTKLQ__zCkO2-duD97i-W2m6vzfZHUYtq0BkqdV55IyWRRBc4xTjzCsVh9QK4blJYk3tr7hBH5wEiceANYmwwhPqKXKveMptwlHuHVgXHEOZHqwP9sbl8XVWB4OlJFF5V2EvJSUXxDbGCEoRR_YN39dQBCDqPqPY-2r6ly9oHNz-Q3jQIlO2szKlR7Dm68dw_0a_wifwpfzMSqJVY8ToafWcaqbZtGaIItnQ_5iyY0_1zWwW2Af0gUtWNhkL69kAvaVjOLRTst3zJbVnoGd17djo02TsF0_h5Fb0-Ax69az2z4F5kcVau8Ir6YSwmcEgEcXn2gmufG77sNXprbpYNeGomuBFyor0W7X67cOAlHp9D7XObi7MLr9V7U6snC2811kQzaQ8L-LUcqVUCDLNbVH0YbNdkv-8a6Nbr6rd9vPqj5G--PfwG7g7nByNqtHB-PAl3CPBq7zOBvQWl0v_CpHOwrxuzYvB19u26N-EDQr0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PV+Power+Forecasting+in+the+Hexi+Region+of+Gansu+Province+Based+on+AP+Clustering+and+LSTNet&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Li%2C+Xujiong&rft.au=Yang%2C+Guoming&rft.au=Gou%2C+Jun&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-7038&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F6667756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon |