Semi-Supervised Learning in Large Scale Text Categorization
The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine l...
Saved in:
Published in | Shanghai jiao tong da xue xue bao Vol. 22; no. 3; pp. 291 - 302 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Shanghai
Shanghai Jiaotong University Press
01.06.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine learning can classify a large number of natural language documents into the corresponding subject categories according to its correct semantics. It is helpful to grasp the text information directly. By learning from a set of hand-labeled documents,we obtain the traditional supervised classifier for text categorization(TC). However, labeling all data by human is labor intensive and time consuming. To solve this problem, some scholars proposed a semi-supervised learning method to train classifier, but it is unfeasible for various kinds and great number of Web data since it still needs a part of hand-labeled data. In 2012, Li et al. invented a fully automatic categorization approach for text(FACT)based on supervised learning, where no manual labeling efforts are required. But automatically labeling all data can bring noise into experiment and cause the fact that the result cannot meet the accuracy requirement. We put forward a new idea that part of data with high accuracy can be automatically tagged based on the semantic of category name, then a semi-supervised way is taken to train classifier with both labeled and unlabeled data,and ultimately a precise classification of massive text data can be achieved. The empirical experiments show that the method outperforms the supervised support vector machine(SVM) in terms of both F1 performance and classification accuracy in most cases. It proves the effectiveness of the semi-supervised algorithm in automatic TC. |
---|---|
AbstractList | The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine learning can classify a large number of natural language documents into the corresponding subject categories according to its correct semantics. It is helpful to grasp the text information directly. By learning from a set of hand-labeled documents,we obtain the traditional supervised classifier for text categorization(TC). However, labeling all data by human is labor intensive and time consuming. To solve this problem, some scholars proposed a semi-supervised learning method to train classifier, but it is unfeasible for various kinds and great number of Web data since it still needs a part of hand-labeled data. In 2012, Li et al. invented a fully automatic categorization approach for text(FACT)based on supervised learning, where no manual labeling efforts are required. But automatically labeling all data can bring noise into experiment and cause the fact that the result cannot meet the accuracy requirement. We put forward a new idea that part of data with high accuracy can be automatically tagged based on the semantic of category name, then a semi-supervised way is taken to train classifier with both labeled and unlabeled data,and ultimately a precise classification of massive text data can be achieved. The empirical experiments show that the method outperforms the supervised support vector machine(SVM) in terms of both F1 performance and classification accuracy in most cases. It proves the effectiveness of the semi-supervised algorithm in automatic TC. |
Author | 许泽文 李建强 刘博 毕敬 李蓉 毛睿 |
AuthorAffiliation | School of Software Engineering, Beijing University of Technology;Beijing Engineering Research Center for Io T Software and Systems, Beijing University of Technology;Guangdong Key Laboratory of Popular High Performance Computers, Shenzhen University;Shenzhen Key Laboratory of Service Computing and Applications,Shenzhen University |
Author_xml | – sequence: 1 fullname: 许泽文 李建强 刘博 毕敬 李蓉 毛睿 |
BookMark | eNp9kE1LAzEQhoMoWD9-gLcFz9F8bhI8SfELCh6q55BNZ9dIzbbJVtRfb2qLiIeeZgbeZ96Z9wjtxz4CQmeUXFBC1GWmjBGBCVWYai4x30MjaozEmmq9X_oiwpQqdoiOcn4lRBDOzQhdTeEt4OlqAek9ZJhVE3AphthVIVYTlzqopt7NoXqCj6EauwG6PoUvN4Q-nqCD1s0znG7rMXq-vXka3-PJ493D-HqCPVOSY14L36rGeMqglt6bls8aVystSA3CCQ3KeNcQ0TSOMTlrfU0NzFwZBIda8WN0vtm7SP1yBXmwr_0qxWJpqSFcEkaVKCq6UfnU55ygtYsU3lz6tJTY9ft2k5EtGdl1RpYXRv1jfBh-fhuSC_OdJNuQubjEDtKfm3ZAfGv30sduWbjfG7XQrJZKSyK0MFIKLWnptBT8G-SEivU |
CitedBy_id | crossref_primary_10_1007_s12065_020_00449_x crossref_primary_10_1007_s10462_023_10393_8 crossref_primary_10_3390_s21092993 |
Cites_doi | 10.1016/j.patcog.2013.01.009 10.3115/1706543.1706545 10.1016/j.compind.2014.09.004 10.1016/j.ipm.2011.12.005 10.1145/505282.505283 10.1016/j.eswa.2011.07.070 10.1016/j.neucom.2015.11.042 10.1007/s10844-012-0211-x 10.1016/j.knosys.2013.01.032 10.1109/TKDE.2011.119 10.7551/mitpress/9780262033589.001.0001 10.1145/1401890.1401976 |
ContentType | Journal Article |
Copyright | Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s12204-017-1835-3 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Architecture Computer Science |
EISSN | 1995-8188 |
EndPage | 302 |
ExternalDocumentID | 10_1007_s12204_017_1835_3 84826578504849554851484854 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CEKLB CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U2A UG4 UGNYK UNUBA UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 ~WA -SC -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEC H13 Q-- SJYHP U1G U5M UY8 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD ABRTQ FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2753-364cf7b9c12e65cc9f3dba678406e4a48e79cab04bba225dfc619edaa2243e673 |
IEDL.DBID | U2A |
ISSN | 1007-1172 |
IngestDate | Fri Jul 25 11:00:25 EDT 2025 Tue Jul 01 02:23:56 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Fri Feb 21 02:37:21 EST 2025 Wed Feb 14 10:04:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | classifier automatic tagging semi-supervised TP 311 TP 391.1 text data mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2753-364cf7b9c12e65cc9f3dba678406e4a48e79cab04bba225dfc619edaa2243e673 |
Notes | 31-1943/U ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1903502174 |
PQPubID | 2043647 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1903502174 crossref_primary_10_1007_s12204_017_1835_3 crossref_citationtrail_10_1007_s12204_017_1835_3 springer_journals_10_1007_s12204_017_1835_3 chongqing_primary_84826578504849554851484854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170600 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 6 year: 2017 text: 20170600 |
PublicationDecade | 2010 |
PublicationPlace | Shanghai |
PublicationPlace_xml | – name: Shanghai – name: Heidelberg |
PublicationTitle | Shanghai jiao tong da xue xue bao |
PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) |
PublicationTitleAlternate | Journal of Shanghai Jiaotong University(Science) |
PublicationYear | 2017 |
Publisher | Shanghai Jiaotong University Press Springer Nature B.V |
Publisher_xml | – name: Shanghai Jiaotong University Press – name: Springer Nature B.V |
References | Cheng, Shi, Qin (CR19) 2012 CR2 Breve, Zhao, Quiles (CR23) 2011; 24 Yin, Xiang, Zhang (CR3) 2015 Sebastiani (CR6) 2002; 34 Wang, Jebara, Chang (CR18) 2013; 14 Li, Zhao, Liu (CR1) 2012; 39 Fox-Roberts, Rosten (CR16) 2014; 15 Li, Wang (CR24) 2016; 177 Siolas, D’Alché-Buc (CR8) 2000 Johnson, Zhang (CR4) 2015; 28 Joachims (CR7) 1999 Basili, Cammisa, Moschitti (CR9) 2005 CR14 Johnson, Zhang (CR5) 2016 Wang, Domeniconi (CR11) 2008 Chapelle, Schölkopf, Zien (CR12) 2006 Yang, Liu, Zhu (CR22) 2012; 48 Gabrilovich, Markovitch (CR10) 2005 Li, Yang, Park (CR15) 2012; 39 Shang, Jiao, Liu (CR17) 2013; 46 Leng, Xu, Qi (CR20) 2013; 44 Sindhwani, Keerthi (CR13) 2006 Li, Liu, Liu (CR21) 2015; 69 J Q Li (1835_CR24) 2016; 177 C Y Yin (1835_CR3) 2015 J Q Li (1835_CR1) 2012; 39 J M Yang (1835_CR22) 2012; 48 1835_CR14 P Fox-Roberts (1835_CR16) 2014; 15 J Wang (1835_CR18) 2013; 14 F Breve (1835_CR23) 2011; 24 T Joachims (1835_CR7) 1999 V Sindhwani (1835_CR13) 2006 P Wang (1835_CR11) 2008 E Gabrilovich (1835_CR10) 2005 O Chapelle (1835_CR12) 2006 R Johnson (1835_CR4) 2015; 28 Y Leng (1835_CR20) 2013; 44 1835_CR2 J Q Li (1835_CR21) 2015; 69 F Sebastiani (1835_CR6) 2002; 34 F H Shang (1835_CR17) 2013; 46 S Cheng (1835_CR19) 2012 R Johnson (1835_CR5) 2016 G Siolas (1835_CR8) 2000 R Basili (1835_CR9) 2005 C H Li (1835_CR15) 2012; 39 |
References_xml | – start-page: 713 year: 2008 end-page: 721 ident: CR11 article-title: Building semantic kernels for text classification using wikipedia [C] publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 46 start-page: 2323 issue: 8 year: 2013 end-page: 2336 ident: CR17 article-title: Semisupervised learning with nuclear norm regularization [J] publication-title: Pattern Recognization doi: 10.1016/j.patcog.2013.01.009 – start-page: 1 year: 2005 end-page: 8 ident: CR9 article-title: Effective use of Wordnet semantics via kernel-based learning publication-title: Proceedings of the 9th Conference on Computational Natural Language Learning doi: 10.3115/1706543.1706545 – volume: 69 start-page: 81 issue: 1 year: 2015 end-page: 91 ident: CR21 article-title: Diversity-aware retrieval of medical records [J] publication-title: Compuer in Industries doi: 10.1016/j.compind.2014.09.004 – volume: 48 start-page: 741 issue: 4 year: 2012 end-page: 754 ident: CR22 article-title: A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization [J] publication-title: Information Processing and Management doi: 10.1016/j.ipm.2011.12.005 – volume: 34 start-page: 1 issue: 1 year: 2002 end-page: 47 ident: CR6 article-title: Machine learning in automated text categorization [J] publication-title: ACM Computing Surveys doi: 10.1145/505282.505283 – start-page: 205 year: 2000 end-page: 209 ident: CR8 article-title: Support vector machines based on a semantic kernel for text categorization publication-title: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neuralnetworks – ident: CR14 – ident: CR2 – start-page: 200 year: 1999 end-page: 209 ident: CR7 article-title: Transductive inference for text classification using support vector machines [C] publication-title: Proceedings of the 16th International Conference on Machine Learning – volume: 39 start-page: 765 year: 2012 end-page: 772 ident: CR15 article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet [J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.070 – volume: 177 start-page: 385 year: 2016 end-page: 393 ident: CR24 article-title: Semi-supervised learning via mean field methods [J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.042 – start-page: 1048 year: 2005 end-page: 1053 ident: CR10 article-title: Feature generation for text categorization using world knowledge [C] publication-title: International Joint Conference on Artificial Intelligence – volume: 14 start-page: 729 year: 2013 end-page: 758 ident: CR18 article-title: Semi-supervised learning using greedy max-cut [J] publication-title: Journal of Machine Learning Research – volume: 39 start-page: 763 issue: 3 year: 2012 end-page: 788 ident: CR1 article-title: Exploiting semantic resources for large scale text categorization [J] publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-012-0211-x – start-page: 477 year: 2006 end-page: 484 ident: CR13 article-title: Large scale semisupervised linear SVMs publication-title: International ACM SIGIR Conference on Research and Development in Information Retrieval – start-page: 100 year: 2015 end-page: 103 ident: CR3 article-title: A new SVM method for short text classification based on semisupervised learning publication-title: 2015 4th International Conference on Advanced Information Technology and Sensor Application. Dubai, UAE: IEEE – volume: 28 start-page: 919 year: 2015 end-page: 927 ident: CR4 article-title: Semi-supervised convolutional neural networks for text categorization via region embedding [J] publication-title: Advances in Neural Information Processing Systems – volume: 44 start-page: 121 issue: 1 year: 2013 end-page: 131 ident: CR20 article-title: Combining active learning and semi-supervised learning to construct SVM classifier [J] publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.01.032 – volume: 24 start-page: 1686 issue: 9 year: 2011 end-page: 1698 ident: CR23 article-title: Particle competition and cooperation in networks for semisupervised learning [J] publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.119 – volume: 15 start-page: 367 year: 2014 end-page: 443 ident: CR16 article-title: Unbiased generative semi-supervised learning [J] publication-title: Journal of Machine Learning Research – start-page: 1 year: 2016 end-page: 9 ident: CR5 article-title: Supervised and semisupervised text categorization using LSTM for region embeddings publication-title: Proceedings of the 33rd International Conference on Machine Learning – start-page: 1 year: 2012 end-page: 8 ident: CR19 article-title: Particle swarm optimization based semi-supervised learning on chinese text categorization publication-title: Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Brisbane – year: 2006 ident: CR12 publication-title: Semisupervised learning doi: 10.7551/mitpress/9780262033589.001.0001 – start-page: 1048 volume-title: International Joint Conference on Artificial Intelligence year: 2005 ident: 1835_CR10 – ident: 1835_CR2 – volume: 177 start-page: 385 year: 2016 ident: 1835_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.042 – volume: 39 start-page: 763 issue: 3 year: 2012 ident: 1835_CR1 publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-012-0211-x – volume: 24 start-page: 1686 issue: 9 year: 2011 ident: 1835_CR23 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.119 – volume: 14 start-page: 729 year: 2013 ident: 1835_CR18 publication-title: Journal of Machine Learning Research – volume: 28 start-page: 919 year: 2015 ident: 1835_CR4 publication-title: Advances in Neural Information Processing Systems – volume-title: Semisupervised learning year: 2006 ident: 1835_CR12 doi: 10.7551/mitpress/9780262033589.001.0001 – start-page: 477 volume-title: International ACM SIGIR Conference on Research and Development in Information Retrieval year: 2006 ident: 1835_CR13 – start-page: 713 volume-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2008 ident: 1835_CR11 doi: 10.1145/1401890.1401976 – volume: 44 start-page: 121 issue: 1 year: 2013 ident: 1835_CR20 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.01.032 – ident: 1835_CR14 – start-page: 1 volume-title: Proceedings of the 9th Conference on Computational Natural Language Learning year: 2005 ident: 1835_CR9 doi: 10.3115/1706543.1706545 – volume: 39 start-page: 765 year: 2012 ident: 1835_CR15 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.070 – volume: 46 start-page: 2323 issue: 8 year: 2013 ident: 1835_CR17 publication-title: Pattern Recognization doi: 10.1016/j.patcog.2013.01.009 – volume: 69 start-page: 81 issue: 1 year: 2015 ident: 1835_CR21 publication-title: Compuer in Industries – start-page: 1 volume-title: Proceedings of the 33rd International Conference on Machine Learning year: 2016 ident: 1835_CR5 – start-page: 1 volume-title: Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Brisbane year: 2012 ident: 1835_CR19 – start-page: 200 volume-title: Proceedings of the 16th International Conference on Machine Learning year: 1999 ident: 1835_CR7 – volume: 15 start-page: 367 year: 2014 ident: 1835_CR16 publication-title: Journal of Machine Learning Research – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 1835_CR6 publication-title: ACM Computing Surveys doi: 10.1145/505282.505283 – volume: 48 start-page: 741 issue: 4 year: 2012 ident: 1835_CR22 publication-title: Information Processing and Management doi: 10.1016/j.ipm.2011.12.005 – start-page: 100 volume-title: 2015 4th International Conference on Advanced Information Technology and Sensor Application. Dubai, UAE: IEEE year: 2015 ident: 1835_CR3 – start-page: 205 volume-title: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neuralnetworks year: 2000 ident: 1835_CR8 |
SSID | ssj0040339 |
Score | 2.0762625 |
Snippet | The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 291 |
SubjectTerms | Accuracy Architecture Audio data Categories Classification Classifiers Computer Science Electrical Engineering Engineering Labeling Learning algorithms Life Sciences Machine learning Marking Materials Science Semantics Semi-supervised learning Support vector machines Text categorization Text editing |
Title | Semi-Supervised Learning in Large Scale Text Categorization |
URI | http://lib.cqvip.com/qk/85391X/201703/84826578504849554851484854.html https://link.springer.com/article/10.1007/s12204-017-1835-3 https://www.proquest.com/docview/1903502174 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64XFRwqYrVWnLw4BaYTjLNFE9F1KLoRQt6CkkmrYJO1Wn_vy9j0lZRweNkskC-l7ckbwHYEy7slwtFEWtFuYlSqiKrkZYVEw2ttSqrRFzfNDtdfnmf3Ps47iJ4u4cnyZJTT4Ld4rj0mBAUyTChbBbmEzTdnR9XN24H9ssjVpYPc2NoA8VzeMr8aQqXUOFxkPffcLmvgmmibX57IC3lzvkqLHuFkbQ_EV6DGZtXYKk9df9fgZVQm4H4o1qBxalEgxVY8-0F2fd5pg_W4eTWvjzRYvTq2EVhM-IrSPTJU06enYc4KRBBS5xzCHGeU_3Buw_b3IDu-dndaYf6WgrUxGiRUNbkpid0yzRi20yMafVYphVKKhToliueWtEySkcc0cEjnvUMWlY2U_jBmW0Ktglz-SC3W0BSm2aoJ6LeE2Vcx1HLiIylCq3yTNieaVTheLyp8vUzZ4ZMOdoxLrEOcgy0ydBOQk0NGxNehSjsuzQ-L7krj_EsJxmVHWwSYZMONsmqcDgeEhb4o3MtgCn9-SwkqkEsKc2xKhwFgKd-_zbZ9r9678BC7IitvLSpwdzwfWR3UYcZ6jrMty8ers7qJe1-AKuc5TE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oPbiAS1Wsaw4e3ALTSaaZ4qmIUteLFryFJJPWgk61o__flzGxVVTwOJkskO_lLclbAHaFC_vlQlHEWlFuopSqyGqkZcVEXWutyioR1zeNdodf3Cf3Po67CN7u4Umy5NSjYLc4Lj0mBEUyTCibhCnUBVJHyp24Fdgvj1hZPsyNoXUUz-Ep86cpXEKFh0Hee8Hlvgqmkbb57YG0lDtnizDvFUbS-kB4CSZsXoW51tj9fxUWQm0G4o9qFWbHEg1WYcm3F2TP55neX4bjW_vUp8Xbs2MXhc2IryDRI_2cPDoPcVIggpY45xDiPKd6g6EP21yBztnp3Umb-loK1MRokVDW4KYrdNPUY9tIjGl2WaYVSioU6JYrnlrRNEpHHNHBI551DVpWNlP4wZltCLYKlXyQ2zUgqU0z1BNR74kyruOoaUTGUoVWeSZs19RrcPS5qfL5I2eGTDnaMS6xDnIMtMnQTkJNDRsTXoMo7Ls0Pi-5K4_xKEcZlR1sEmGTDjbJanDwOSQs8EfnzQCm9OezkKgGsaQ0x2pwGAAe-_3bZOv_6r0D0-276yt5dX5zuQEzsSO88gJnEyqvwze7hfrMq94u6fcdbYTmkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUKAtNEyRFkHfuCBj1lNY6dOtadqoypf1aRRaW-Wv9JNGmlZ2v-fc2q3HQIkHuPYjuTf2XcX3_0O4I3wab9cKIpYK8pNklOVOI2yrJjoaq1VXSXi27g3mvDPV9lVqHNaxWj3eCW5ymnwLE3lojO3RWeT-JamdfSEoCiSGWUPYI_7ZGAU6Ek6iEcxT1hdSsyPoV1U1fFa809TeHKF61k5_Ymfvq-kNpbnb5eltQ4aPoX9YDySwQrtBuy4sglPBlt3AU04iHUaSNi2TXi8RTrYhEZor8jbwDn97hmcXrofN7Razv3RUTlLQjWJKbkpya2PFicVoumIDxQhPopqOrsLKZyHMBl-_H42oqGuAjUpeieU9bgphO6bbup6mTH9glmtUGuhcndc8dyJvlE64YgUbndbGPSynFX4wJnrCfYcdstZ6V4AyV1u0WZEGyixXKdJ3wjLcoUeuhWuMN0WnKwXVc5X_Bky5-jTeJIdPD3QP0OfCa02bMx4C5K47tIEjnJfKuNWbtiVPWwSYZMeNsla8H49JH7gH53bEUwZ9mol0SRiWe2ateBDBHjr9d8me_lfvV_Dw4vzofz6afzlCB6lXu7qfzlt2F3cLd0xmjYL_aoW31_lg-rD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+in+large+scale+text+categorization&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Xu%2C+Zewen&rft.au=Li%2C+Jianqiang&rft.au=Liu%2C+Bo&rft.au=Bi%2C+Jing&rft.date=2017-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=22&rft.issue=3&rft.spage=291&rft.epage=302&rft_id=info:doi/10.1007%2Fs12204-017-1835-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85391X%2F85391X.jpg |