PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet

Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagatio...

Full description

Saved in:
Bibliographic Details
Published inInternational transactions on electrical energy systems Vol. 2024; pp. 1 - 17
Main Authors Li, Xujiong, Yang, Guoming, Gou, Jun
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2024
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.
AbstractList Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.
Author Li, Xujiong
Yang, Guoming
Gou, Jun
Author_xml – sequence: 1
  givenname: Xujiong
  orcidid: 0000-0002-6083-0829
  surname: Li
  fullname: Li, Xujiong
  organization: Lanzhou Resources & Environment Voc-Tech UniversityYellow River Basin Ecotope Integration of Industry and Education Research InstituteKey Laboratory of Climate Resources Utilization and Disaster Prevention and Mitigation of Gansu ProvinceLanzhou 730021China
– sequence: 2
  givenname: Guoming
  surname: Yang
  fullname: Yang, Guoming
  organization: Lanzhou Power Supply CompanyState Grid Gansu Electric Power CompanyLanzhou 730000China
– sequence: 3
  givenname: Jun
  surname: Gou
  fullname: Gou, Jun
  organization: Lanzhou Power Supply CompanyState Grid Gansu Electric Power CompanyLanzhou 730000China
BookMark eNp9UU1LAzEQDaJgrd78AQGPWptsks3uUYu2haLFr4uHkM1O2pSaaLL149-7bUU8OZcZZt689-AdoF0fPCB0TMk5pUL0M5Lxfp7nUop8B3UyIkhPElbs_pn30VFKC9JWySmVRQc9T5_wNHxAxNchgtGpcX6GncfNHPAIPh2-g5kLHgeLh9qnFZ7G8O68AXypE9S4PV1M8WC5Sg3E9a_2NZ7cP9xAc4j2rF4mOPrpXfR4ffUwGPUmt8Px4GLSM1nrtVdXWpSWM123NnOQktjMcA6sokQTIQSrmBDUipJSU1FuOHCRi7IAyTJmKOui8Za3DnqhXqN70fFLBe3UZhHiTOnYOLMEVZsSQOeWb4iAlSQzTEpprcgKU5Yt18mW6zWGtxWkRi3CKvrWvmKUcko4zdeKZ1uUiSGlCPZXlRK1TkOt01A_abTw0y187nytP9z_6G81Qod3
Cites_doi 10.1016/j.renene.2021.05.095
10.53106/160792642022012301002
10.1007/s10115-016-0996-y
10.1016/j.enconman.2020.112766
10.1016/j.renene.2023.01.118
10.1049/gtd2.12309
10.1016/j.energy.2023.128135
10.1016/j.renene.2021.02.166
10.1080/02522667.2021.1960545
10.1016/j.egyr.2022.08.180
10.1016/j.ijepes.2019.105651
10.1016/j.energy.2021.121212
10.1063/5.0014016
10.3390/app9153192
10.1016/j.renene.2020.01.150
10.1080/02522667.2020.1714181
10.1109/access.2020.2978404
10.1109/tste.2017.2747765
10.1016/j.apenergy.2022.120127
10.3390/en15062243
10.1109/access.2019.2923006
10.3390/electronics10010078
10.1016/j.procs.2023.01.109
10.1016/j.renene.2021.10.102
10.3390/en15218233
10.1016/j.energy.2019.116225
ContentType Journal Article
Copyright Copyright © 2024 Xujiong Li et al.
Copyright © 2024 Xujiong Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2024 Xujiong Li et al.
– notice: Copyright © 2024 Xujiong Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SP
7TB
8FD
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L7M
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1155/2024/6667756
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest One Academic
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7038
Editor C., Dhanamjayulu
Editor_xml – sequence: 1
  givenname: Dhanamjayulu
  surname: C.
  fullname: C., Dhanamjayulu
EndPage 17
ExternalDocumentID oai_doaj_org_article_dc9eea6f4cb14ce3902c3777ff528c99
10_1155_2024_6667756
GeographicLocations Gansu China
China
GeographicLocations_xml – name: China
– name: Gansu China
GrantInformation_xml – fundername: 2023 Lanzhou Resources & Environment Voc-Tech University Research Capacity Enhancement Project
  grantid: X2023A-13
– fundername: Lanzhou Science and Technology Bureau
  grantid: 2022-2-22
– fundername: 2020 University-Level Scientific Research Project
  grantid: Y2020B-02
– fundername: Lanzhou Resources & Environment Voc-Tech University, Yellow River Basin Ecotope Integration of Industry and Education R&D Fund
  grantid: XHYF2023-02
– fundername: Science and Technology Development Guiding Plan Project Lanzhou
  grantid: 2022-5-36
GroupedDBID 1OC
8-1
8-4
8-5
AAEVG
AAJEY
AAZKR
ABCUV
ACAHQ
ACPOU
ACXME
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIMD
AENEX
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BHBCM
BMNLL
BMXJE
BRXPI
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
F00
F01
F04
F21
G-S
GODZA
GROUPED_DOAJ
IX1
L8X
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
QB0
RHU
RHW
RHX
SUPJJ
WIH
WIK
24P
AAYXX
ACCMX
ADMLS
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
PCBAR
PHGZM
PHGZT
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2756-dba59f43ad0506e770f2c44e3b10a05553b3551f5911cb14c4e456598e7323c13
IEDL.DBID BENPR
ISSN 2050-7038
IngestDate Wed Aug 27 01:08:51 EDT 2025
Fri Jul 25 20:48:17 EDT 2025
Tue Jul 01 04:18:54 EDT 2025
Sun Jun 02 18:52:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2756-dba59f43ad0506e770f2c44e3b10a05553b3551f5911cb14c4e456598e7323c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6083-0829
OpenAccessLink https://dx.doi.org/10.1155/2024/6667756
PQID 3114104161
PQPubID 2034359
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_dc9eea6f4cb14ce3902c3777ff528c99
proquest_journals_3114104161
crossref_primary_10_1155_2024_6667756
hindawi_primary_10_1155_2024_6667756
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International transactions on electrical energy systems
PublicationYear 2024
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References F. Wang (14) 2020; 212
22
Y. Q. Zhu (43) 2022; 23
44
23
45
Y. Qiao (26) 2021; 5
G. Li (25)
N. Chen (18)
28
29
T. L. Jiao (24) 2019; 43
C. Zhang (34)
Y. Jin (4)
S. Li (33) 2023; 2418
10
32
11
12
Y. Liu (30) 2023; 343
13
35
A. Koirala (40)
36
15
37
S. Ransome (41)
16
38
19
H. Zhang (9) 2022; 2022
J. Simeunović (31) 2022; 327
L. Shan (5)
G. Lai (42)
G. Wang (39) 2022; 49
L. Zhang (2) 2021; 42
G. Yu (17)
3
G. Wang (6)
7
8
M. Paulescu (27) 2023; 279
A. Arguello (1) 2017; 99
B. Liu (20) 2019; 43
21
References_xml – ident: 10
  doi: 10.1016/j.renene.2021.05.095
– volume: 23
  start-page: 11
  issue: 1
  year: 2022
  ident: 43
  article-title: Motion capture data denoising based on LSTNet autoencoder
  publication-title: Journal of Internet Technology
  doi: 10.53106/160792642022012301002
– ident: 37
  doi: 10.1007/s10115-016-0996-y
– start-page: 246
  ident: 34
  article-title: Sensitivity analysis of weather factors affecting PV module output power based on artificial neural network and sobol algorithm
– volume: 343
  year: 2023
  ident: 30
  article-title: An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network
  publication-title: Applied Energy
– volume: 99
  start-page: 1
  year: 2017
  ident: 1
  article-title: Impact of rooftop PV integration in distribution systems considering socioeconomic factors
  publication-title: IEEE Systems Journal
– volume: 212
  year: 2020
  ident: 14
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.112766
– ident: 28
  doi: 10.1016/j.renene.2023.01.118
– volume: 49
  issue: 2
  year: 2022
  ident: 39
  article-title: Clustering validity evaluation functions of fuzzy C-means clustering algorithm
  publication-title: IAENG International Journal of Computer Science
– volume: 43
  start-page: 97
  year: 2019
  ident: 24
  article-title: Spatial clustering method for large-scale distribution user photovoltaic based on spatial correlation
  publication-title: Automation of Electric Power Systems
– ident: 21
  doi: 10.1049/gtd2.12309
– volume: 279
  year: 2023
  ident: 27
  article-title: Intra-hour PV power forecasting based on sky imagery
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128135
– ident: 11
  doi: 10.1016/j.renene.2021.02.166
– volume: 2022
  year: 2022
  ident: 9
  article-title: Multi-input deep convolutional neural network model for short-term power prediction of photovoltaics
  publication-title: Computational Intelligence and Neuroscience
– ident: 23
  doi: 10.1080/02522667.2021.1960545
– start-page: 1
  ident: 17
  article-title: An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction
– ident: 22
  doi: 10.1016/j.egyr.2022.08.180
– start-page: 643
  ident: 5
  article-title: Short-term forecasting of PV power based on the fuzzy clustering algorithm and support vector machine in smart distribution planning
– start-page: 922
  ident: 18
  article-title: Analysis and discussion on technical requirements for operation of photovoltaic power generation
– ident: 38
  doi: 10.1016/j.ijepes.2019.105651
– volume: 42
  start-page: 125
  year: 2021
  ident: 2
  article-title: Virtual acquisition method for operation data of distributed PV applying the mixture of grey relational theory and bp neural work
  publication-title: Electr. Power Constr
– ident: 7
  doi: 10.1016/j.energy.2021.121212
– ident: 8
  doi: 10.1063/5.0014016
– start-page: 1114
  ident: 25
  article-title: Ultra short-term output forecasting of distributed photovoltaic power station based on feature extraction
– start-page: 0375
  ident: 41
  article-title: Benchmarking PV performance models with high quality IEC 61853 Matrix measurements (Bilinear interpolation, SAPM, PVGIS, MLFM and 1-diode)
– volume: 5
  start-page: 1799
  year: 2021
  ident: 26
  article-title: Distributed photovoltaic station cluster gridding short-term power forecasting Part I: methodology and data augmentation
  publication-title: Power System Technology
– ident: 44
  doi: 10.3390/app9153192
– ident: 3
  doi: 10.1016/j.renene.2020.01.150
– start-page: 903
  ident: 4
  article-title: Short term photovoltaic output prediction based on singular spectrum analysis
– start-page: 1
  ident: 6
  article-title: A short-term forecasting method for photovoltaic power based on ensemble adaptive boosting random forests
– volume: 43
  start-page: 111
  issue: 19
  year: 2019
  ident: 20
  article-title: Identification method of distributed photovoltaic power in low-voltage distribution networks
  publication-title: Automation of Electric Power Systems
– ident: 35
  doi: 10.1080/02522667.2020.1714181
– ident: 36
  doi: 10.1109/access.2020.2978404
– ident: 19
  doi: 10.1109/tste.2017.2747765
– volume: 2418
  issue: 1
  year: 2023
  ident: 33
  article-title: Research of distributed photovoltaic output fluctuation suppression method based on improved FPA
  publication-title: Journal of Physics: Conference Series
– volume: 327
  year: 2022
  ident: 31
  article-title: Interpretable temporal-spatial graph attention network for multi-site PV power forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2022.120127
– start-page: 1
  ident: 40
  article-title: Representative feeders for spatial scaling of stochastic PV hosting capacity
– ident: 15
  doi: 10.3390/en15062243
– ident: 16
  doi: 10.1109/access.2019.2923006
– ident: 45
  doi: 10.3390/electronics10010078
– ident: 29
  doi: 10.1016/j.procs.2023.01.109
– ident: 32
  doi: 10.1016/j.renene.2021.10.102
– ident: 13
  doi: 10.3390/en15218233
– ident: 12
  doi: 10.1016/j.energy.2019.116225
– start-page: 95
  ident: 42
  article-title: Modeling long-and short-term temporal patterns with deep neural networks
SSID ssj0000941178
Score 2.3256314
Snippet Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power...
SourceID doaj
proquest
crossref
hindawi
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Affinity
Algorithms
Cluster analysis
Clustering
Correlation coefficient
Correlation coefficients
Forecasting
Machine learning
Meteorological data
Neural networks
Photovoltaic cells
Photovoltaics
Power plants
Power supply
Prediction models
Spacetime
Statistical methods
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xW2YMeQ5PubjY5tqIWUSlaRfAQ9mMWK5KKbdGf70ySSsGDF6_52uVNsvPeMnnD2IkNznrkAVGubBpJI3Rk4sRFqbTKhxwpQ6CtgZvbdPAgr57U01KrL6oJq-2Ba-A63uUAJg3S2UQ6QInedUJrHYLqZi6vft3DnLckpl7rerkk0dmi0l0pEvmyg1xda-pVvZSDKqt-ZL8vpIE_x7_W5CrRXGyyjYYh8l49sy22AuU2W1_yDdxhz8NHPqT2Zpw6azozpdplPi45sjk-gK8xvwOqM-aTwC8xF835sNo5cMD7mLU8x1O9IT97m5NNAt1rSs-v70e3MNtlDxfno7NB1HRJiBxZt0feGpUHKQxCHqegdRy6TkoQNokN2XkJi5wiCQqXtQpDCcTi8gy06AqXiD22Wk5K2GccZBob43PQykvpUotiDR-fGS-Fhsy12OkCt-K9NsMoKhGhVEH4Fg2-LdYnUH-uIQvr6gAGtmgCW_wV2BY7aULyx1jtRbyK5vObFiKh8lXSbgf_MZVDtkZD1jsvbbY6-5jDEXKRmT2uXrtvk5HYqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExwQqyibfCjHiKS24_gIiFIhQBWbKnGIvIxFJRQQbQWfz0yaIpYDHLPYiWYcz3uT0RvG2i56FxAHJEa5PJFW6MSmmU9y6VSIBiFDpNTA5VXeu5PnAzVoRJJGv3_hY7Qjei4PEWVrrfJ5No8LjEh5b_CZSkGGkmW6mJW1_xjyLeDUuvwIdR-J8L4Nf23AdVTprrDlBg7yo6n_VtkcVGts6YtI4Dp76N_zPvUy49RG09sRFSrzYcURuvEevA_5NVBRMX-O_AwDz4T36zSBB36MISpwvHTU5ydPE9JEoLG2Cvzi5vYKxhvsrnt6e9JLmpYIiSed9iQ4q0yUwqJ90xy0TmPHSwnCZakl7S7hEEBkUeEe5l0mvQSCbKYALTrCZ2KTLVTPFWwxDjJPrQ0GtApS-twhM8PpCxuk0FD4FjuY2a18mSpflDVjUKok-5aNfVvsmIz6eQ_pVdcn0Idls_zL4A2AzaOsXwqESTteaK1jVJ3CG9Ni7cYlfzxrd-avsvnWRqXIqFaViNr2_2bZYYt0OE2k7LKF8esE9hBajN1-vbA-AMOdxQA
  priority: 102
  providerName: Hindawi Publishing
Title PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet
URI https://dx.doi.org/10.1155/2024/6667756
https://www.proquest.com/docview/3114104161
https://doaj.org/article/dc9eea6f4cb14ce3902c3777ff528c99
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwELUoXNpDRWmrbgvIBzhGJGs7jk8Vi4BVBatogWqlHiJ_jGEllKXsrtqf35msF5AqtZcc8uFEY3vmvcnoDWMHLnoXEAdkRrkyk1bozOaFz0rpVIgGIUOk1MDlqBzeyG8TNUkJt3kqq1z7xM5Rh5mnHPmRKKgikeD414efGXWNor-rqYXGK7aFLrhC8rU1OB3V46csC5KXotDVuuJdKSL78ggxu9bUs_pFLOok-xEF3xEX_jX9yzd3Aedsm71NSJEfr6b2HduAdoe9eaEf-J79qL_zmtqcceqw6e2capj5tOWI6vgQfk_5GKjemM8iP8eYtOR1l0HwwAcYvQLHS8c1P7lfklwCPWvbwC-urkew-MBuzk6vT4ZZ6paQeZJwz4KzykQpLJo-L0HrPPa9lCBckVuS9RIOsUURFbo37wrpJRCaMxVo0Re-EB_ZZjtr4RPjIMvc2mBAqyClLx2SNhy-skEKDZXvscO13ZqHlShG05EJpRqyb5Ps22MDMurTPSRl3Z2YPd42aWc0wRsAW0bZfRQIk_e90FrHqPqVN6bHDtKU_Oddu-v5atI2nDfPi-bzvy9_Ya9psFVuZZdtLh6XsIdoY-H205La79g6HsfDyR8LJ9Ju
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE8RKLCH9mjV9u567QNCTWlJaRpZJUWVOJh90kiVU5pEhT_Fb2TGsUslJDj16rXHq9nZnW_G4_kANk2wxiEOiAppskhoriIdJzbKhJEuFAgZAqUGjsbZ8ER8PJWna_Cr-xeGyiq7M7E5qN3MUo58mydUkUhw_N3F94hYo-jrakehsTKLQ__zCkO2-duD97i-W2m6vzfZHUYtq0BkqdV55IyWRRBc4xTjzCsVh9QK4blJYk3tr7hBH5wEiceANYmwwhPqKXKveMptwlHuHVgXHEOZHqwP9sbl8XVWB4OlJFF5V2EvJSUXxDbGCEoRR_YN39dQBCDqPqPY-2r6ly9oHNz-Q3jQIlO2szKlR7Dm68dw_0a_wifwpfzMSqJVY8ToafWcaqbZtGaIItnQ_5iyY0_1zWwW2Af0gUtWNhkL69kAvaVjOLRTst3zJbVnoGd17djo02TsF0_h5Fb0-Ax69az2z4F5kcVau8Ir6YSwmcEgEcXn2gmufG77sNXprbpYNeGomuBFyor0W7X67cOAlHp9D7XObi7MLr9V7U6snC2811kQzaQ8L-LUcqVUCDLNbVH0YbNdkv-8a6Nbr6rd9vPqj5G--PfwG7g7nByNqtHB-PAl3CPBq7zOBvQWl0v_CpHOwrxuzYvB19u26N-EDQr0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PV+Power+Forecasting+in+the+Hexi+Region+of+Gansu+Province+Based+on+AP+Clustering+and+LSTNet&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Li%2C+Xujiong&rft.au=Yang%2C+Guoming&rft.au=Gou%2C+Jun&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-7038&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F6667756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon