Semi-Supervised Learning in Large Scale Text Categorization

The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine l...

Full description

Saved in:
Bibliographic Details
Published inShanghai jiao tong da xue xue bao Vol. 22; no. 3; pp. 291 - 302
Main Author 许泽文 李建强 刘博 毕敬 李蓉 毛睿
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai Jiaotong University Press 01.06.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine learning can classify a large number of natural language documents into the corresponding subject categories according to its correct semantics. It is helpful to grasp the text information directly. By learning from a set of hand-labeled documents,we obtain the traditional supervised classifier for text categorization(TC). However, labeling all data by human is labor intensive and time consuming. To solve this problem, some scholars proposed a semi-supervised learning method to train classifier, but it is unfeasible for various kinds and great number of Web data since it still needs a part of hand-labeled data. In 2012, Li et al. invented a fully automatic categorization approach for text(FACT)based on supervised learning, where no manual labeling efforts are required. But automatically labeling all data can bring noise into experiment and cause the fact that the result cannot meet the accuracy requirement. We put forward a new idea that part of data with high accuracy can be automatically tagged based on the semantic of category name, then a semi-supervised way is taken to train classifier with both labeled and unlabeled data,and ultimately a precise classification of massive text data can be achieved. The empirical experiments show that the method outperforms the supervised support vector machine(SVM) in terms of both F1 performance and classification accuracy in most cases. It proves the effectiveness of the semi-supervised algorithm in automatic TC.
AbstractList The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine learning can classify a large number of natural language documents into the corresponding subject categories according to its correct semantics. It is helpful to grasp the text information directly. By learning from a set of hand-labeled documents,we obtain the traditional supervised classifier for text categorization(TC). However, labeling all data by human is labor intensive and time consuming. To solve this problem, some scholars proposed a semi-supervised learning method to train classifier, but it is unfeasible for various kinds and great number of Web data since it still needs a part of hand-labeled data. In 2012, Li et al. invented a fully automatic categorization approach for text(FACT)based on supervised learning, where no manual labeling efforts are required. But automatically labeling all data can bring noise into experiment and cause the fact that the result cannot meet the accuracy requirement. We put forward a new idea that part of data with high accuracy can be automatically tagged based on the semantic of category name, then a semi-supervised way is taken to train classifier with both labeled and unlabeled data,and ultimately a precise classification of massive text data can be achieved. The empirical experiments show that the method outperforms the supervised support vector machine(SVM) in terms of both F1 performance and classification accuracy in most cases. It proves the effectiveness of the semi-supervised algorithm in automatic TC.
Author 许泽文 李建强 刘博 毕敬 李蓉 毛睿
AuthorAffiliation School of Software Engineering, Beijing University of Technology;Beijing Engineering Research Center for Io T Software and Systems, Beijing University of Technology;Guangdong Key Laboratory of Popular High Performance Computers, Shenzhen University;Shenzhen Key Laboratory of Service Computing and Applications,Shenzhen University
Author_xml – sequence: 1
  fullname: 许泽文 李建强 刘博 毕敬 李蓉 毛睿
BookMark eNp9kE1LAzEQhoMoWD9-gLcFz9F8bhI8SfELCh6q55BNZ9dIzbbJVtRfb2qLiIeeZgbeZ96Z9wjtxz4CQmeUXFBC1GWmjBGBCVWYai4x30MjaozEmmq9X_oiwpQqdoiOcn4lRBDOzQhdTeEt4OlqAek9ZJhVE3AphthVIVYTlzqopt7NoXqCj6EauwG6PoUvN4Q-nqCD1s0znG7rMXq-vXka3-PJ493D-HqCPVOSY14L36rGeMqglt6bls8aVystSA3CCQ3KeNcQ0TSOMTlrfU0NzFwZBIda8WN0vtm7SP1yBXmwr_0qxWJpqSFcEkaVKCq6UfnU55ygtYsU3lz6tJTY9ft2k5EtGdl1RpYXRv1jfBh-fhuSC_OdJNuQubjEDtKfm3ZAfGv30sduWbjfG7XQrJZKSyK0MFIKLWnptBT8G-SEivU
CitedBy_id crossref_primary_10_1007_s12065_020_00449_x
crossref_primary_10_1007_s10462_023_10393_8
crossref_primary_10_3390_s21092993
Cites_doi 10.1016/j.patcog.2013.01.009
10.3115/1706543.1706545
10.1016/j.compind.2014.09.004
10.1016/j.ipm.2011.12.005
10.1145/505282.505283
10.1016/j.eswa.2011.07.070
10.1016/j.neucom.2015.11.042
10.1007/s10844-012-0211-x
10.1016/j.knosys.2013.01.032
10.1109/TKDE.2011.119
10.7551/mitpress/9780262033589.001.0001
10.1145/1401890.1401976
ContentType Journal Article
Copyright Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s12204-017-1835-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Architecture
Computer Science
EISSN 1995-8188
EndPage 302
ExternalDocumentID 10_1007_s12204_017_1835_3
84826578504849554851484854
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8TC
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TSV
TUC
U2A
UG4
UGNYK
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7Z
Z85
ZMTXR
~A9
~WA
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEC
H13
Q--
SJYHP
U1G
U5M
UY8
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
ABRTQ
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2753-364cf7b9c12e65cc9f3dba678406e4a48e79cab04bba225dfc619edaa2243e673
IEDL.DBID U2A
ISSN 1007-1172
IngestDate Fri Jul 25 11:00:25 EDT 2025
Tue Jul 01 02:23:56 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Fri Feb 21 02:37:21 EST 2025
Wed Feb 14 10:04:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords classifier
automatic tagging
semi-supervised
TP 311
TP 391.1
text data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2753-364cf7b9c12e65cc9f3dba678406e4a48e79cab04bba225dfc619edaa2243e673
Notes 31-1943/U
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1903502174
PQPubID 2043647
PageCount 12
ParticipantIDs proquest_journals_1903502174
crossref_primary_10_1007_s12204_017_1835_3
crossref_citationtrail_10_1007_s12204_017_1835_3
springer_journals_10_1007_s12204_017_1835_3
chongqing_primary_84826578504849554851484854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170600
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 6
  year: 2017
  text: 20170600
PublicationDecade 2010
PublicationPlace Shanghai
PublicationPlace_xml – name: Shanghai
– name: Heidelberg
PublicationTitle Shanghai jiao tong da xue xue bao
PublicationTitleAbbrev J. Shanghai Jiaotong Univ. (Sci.)
PublicationTitleAlternate Journal of Shanghai Jiaotong University(Science)
PublicationYear 2017
Publisher Shanghai Jiaotong University Press
Springer Nature B.V
Publisher_xml – name: Shanghai Jiaotong University Press
– name: Springer Nature B.V
References Cheng, Shi, Qin (CR19) 2012
CR2
Breve, Zhao, Quiles (CR23) 2011; 24
Yin, Xiang, Zhang (CR3) 2015
Sebastiani (CR6) 2002; 34
Wang, Jebara, Chang (CR18) 2013; 14
Li, Zhao, Liu (CR1) 2012; 39
Fox-Roberts, Rosten (CR16) 2014; 15
Li, Wang (CR24) 2016; 177
Siolas, D’Alché-Buc (CR8) 2000
Johnson, Zhang (CR4) 2015; 28
Joachims (CR7) 1999
Basili, Cammisa, Moschitti (CR9) 2005
CR14
Johnson, Zhang (CR5) 2016
Wang, Domeniconi (CR11) 2008
Chapelle, Schölkopf, Zien (CR12) 2006
Yang, Liu, Zhu (CR22) 2012; 48
Gabrilovich, Markovitch (CR10) 2005
Li, Yang, Park (CR15) 2012; 39
Shang, Jiao, Liu (CR17) 2013; 46
Leng, Xu, Qi (CR20) 2013; 44
Sindhwani, Keerthi (CR13) 2006
Li, Liu, Liu (CR21) 2015; 69
J Q Li (1835_CR24) 2016; 177
C Y Yin (1835_CR3) 2015
J Q Li (1835_CR1) 2012; 39
J M Yang (1835_CR22) 2012; 48
1835_CR14
P Fox-Roberts (1835_CR16) 2014; 15
J Wang (1835_CR18) 2013; 14
F Breve (1835_CR23) 2011; 24
T Joachims (1835_CR7) 1999
V Sindhwani (1835_CR13) 2006
P Wang (1835_CR11) 2008
E Gabrilovich (1835_CR10) 2005
O Chapelle (1835_CR12) 2006
R Johnson (1835_CR4) 2015; 28
Y Leng (1835_CR20) 2013; 44
1835_CR2
J Q Li (1835_CR21) 2015; 69
F Sebastiani (1835_CR6) 2002; 34
F H Shang (1835_CR17) 2013; 46
S Cheng (1835_CR19) 2012
R Johnson (1835_CR5) 2016
G Siolas (1835_CR8) 2000
R Basili (1835_CR9) 2005
C H Li (1835_CR15) 2012; 39
References_xml – start-page: 713
  year: 2008
  end-page: 721
  ident: CR11
  article-title: Building semantic kernels for text classification using wikipedia [C]
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 46
  start-page: 2323
  issue: 8
  year: 2013
  end-page: 2336
  ident: CR17
  article-title: Semisupervised learning with nuclear norm regularization [J]
  publication-title: Pattern Recognization
  doi: 10.1016/j.patcog.2013.01.009
– start-page: 1
  year: 2005
  end-page: 8
  ident: CR9
  article-title: Effective use of Wordnet semantics via kernel-based learning
  publication-title: Proceedings of the 9th Conference on Computational Natural Language Learning
  doi: 10.3115/1706543.1706545
– volume: 69
  start-page: 81
  issue: 1
  year: 2015
  end-page: 91
  ident: CR21
  article-title: Diversity-aware retrieval of medical records [J]
  publication-title: Compuer in Industries
  doi: 10.1016/j.compind.2014.09.004
– volume: 48
  start-page: 741
  issue: 4
  year: 2012
  end-page: 754
  ident: CR22
  article-title: A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization [J]
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2011.12.005
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  end-page: 47
  ident: CR6
  article-title: Machine learning in automated text categorization [J]
  publication-title: ACM Computing Surveys
  doi: 10.1145/505282.505283
– start-page: 205
  year: 2000
  end-page: 209
  ident: CR8
  article-title: Support vector machines based on a semantic kernel for text categorization
  publication-title: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neuralnetworks
– ident: CR14
– ident: CR2
– start-page: 200
  year: 1999
  end-page: 209
  ident: CR7
  article-title: Transductive inference for text classification using support vector machines [C]
  publication-title: Proceedings of the 16th International Conference on Machine Learning
– volume: 39
  start-page: 765
  year: 2012
  end-page: 772
  ident: CR15
  article-title: Text categorization algorithms using semantic approaches, corpus-based thesaurus and WordNet [J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.070
– volume: 177
  start-page: 385
  year: 2016
  end-page: 393
  ident: CR24
  article-title: Semi-supervised learning via mean field methods [J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.042
– start-page: 1048
  year: 2005
  end-page: 1053
  ident: CR10
  article-title: Feature generation for text categorization using world knowledge [C]
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 14
  start-page: 729
  year: 2013
  end-page: 758
  ident: CR18
  article-title: Semi-supervised learning using greedy max-cut [J]
  publication-title: Journal of Machine Learning Research
– volume: 39
  start-page: 763
  issue: 3
  year: 2012
  end-page: 788
  ident: CR1
  article-title: Exploiting semantic resources for large scale text categorization [J]
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-012-0211-x
– start-page: 477
  year: 2006
  end-page: 484
  ident: CR13
  article-title: Large scale semisupervised linear SVMs
  publication-title: International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 100
  year: 2015
  end-page: 103
  ident: CR3
  article-title: A new SVM method for short text classification based on semisupervised learning
  publication-title: 2015 4th International Conference on Advanced Information Technology and Sensor Application. Dubai, UAE: IEEE
– volume: 28
  start-page: 919
  year: 2015
  end-page: 927
  ident: CR4
  article-title: Semi-supervised convolutional neural networks for text categorization via region embedding [J]
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 121
  issue: 1
  year: 2013
  end-page: 131
  ident: CR20
  article-title: Combining active learning and semi-supervised learning to construct SVM classifier [J]
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.01.032
– volume: 24
  start-page: 1686
  issue: 9
  year: 2011
  end-page: 1698
  ident: CR23
  article-title: Particle competition and cooperation in networks for semisupervised learning [J]
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.119
– volume: 15
  start-page: 367
  year: 2014
  end-page: 443
  ident: CR16
  article-title: Unbiased generative semi-supervised learning [J]
  publication-title: Journal of Machine Learning Research
– start-page: 1
  year: 2016
  end-page: 9
  ident: CR5
  article-title: Supervised and semisupervised text categorization using LSTM for region embeddings
  publication-title: Proceedings of the 33rd International Conference on Machine Learning
– start-page: 1
  year: 2012
  end-page: 8
  ident: CR19
  article-title: Particle swarm optimization based semi-supervised learning on chinese text categorization
  publication-title: Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Brisbane
– year: 2006
  ident: CR12
  publication-title: Semisupervised learning
  doi: 10.7551/mitpress/9780262033589.001.0001
– start-page: 1048
  volume-title: International Joint Conference on Artificial Intelligence
  year: 2005
  ident: 1835_CR10
– ident: 1835_CR2
– volume: 177
  start-page: 385
  year: 2016
  ident: 1835_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.042
– volume: 39
  start-page: 763
  issue: 3
  year: 2012
  ident: 1835_CR1
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-012-0211-x
– volume: 24
  start-page: 1686
  issue: 9
  year: 2011
  ident: 1835_CR23
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.119
– volume: 14
  start-page: 729
  year: 2013
  ident: 1835_CR18
  publication-title: Journal of Machine Learning Research
– volume: 28
  start-page: 919
  year: 2015
  ident: 1835_CR4
  publication-title: Advances in Neural Information Processing Systems
– volume-title: Semisupervised learning
  year: 2006
  ident: 1835_CR12
  doi: 10.7551/mitpress/9780262033589.001.0001
– start-page: 477
  volume-title: International ACM SIGIR Conference on Research and Development in Information Retrieval
  year: 2006
  ident: 1835_CR13
– start-page: 713
  volume-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2008
  ident: 1835_CR11
  doi: 10.1145/1401890.1401976
– volume: 44
  start-page: 121
  issue: 1
  year: 2013
  ident: 1835_CR20
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.01.032
– ident: 1835_CR14
– start-page: 1
  volume-title: Proceedings of the 9th Conference on Computational Natural Language Learning
  year: 2005
  ident: 1835_CR9
  doi: 10.3115/1706543.1706545
– volume: 39
  start-page: 765
  year: 2012
  ident: 1835_CR15
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.070
– volume: 46
  start-page: 2323
  issue: 8
  year: 2013
  ident: 1835_CR17
  publication-title: Pattern Recognization
  doi: 10.1016/j.patcog.2013.01.009
– volume: 69
  start-page: 81
  issue: 1
  year: 2015
  ident: 1835_CR21
  publication-title: Compuer in Industries
– start-page: 1
  volume-title: Proceedings of the 33rd International Conference on Machine Learning
  year: 2016
  ident: 1835_CR5
– start-page: 1
  volume-title: Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Brisbane
  year: 2012
  ident: 1835_CR19
– start-page: 200
  volume-title: Proceedings of the 16th International Conference on Machine Learning
  year: 1999
  ident: 1835_CR7
– volume: 15
  start-page: 367
  year: 2014
  ident: 1835_CR16
  publication-title: Journal of Machine Learning Research
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 1835_CR6
  publication-title: ACM Computing Surveys
  doi: 10.1145/505282.505283
– volume: 48
  start-page: 741
  issue: 4
  year: 2012
  ident: 1835_CR22
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2011.12.005
– start-page: 100
  volume-title: 2015 4th International Conference on Advanced Information Technology and Sensor Application. Dubai, UAE: IEEE
  year: 2015
  ident: 1835_CR3
– start-page: 205
  volume-title: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neuralnetworks
  year: 2000
  ident: 1835_CR8
SSID ssj0040339
Score 2.0762625
Snippet The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 291
SubjectTerms Accuracy
Architecture
Audio data
Categories
Classification
Classifiers
Computer Science
Electrical Engineering
Engineering
Labeling
Learning algorithms
Life Sciences
Machine learning
Marking
Materials Science
Semantics
Semi-supervised learning
Support vector machines
Text categorization
Text editing
Title Semi-Supervised Learning in Large Scale Text Categorization
URI http://lib.cqvip.com/qk/85391X/201703/84826578504849554851484854.html
https://link.springer.com/article/10.1007/s12204-017-1835-3
https://www.proquest.com/docview/1903502174
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64XFRwqYrVWnLw4BaYTjLNFE9F1KLoRQt6CkkmrYJO1Wn_vy9j0lZRweNkskC-l7ckbwHYEy7slwtFEWtFuYlSqiKrkZYVEw2ttSqrRFzfNDtdfnmf3Ps47iJ4u4cnyZJTT4Ld4rj0mBAUyTChbBbmEzTdnR9XN24H9ssjVpYPc2NoA8VzeMr8aQqXUOFxkPffcLmvgmmibX57IC3lzvkqLHuFkbQ_EV6DGZtXYKk9df9fgZVQm4H4o1qBxalEgxVY8-0F2fd5pg_W4eTWvjzRYvTq2EVhM-IrSPTJU06enYc4KRBBS5xzCHGeU_3Buw_b3IDu-dndaYf6WgrUxGiRUNbkpid0yzRi20yMafVYphVKKhToliueWtEySkcc0cEjnvUMWlY2U_jBmW0Ktglz-SC3W0BSm2aoJ6LeE2Vcx1HLiIylCq3yTNieaVTheLyp8vUzZ4ZMOdoxLrEOcgy0ydBOQk0NGxNehSjsuzQ-L7krj_EsJxmVHWwSYZMONsmqcDgeEhb4o3MtgCn9-SwkqkEsKc2xKhwFgKd-_zbZ9r9678BC7IitvLSpwdzwfWR3UYcZ6jrMty8ers7qJe1-AKuc5TE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oPbiAS1Wsaw4e3ALTSaaZ4qmIUteLFryFJJPWgk61o__flzGxVVTwOJkskO_lLclbAHaFC_vlQlHEWlFuopSqyGqkZcVEXWutyioR1zeNdodf3Cf3Po67CN7u4Umy5NSjYLc4Lj0mBEUyTCibhCnUBVJHyp24Fdgvj1hZPsyNoXUUz-Ep86cpXEKFh0Hee8Hlvgqmkbb57YG0lDtnizDvFUbS-kB4CSZsXoW51tj9fxUWQm0G4o9qFWbHEg1WYcm3F2TP55neX4bjW_vUp8Xbs2MXhc2IryDRI_2cPDoPcVIggpY45xDiPKd6g6EP21yBztnp3Umb-loK1MRokVDW4KYrdNPUY9tIjGl2WaYVSioU6JYrnlrRNEpHHNHBI551DVpWNlP4wZltCLYKlXyQ2zUgqU0z1BNR74kyruOoaUTGUoVWeSZs19RrcPS5qfL5I2eGTDnaMS6xDnIMtMnQTkJNDRsTXoMo7Ls0Pi-5K4_xKEcZlR1sEmGTDjbJanDwOSQs8EfnzQCm9OezkKgGsaQ0x2pwGAAe-_3bZOv_6r0D0-276yt5dX5zuQEzsSO88gJnEyqvwze7hfrMq94u6fcdbYTmkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUKAtNEyRFkHfuCBj1lNY6dOtadqoypf1aRRaW-Wv9JNGmlZ2v-fc2q3HQIkHuPYjuTf2XcX3_0O4I3wab9cKIpYK8pNklOVOI2yrJjoaq1VXSXi27g3mvDPV9lVqHNaxWj3eCW5ymnwLE3lojO3RWeT-JamdfSEoCiSGWUPYI_7ZGAU6Ek6iEcxT1hdSsyPoV1U1fFa809TeHKF61k5_Ymfvq-kNpbnb5eltQ4aPoX9YDySwQrtBuy4sglPBlt3AU04iHUaSNi2TXi8RTrYhEZor8jbwDn97hmcXrofN7Razv3RUTlLQjWJKbkpya2PFicVoumIDxQhPopqOrsLKZyHMBl-_H42oqGuAjUpeieU9bgphO6bbup6mTH9glmtUGuhcndc8dyJvlE64YgUbndbGPSynFX4wJnrCfYcdstZ6V4AyV1u0WZEGyixXKdJ3wjLcoUeuhWuMN0WnKwXVc5X_Bky5-jTeJIdPD3QP0OfCa02bMx4C5K47tIEjnJfKuNWbtiVPWwSYZMeNsla8H49JH7gH53bEUwZ9mol0SRiWe2ateBDBHjr9d8me_lfvV_Dw4vzofz6afzlCB6lXu7qfzlt2F3cLd0xmjYL_aoW31_lg-rD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+in+large+scale+text+categorization&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Xu%2C+Zewen&rft.au=Li%2C+Jianqiang&rft.au=Liu%2C+Bo&rft.au=Bi%2C+Jing&rft.date=2017-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=22&rft.issue=3&rft.spage=291&rft.epage=302&rft_id=info:doi/10.1007%2Fs12204-017-1835-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85391X%2F85391X.jpg