Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling
Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential nov...
Saved in:
Published in | Molecular bioSystems Vol. 12; no. 3; pp. 994 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-206X 1742-2051 |
DOI | 10.1039/c5mb00457h |
Cover
Loading…
Abstract | Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of
Saccharomyces cerevisiae
and applied to the GSMR of
Pseudomonas aeruginosa
PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.
Sampling of the optimal flux space using modified LHS gives a more uniform coverage than Monte-Carlo Sampling. Analysis of the flux data shows that majority of variation in the flux distribution pattern within the space arises due to the presence of few alternate pathways. |
---|---|
AbstractList | Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of
Saccharomyces cerevisiae
and applied to the GSMR of
Pseudomonas aeruginosa
PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.
Sampling of the optimal flux space using modified LHS gives a more uniform coverage than Monte-Carlo Sampling. Analysis of the flux data shows that majority of variation in the flux distribution pattern within the space arises due to the presence of few alternate pathways. Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them. Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them. Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them |
Author | Bhatnagar, Rakesh Martins dos Santos, Vítor A. P Pucha ka, Jacek Chaudhary, Neha Tøndel, Kristin |
AuthorAffiliation | Chair of Systems and Synthetic Biology Norwegian University of Life Sciences LifeGlimmer GmbH Helmholtz Centre for Infection Research Department of Mathematical Sciences and Technology Synthetic and Systems Biology Research Group School of Biotechnology Laboratory of Genetic Engineering and Molecular Biology Jawaharlal Nehru University Wageningen University Dreijenplein 10 |
AuthorAffiliation_xml | – sequence: 0 name: Norwegian University of Life Sciences – sequence: 0 name: LifeGlimmer GmbH – sequence: 0 name: Wageningen University Dreijenplein 10 – sequence: 0 name: Jawaharlal Nehru University – sequence: 0 name: Laboratory of Genetic Engineering and Molecular Biology – sequence: 0 name: Chair of Systems and Synthetic Biology – sequence: 0 name: School of Biotechnology – sequence: 0 name: Helmholtz Centre for Infection Research – sequence: 0 name: Department of Mathematical Sciences and Technology – sequence: 0 name: Synthetic and Systems Biology Research Group |
Author_xml | – sequence: 1 givenname: Neha surname: Chaudhary fullname: Chaudhary, Neha – sequence: 2 givenname: Kristin surname: Tøndel fullname: Tøndel, Kristin – sequence: 3 givenname: Rakesh surname: Bhatnagar fullname: Bhatnagar, Rakesh – sequence: 4 givenname: Vítor A. P surname: Martins dos Santos fullname: Martins dos Santos, Vítor A. P – sequence: 5 givenname: Jacek surname: Pucha ka fullname: Pucha ka, Jacek |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26818782$$D View this record in MEDLINE/PubMed |
BookMark | eNptksuLFDEQxoOsuA-9eFf6KEJr0km_vOmgrrDiRcFbqK6pno6kkzZJs45_vRlnHUE8VVH8vq-oxyU7c94RY48FfyG47F9iPQ-cq7qd7rEL0aqqrHgtzk558_WcXcb4jXPZKcEfsPOq6UTXdtUF228mCICJgvlp3K5IExV-SWYGW4x2_VHEBTCXxmJHzs9URgRLxUwJBm8NFoHQu5jCisnkJBsEv-6mYvZbMxraFhaSceW0XyjgOlARYV5sbvWQ3R_BRnp0F6_Yl3dvP2-uy5tP7z9sXt-UWLW1LAUnzlEQ74GIGhpBKYRO4ohtSxIaXueybLpOdnkqjl0zbkVfcexJDFUlr9iro-8t5BFyY3LaQUATtQejrRkChL2-XYN29hCWdYha9XWjZBY_O4qX4L-vFJOeTUSyFhz5NWrR5p5Nq5TK6NM7dB1m2uol5CVm4z-7zsDzI4DBxxhoPCGC68Mh9ab--Ob3Ia8zzP-B0SQ4rDgFMPb_kidHSYh4sv77G_IXpQKtvg |
CitedBy_id | crossref_primary_10_1002_bit_27025 |
Cites_doi | 10.1074/jbc.R800048200 10.1146/annurev.micro.52.1.127 10.1128/JB.154.2.793-802.1983 10.1186/1471-2105-12-236 10.1186/1471-2105-6-308 10.1371/journal.pcbi.1002415 10.1016/j.jtbi.2004.02.006 10.1016/j.tibtech.2004.06.010 10.1016/S0006-3495(02)75297-1 10.1016/j.copbio.2011.10.007 10.1002/0471725293 10.1093/bioinformatics/bts401 10.1186/1752-0509-4-140 10.1371/journal.pone.0129840 10.1371/journal.pone.0086587 10.1016/j.biosystems.2009.11.004 10.1093/bioinformatics/btq702 10.1371/journal.pcbi.1000210 10.1038/msb.2010.47 10.1016/S0098-1354(00)00323-9 10.1074/jbc.M110809200 10.1371/journal.pcbi.1000489 10.1016/j.neunet.2012.02.036 10.1038/nature01166 10.1016/j.ymben.2005.08.003 10.1186/1752-0509-4-53 10.1111/j.1574-6976.2001.tb00570.x 10.1038/msb.2010.56 10.1371/journal.pcbi.1000859 10.1093/bioinformatics/btn352 10.1371/journal.pcbi.1000744 10.1038/srep00580 10.1371/journal.pone.0122670 10.1016/j.ymben.2003.09.002 10.1529/biophysj.105.072645 10.1073/pnas.232349399 10.1186/1752-0509-3-30 10.1128/JB.182.17.4730-4737.2000 10.1371/journal.pcbi.1001116 10.1038/msb.2013.18 10.1007/s10529-013-1328-x 10.1038/nprot.2011.308 10.1038/nbt.2488 10.1002/9783527617395 10.1073/pnas.0406346102 10.1080/00401706.1987.10488205 10.1016/j.copbio.2012.08.007 10.1074/jbc.M201691200 10.1038/msb.2009.57 10.1186/1742-4682-4-48 10.1016/S0006-3495(03)74899-1 10.1093/bioinformatics/btp704 10.1002/bit.10803 |
ContentType | Journal Article |
Copyright | Wageningen University & Research |
Copyright_xml | – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 QVL |
DOI | 10.1039/c5mb00457h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-2051 |
EndPage | 15 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_495643 26818782 10_1039_C5MB00457H c5mb00457h |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 123 29M 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV C6K CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH UCJ VH6 XSW 0UZ 1TJ 53G 71~ AAYXX ACHDF ACRPL ADNMO ADXHL AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ANLMG ASPBG AVWKF AZFZN BBWZM C1A CITATION EEHRC FEDTE HVGLF J3G J3H L-8 NDZJH R56 RCLXC X7L XJT CGR CUY CVF ECM EIF NPM 7X8 - 0R 70 71 AAGNR AAPBV ABFLS ACHRU AGSWI AHGVY AVTUQ CKLOX HZ IPNFZ JG KC5 QVL RIG XFK |
ID | FETCH-LOGICAL-c2753-10e00c1e09aeee6efa44ca83cfc77e3a605ee63688386810c86fd1920c9e1b223 |
ISSN | 1742-206X |
IngestDate | Thu Jul 22 20:31:42 EDT 2021 Fri Jul 11 15:07:31 EDT 2025 Mon Jul 21 05:48:04 EDT 2025 Tue Jul 01 02:40:34 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Dec 17 21:00:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2753-10e00c1e09aeee6efa44ca83cfc77e3a605ee63688386810c86fd1920c9e1b223 |
Notes | Electronic supplementary information (ESI) available: Data 1. Archive containing scripts used to perform the computations; Data 2. Properties of the reactions of the iMO1086 and yeast GSMRs; Data 3. Details of individual reactions in iMO1086 and yeast GSMRs; Data 4. Loading values obtained by PCA of the sampled data; Fig. S1. Heat plots of flux values for reactions in the first seven PCs. The columns represent reactions of the PCs in the order shown in the right side column. Each row represents the fluxes for each reaction for 10 000 simulations sorted according to the score of mentioned PC. The values for reactions of a single PC change in association while reactions of other PCs are independent of these. See DOI 10.1039/c5mb00457h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26818782 |
PQID | 1768167444 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1768167444 crossref_primary_10_1039_C5MB00457H wageningen_narcis_oai_library_wur_nl_wurpubs_495643 pubmed_primary_26818782 crossref_citationtrail_10_1039_C5MB00457H rsc_primary_c5mb00457h |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular bioSystems |
PublicationTitleAlternate | Mol Biosyst |
PublicationYear | 2016 |
References | Stein (C5MB00457H-(cit33)/*[position()=1]) 1987; 29 Wiback (C5MB00457H-(cit54)/*[position()=1]) 2004; 228 Kalos (C5MB00457H-(cit38)/*[position()=1]) 1986 Jungreuthmayer (C5MB00457H-(cit25)/*[position()=1]) 2015; 10 de Oliveira Dal'Molin (C5MB00457H-(cit3)/*[position()=1]) 2013; 24 Kim (C5MB00457H-(cit20)/*[position()=1]) 2010; 4 David (C5MB00457H-(cit42)/*[position()=1]) 2011; 12 Bordel (C5MB00457H-(cit45)/*[position()=1]) 2010; 6 Thiele (C5MB00457H-(cit5)/*[position()=1]) 2013; 31 Patil (C5MB00457H-(cit17)/*[position()=1]) 2005; 6 Shlomi (C5MB00457H-(cit11)/*[position()=1]) 2005; 102 Schellenberger (C5MB00457H-(cit31)/*[position()=1]) 2009; 284 Jensen (C5MB00457H-(cit16)/*[position()=1]) 2011; 27 Schellenberger (C5MB00457H-(cit41)/*[position()=1]) 2011; 6 Price (C5MB00457H-(cit44)/*[position()=1]) 2002; 83 Price (C5MB00457H-(cit23)/*[position()=1]) 2003; 84 Puchalka (C5MB00457H-(cit58)/*[position()=1]) 2008; 4 Cozzone (C5MB00457H-(cit50)/*[position()=1]) 1998; 52 Price (C5MB00457H-(cit43)/*[position()=1]) 2006; 90 Covert (C5MB00457H-(cit13)/*[position()=1]) 2008; 24 Machado (C5MB00457H-(cit27)/*[position()=1]) 2012; 28 Megchelenbrink (C5MB00457H-(cit30)/*[position()=1]) 2014; 9 Hastie (C5MB00457H-(cit36)/*[position()=1]) 2003 Bakker (C5MB00457H-(cit49)/*[position()=1]) 2000; 182 McKay (C5MB00457H-(cit47)/*[position()=1]) 1979; 21 Jolliffe (C5MB00457H-(cit35)/*[position()=1]) 2002 McCloskey (C5MB00457H-(cit1)/*[position()=1]) 2013; 9 McLachlan (C5MB00457H-(cit46)/*[position()=1]) 1992 Swidzinski (C5MB00457H-(cit34)/*[position()=1]) 2000 De Martino (C5MB00457H-(cit32)/*[position()=1]) 2015; 10 Covert (C5MB00457H-(cit12)/*[position()=1]) 2002; 277 Acuna (C5MB00457H-(cit53)/*[position()=1]) 2010; 99 Oberhardt (C5MB00457H-(cit40)/*[position()=1]) 2011; 7 Lewis (C5MB00457H-(cit8)/*[position()=1]) 2010; 6 Ranganathan (C5MB00457H-(cit22)/*[position()=1]) 2010; 6 Vǒrechovský (C5MB00457H-(cit55)/*[position()=1]) Colijn (C5MB00457H-(cit14)/*[position()=1]) 2009; 5 Mahadevan (C5MB00457H-(cit6)/*[position()=1]) 2003; 5 Burgard (C5MB00457H-(cit7)/*[position()=1]) 2003; 84 Hunt (C5MB00457H-(cit51)/*[position()=1]) 1983; 154 Sigurdsson (C5MB00457H-(cit4)/*[position()=1]) 2010; 4 Werbos (C5MB00457H-(cit56)/*[position()=1]) 2012; 32 Segre (C5MB00457H-(cit10)/*[position()=1]) 2002; 99 Bakker (C5MB00457H-(cit48)/*[position()=1]) 2001; 25 Lee (C5MB00457H-(cit28)/*[position()=1]) 2000; 24 Kelk (C5MB00457H-(cit29)/*[position()=1]) 2012; 2 Jol (C5MB00457H-(cit39)/*[position()=1]) 2012; 8 Lun (C5MB00457H-(cit18)/*[position()=1]) 2009; 5 Oh (C5MB00457H-(cit57)/*[position()=1]) 2002; 277 Stelling (C5MB00457H-(cit24)/*[position()=1]) 2002; 420 Cakir (C5MB00457H-(cit9)/*[position()=1]) 2007; 4 Kim (C5MB00457H-(cit2)/*[position()=1]) 2012; 23 Barrett (C5MB00457H-(cit37)/*[position()=1]) 2009; 3 Jerby (C5MB00457H-(cit15)/*[position()=1]) 2010; 6 Tabe-Bordbar (C5MB00457H-(cit26)/*[position()=1]) 2013; 35 Tepper (C5MB00457H-(cit21)/*[position()=1]) 2010; 26 Pharkya (C5MB00457H-(cit19)/*[position()=1]) 2006; 8 Papin (C5MB00457H-(cit52)/*[position()=1]) 2004; 22 |
References_xml | – doi: Vo&cmb.caron;rechovský – issn: 2000 end-page: p 887-890 publication-title: Conference proceeding published in Microwave Symposium Digest, 2000 IEEE MTT-S International doi: Swidzinski Chang – issn: 2002 publication-title: Principal Component Analysis doi: Jolliffe – issn: 1992 publication-title: Discriminant Analysis and Statistical Pattern Recognition doi: McLachlan – issn: 1986 publication-title: Monte Carlo Methods Volume 1: Basics. doi: Kalos Whitlock – issn: 2003 publication-title: The Elements of Statistical Learning doi: Hastie Tibshirani Friedman – volume: 284 start-page: 5457 year: 2009 ident: C5MB00457H-(cit31)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.R800048200 – volume: 52 start-page: 127 year: 1998 ident: C5MB00457H-(cit50)/*[position()=1] publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.52.1.127 – volume: 154 start-page: 793 year: 1983 ident: C5MB00457H-(cit51)/*[position()=1] publication-title: J. Bacteriol. doi: 10.1128/JB.154.2.793-802.1983 – volume: 12 start-page: 236 year: 2011 ident: C5MB00457H-(cit42)/*[position()=1] publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-236 – volume: 6 start-page: 308 year: 2005 ident: C5MB00457H-(cit17)/*[position()=1] publication-title: BMC Bioinf. doi: 10.1186/1471-2105-6-308 – volume: 8 start-page: e1002415 year: 2012 ident: C5MB00457H-(cit39)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002415 – volume: 228 start-page: 437 year: 2004 ident: C5MB00457H-(cit54)/*[position()=1] publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2004.02.006 – volume: 22 start-page: 400 year: 2004 ident: C5MB00457H-(cit52)/*[position()=1] publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2004.06.010 – volume: 83 start-page: 2879 year: 2002 ident: C5MB00457H-(cit44)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75297-1 – volume: 23 start-page: 617 year: 2012 ident: C5MB00457H-(cit2)/*[position()=1] publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.10.007 – volume-title: Discriminant Analysis and Statistical Pattern Recognition year: 1992 ident: C5MB00457H-(cit46)/*[position()=1] doi: 10.1002/0471725293 – volume: 28 start-page: i515 year: 2012 ident: C5MB00457H-(cit27)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts401 – volume: 4 start-page: 140 year: 2010 ident: C5MB00457H-(cit4)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-140 – volume: 10 start-page: e0129840 year: 2015 ident: C5MB00457H-(cit25)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0129840 – volume: 9 start-page: e86587 year: 2014 ident: C5MB00457H-(cit30)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0086587 – volume: 99 start-page: 210 year: 2010 ident: C5MB00457H-(cit53)/*[position()=1] publication-title: Biosystems doi: 10.1016/j.biosystems.2009.11.004 – volume: 27 start-page: 541 year: 2011 ident: C5MB00457H-(cit16)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq702 – volume: 4 start-page: e1000210 year: 2008 ident: C5MB00457H-(cit58)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000210 – volume: 21 start-page: 239 year: 1979 ident: C5MB00457H-(cit47)/*[position()=1] publication-title: Technometrics – volume: 6 start-page: 390 year: 2010 ident: C5MB00457H-(cit8)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.47 – volume: 24 start-page: 711 year: 2000 ident: C5MB00457H-(cit28)/*[position()=1] publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00323-9 – volume-title: Conference proceeding published in Microwave Symposium Digest, 2000 IEEE MTT-S International year: 2000 ident: C5MB00457H-(cit34)/*[position()=1] – volume: 277 start-page: 13175 year: 2002 ident: C5MB00457H-(cit57)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110809200 – volume: 5 start-page: e1000489 year: 2009 ident: C5MB00457H-(cit14)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000489 – volume: 32 start-page: 179 year: 2012 ident: C5MB00457H-(cit56)/*[position()=1] publication-title: Neural Networks doi: 10.1016/j.neunet.2012.02.036 – volume: 420 start-page: 190 year: 2002 ident: C5MB00457H-(cit24)/*[position()=1] publication-title: Nature doi: 10.1038/nature01166 – volume: 8 start-page: 1 year: 2006 ident: C5MB00457H-(cit19)/*[position()=1] publication-title: Metab. Eng. doi: 10.1016/j.ymben.2005.08.003 – volume-title: The Elements of Statistical Learning year: 2003 ident: C5MB00457H-(cit36)/*[position()=1] – volume: 4 start-page: 53 year: 2010 ident: C5MB00457H-(cit20)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-53 – volume: 25 start-page: 15 year: 2001 ident: C5MB00457H-(cit48)/*[position()=1] publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2001.tb00570.x – volume: 6 start-page: 401 year: 2010 ident: C5MB00457H-(cit15)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.56 – volume: 6 start-page: e1000859 year: 2010 ident: C5MB00457H-(cit45)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000859 – volume: 24 start-page: 2044 year: 2008 ident: C5MB00457H-(cit13)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn352 – volume: 6 start-page: e1000744 year: 2010 ident: C5MB00457H-(cit22)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000744 – volume: 2 start-page: 580 year: 2012 ident: C5MB00457H-(cit29)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00580 – volume: 10 start-page: e0122670 year: 2015 ident: C5MB00457H-(cit32)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0122670 – volume: 5 start-page: 264 year: 2003 ident: C5MB00457H-(cit6)/*[position()=1] publication-title: Metab. Eng. doi: 10.1016/j.ymben.2003.09.002 – volume: 90 start-page: 3919 year: 2006 ident: C5MB00457H-(cit43)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.105.072645 – volume: 99 start-page: 15112 year: 2002 ident: C5MB00457H-(cit10)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.232349399 – volume: 3 start-page: 30 year: 2009 ident: C5MB00457H-(cit37)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-3-30 – volume: 182 start-page: 4730 year: 2000 ident: C5MB00457H-(cit49)/*[position()=1] publication-title: J. Bacteriol. doi: 10.1128/JB.182.17.4730-4737.2000 – volume: 7 start-page: e1001116 year: 2011 ident: C5MB00457H-(cit40)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001116 – volume: 9 start-page: 661 year: 2013 ident: C5MB00457H-(cit1)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.18 – volume: 35 start-page: 2039 year: 2013 ident: C5MB00457H-(cit26)/*[position()=1] publication-title: Biotechnol. Lett. doi: 10.1007/s10529-013-1328-x – volume-title: Principal Component Analysis year: 2002 ident: C5MB00457H-(cit35)/*[position()=1] – volume: 6 start-page: 1290 year: 2011 ident: C5MB00457H-(cit41)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.308 – volume: 31 start-page: 419 year: 2013 ident: C5MB00457H-(cit5)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2488 – volume-title: Monte Carlo Methods Volume 1: Basics. year: 1986 ident: C5MB00457H-(cit38)/*[position()=1] doi: 10.1002/9783527617395 – volume: 102 start-page: 7695 year: 2005 ident: C5MB00457H-(cit11)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0406346102 – volume: 29 start-page: 143 year: 1987 ident: C5MB00457H-(cit33)/*[position()=1] publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – ident: C5MB00457H-(cit55)/*[position()=1] – volume: 24 start-page: 271 year: 2013 ident: C5MB00457H-(cit3)/*[position()=1] publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.08.007 – volume: 277 start-page: 28058 year: 2002 ident: C5MB00457H-(cit12)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201691200 – volume: 5 start-page: 296 year: 2009 ident: C5MB00457H-(cit18)/*[position()=1] publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2009.57 – volume: 4 start-page: 48 year: 2007 ident: C5MB00457H-(cit9)/*[position()=1] publication-title: Theor. Biol. Med. Modell. doi: 10.1186/1742-4682-4-48 – volume: 84 start-page: 794 year: 2003 ident: C5MB00457H-(cit23)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)74899-1 – volume: 26 start-page: 536 year: 2010 ident: C5MB00457H-(cit21)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp704 – volume: 84 start-page: 647 year: 2003 ident: C5MB00457H-(cit7)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10803 |
SSID | ssj0038410 |
Score | 2.1098769 |
Snippet | Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are... |
SourceID | wageningen proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 994 |
SubjectTerms | Algorithms Computer Simulation Discriminant Analysis Genome Genome, Bacterial Genome, Fungal Metabolic Networks and Pathways Principal Component Analysis Pseudomonas aeruginosa - genetics Reproducibility of Results Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Systeem en Synthetische Biologie Systems and Synthetic Biology VLAG |
Title | Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26818782 https://www.proquest.com/docview/1768167444 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F495643 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FVkjlgNgKZtMguCDLxc54PSahKCDKhVTqzZoZj0lFYqM4Vmn_Cf-W9zzjpQsScEmisWNZ-b68Zfze9wh5MxZC5iLKHZ6jqDYW5UBwpBzGMyVV7olQYXPy0Zdwfux_OglORqNfg6qleisO5MWNfSX_gyqsAa7YJfsPyHYXhQX4DPjCKyAMr3-F8axTW75ou55KMAFrbEpc1T9tsBay2RNAJda1cioAROHQaEB-1Wg3y7JXkK26oT3rMjvNMTbFQrnCWUKuupG1UHbFsQDdOLt2DlQ7YNcWp-VQAF0XDdQZ3KQ25GrZ-YAFPqCfxkWmiwS0qel4Ol3ybcG_mdpv_l1V3aa1lj2o7Kys7K84AFlPc2-e97_flht7cmBa1sxWhhf2tVzG-kbYK-Q2ow3BOQ3XjCpta7LHA2qygf1N9MRk48p1o-g1J-Ey1FiVwRpNVhAte1fYFSj2B2-R3TFkIGDzdyeHi4-fWzfPYt8z3bb6nlvtW5a86799Odq5lsJAQLOp5B2ydwa3WzTddIPoZnGP3DVpCZ1ojt0nI1U8ILf1oNLzh-T8MtMoMI0aplFkGm2YRsucDplGO6bRK0yjhmm0ZRq9wjTaMu0ROf5wuJjNHTO0w5FjSH3BrSvXlZ5yE66UClXOfV_ymMlcRpFiHNJnWGZhHLMYtfBkHOYZpBmuTJQnIFjdJztFWagnhPoqjCSH6ImzxE9CJaJQQPyfSwhzAxEEFnnb_ripNIr2OFhllTaVFSxJZ8HRtAFibpHX3bk_tI7LjWe9ajFKwcziszNeqLKuUg_ScmzY8X2LPNbgddcZw6EYIm2L7AOa3XLPAouwHuC0wCFhVYq67manNj2rN2mxwje4dJXipoXPnv7pcs_IXv_veU52ADz1AkLjrXhpSPob-hbC-g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+optimal+flux+space+of+genome-scale+metabolic+reconstructions+through+modified+latin-hypercube+sampling&rft.jtitle=Molecular+bioSystems&rft.au=Chaudhary%2C+Neha&rft.au=T%C3%B8ndel%2C+Kristin&rft.au=Bhatnagar%2C+Rakesh&rft.au=Martins+dos+Santos%2C+V%C3%ADtor+A.+P&rft.date=2016-03-01&rft.issn=1742-206X&rft.eissn=1742-2051&rft.volume=12&rft.issue=3&rft.spage=994&rft.epage=15&rft_id=info:doi/10.1039%2Fc5mb00457h&rft.externalDocID=c5mb00457h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon |