Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling

Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential nov...

Full description

Saved in:
Bibliographic Details
Published inMolecular bioSystems Vol. 12; no. 3; pp. 994 - 15
Main Authors Chaudhary, Neha, Tøndel, Kristin, Bhatnagar, Rakesh, Martins dos Santos, Vítor A. P, Pucha ka, Jacek
Format Journal Article
LanguageEnglish
Published England 01.03.2016
Subjects
Online AccessGet full text
ISSN1742-206X
1742-2051
DOI10.1039/c5mb00457h

Cover

Loading…
Abstract Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them. Sampling of the optimal flux space using modified LHS gives a more uniform coverage than Monte-Carlo Sampling. Analysis of the flux data shows that majority of variation in the flux distribution pattern within the space arises due to the presence of few alternate pathways.
AbstractList Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them. Sampling of the optimal flux space using modified LHS gives a more uniform coverage than Monte-Carlo Sampling. Analysis of the flux data shows that majority of variation in the flux distribution pattern within the space arises due to the presence of few alternate pathways.
Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.
Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them.
Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are widely applied for assessing and predicting the behavior of metabolic networks upon perturbation, thereby enabling identification of potential novel drug targets and biotechnologically relevant pathways. The abundance of alternate flux profiles has led to the evolution of methods to explore the complete solution space aiming to increase the accuracy of predictions. Herein we present a novel, generic algorithm to characterize the entire flux space of GSMR upon application of FBA, leading to the optimal value of the objective (the optimal flux space). Our method employs Modified Latin-Hypercube Sampling (LHS) to effectively border the optimal space, followed by Principal Component Analysis (PCA) to identify and explain the major sources of variability within it. The approach was validated with the elementary mode analysis of a smaller network of Saccharomyces cerevisiae and applied to the GSMR of Pseudomonas aeruginosa PAO1 (iMO1086). It is shown to surpass the commonly used Monte Carlo Sampling (MCS) in providing a more uniform coverage for a much larger network in less number of samples. Results show that although many fluxes are identified as variable upon fixing the objective value, majority of the variability can be reduced to several main patterns arising from a few alternative pathways. In iMO1086, initial variability of 211 reactions could almost entirely be explained by 7 alternative pathway groups. These findings imply that the possibilities to reroute greater portions of flux may be limited within metabolic networks of bacteria. Furthermore, the optimal flux space is subject to change with environmental conditions. Our method may be a useful device to validate the predictions made by FBA-based tools, by describing the optimal flux space associated with these predictions, thus to improve them
Author Bhatnagar, Rakesh
Martins dos Santos, Vítor A. P
Pucha ka, Jacek
Chaudhary, Neha
Tøndel, Kristin
AuthorAffiliation Chair of Systems and Synthetic Biology
Norwegian University of Life Sciences
LifeGlimmer GmbH
Helmholtz Centre for Infection Research
Department of Mathematical Sciences and Technology
Synthetic and Systems Biology Research Group
School of Biotechnology
Laboratory of Genetic Engineering and Molecular Biology
Jawaharlal Nehru University
Wageningen University Dreijenplein 10
AuthorAffiliation_xml – sequence: 0
  name: Norwegian University of Life Sciences
– sequence: 0
  name: LifeGlimmer GmbH
– sequence: 0
  name: Wageningen University Dreijenplein 10
– sequence: 0
  name: Jawaharlal Nehru University
– sequence: 0
  name: Laboratory of Genetic Engineering and Molecular Biology
– sequence: 0
  name: Chair of Systems and Synthetic Biology
– sequence: 0
  name: School of Biotechnology
– sequence: 0
  name: Helmholtz Centre for Infection Research
– sequence: 0
  name: Department of Mathematical Sciences and Technology
– sequence: 0
  name: Synthetic and Systems Biology Research Group
Author_xml – sequence: 1
  givenname: Neha
  surname: Chaudhary
  fullname: Chaudhary, Neha
– sequence: 2
  givenname: Kristin
  surname: Tøndel
  fullname: Tøndel, Kristin
– sequence: 3
  givenname: Rakesh
  surname: Bhatnagar
  fullname: Bhatnagar, Rakesh
– sequence: 4
  givenname: Vítor A. P
  surname: Martins dos Santos
  fullname: Martins dos Santos, Vítor A. P
– sequence: 5
  givenname: Jacek
  surname: Pucha ka
  fullname: Pucha ka, Jacek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26818782$$D View this record in MEDLINE/PubMed
BookMark eNptksuLFDEQxoOsuA-9eFf6KEJr0km_vOmgrrDiRcFbqK6pno6kkzZJs45_vRlnHUE8VVH8vq-oxyU7c94RY48FfyG47F9iPQ-cq7qd7rEL0aqqrHgtzk558_WcXcb4jXPZKcEfsPOq6UTXdtUF228mCICJgvlp3K5IExV-SWYGW4x2_VHEBTCXxmJHzs9URgRLxUwJBm8NFoHQu5jCisnkJBsEv-6mYvZbMxraFhaSceW0XyjgOlARYV5sbvWQ3R_BRnp0F6_Yl3dvP2-uy5tP7z9sXt-UWLW1LAUnzlEQ74GIGhpBKYRO4ohtSxIaXueybLpOdnkqjl0zbkVfcexJDFUlr9iro-8t5BFyY3LaQUATtQejrRkChL2-XYN29hCWdYha9XWjZBY_O4qX4L-vFJOeTUSyFhz5NWrR5p5Nq5TK6NM7dB1m2uol5CVm4z-7zsDzI4DBxxhoPCGC68Mh9ab--Ob3Ia8zzP-B0SQ4rDgFMPb_kidHSYh4sv77G_IXpQKtvg
CitedBy_id crossref_primary_10_1002_bit_27025
Cites_doi 10.1074/jbc.R800048200
10.1146/annurev.micro.52.1.127
10.1128/JB.154.2.793-802.1983
10.1186/1471-2105-12-236
10.1186/1471-2105-6-308
10.1371/journal.pcbi.1002415
10.1016/j.jtbi.2004.02.006
10.1016/j.tibtech.2004.06.010
10.1016/S0006-3495(02)75297-1
10.1016/j.copbio.2011.10.007
10.1002/0471725293
10.1093/bioinformatics/bts401
10.1186/1752-0509-4-140
10.1371/journal.pone.0129840
10.1371/journal.pone.0086587
10.1016/j.biosystems.2009.11.004
10.1093/bioinformatics/btq702
10.1371/journal.pcbi.1000210
10.1038/msb.2010.47
10.1016/S0098-1354(00)00323-9
10.1074/jbc.M110809200
10.1371/journal.pcbi.1000489
10.1016/j.neunet.2012.02.036
10.1038/nature01166
10.1016/j.ymben.2005.08.003
10.1186/1752-0509-4-53
10.1111/j.1574-6976.2001.tb00570.x
10.1038/msb.2010.56
10.1371/journal.pcbi.1000859
10.1093/bioinformatics/btn352
10.1371/journal.pcbi.1000744
10.1038/srep00580
10.1371/journal.pone.0122670
10.1016/j.ymben.2003.09.002
10.1529/biophysj.105.072645
10.1073/pnas.232349399
10.1186/1752-0509-3-30
10.1128/JB.182.17.4730-4737.2000
10.1371/journal.pcbi.1001116
10.1038/msb.2013.18
10.1007/s10529-013-1328-x
10.1038/nprot.2011.308
10.1038/nbt.2488
10.1002/9783527617395
10.1073/pnas.0406346102
10.1080/00401706.1987.10488205
10.1016/j.copbio.2012.08.007
10.1074/jbc.M201691200
10.1038/msb.2009.57
10.1186/1742-4682-4-48
10.1016/S0006-3495(03)74899-1
10.1093/bioinformatics/btp704
10.1002/bit.10803
ContentType Journal Article
Copyright Wageningen University & Research
Copyright_xml – notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
QVL
DOI 10.1039/c5mb00457h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-2051
EndPage 15
ExternalDocumentID oai_library_wur_nl_wurpubs_495643
26818782
10_1039_C5MB00457H
c5mb00457h
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-JG
0-7
0R~
123
29M
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
UCJ
VH6
XSW
0UZ
1TJ
53G
71~
AAYXX
ACHDF
ACRPL
ADNMO
ADXHL
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANLMG
ASPBG
AVWKF
AZFZN
BBWZM
C1A
CITATION
EEHRC
FEDTE
HVGLF
J3G
J3H
L-8
NDZJH
R56
RCLXC
X7L
XJT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
-
0R
70
71
AAGNR
AAPBV
ABFLS
ACHRU
AGSWI
AHGVY
AVTUQ
CKLOX
HZ
IPNFZ
JG
KC5
QVL
RIG
XFK
ID FETCH-LOGICAL-c2753-10e00c1e09aeee6efa44ca83cfc77e3a605ee63688386810c86fd1920c9e1b223
ISSN 1742-206X
IngestDate Thu Jul 22 20:31:42 EDT 2021
Fri Jul 11 15:07:31 EDT 2025
Mon Jul 21 05:48:04 EDT 2025
Tue Jul 01 02:40:34 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Dec 17 21:00:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2753-10e00c1e09aeee6efa44ca83cfc77e3a605ee63688386810c86fd1920c9e1b223
Notes Electronic supplementary information (ESI) available: Data 1. Archive containing scripts used to perform the computations; Data 2. Properties of the reactions of the iMO1086 and yeast GSMRs; Data 3. Details of individual reactions in iMO1086 and yeast GSMRs; Data 4. Loading values obtained by PCA of the sampled data; Fig. S1. Heat plots of flux values for reactions in the first seven PCs. The columns represent reactions of the PCs in the order shown in the right side column. Each row represents the fluxes for each reaction for 10 000 simulations sorted according to the score of mentioned PC. The values for reactions of a single PC change in association while reactions of other PCs are independent of these. See DOI
10.1039/c5mb00457h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26818782
PQID 1768167444
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1768167444
crossref_primary_10_1039_C5MB00457H
wageningen_narcis_oai_library_wur_nl_wurpubs_495643
pubmed_primary_26818782
crossref_citationtrail_10_1039_C5MB00457H
rsc_primary_c5mb00457h
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular bioSystems
PublicationTitleAlternate Mol Biosyst
PublicationYear 2016
References Stein (C5MB00457H-(cit33)/*[position()=1]) 1987; 29
Wiback (C5MB00457H-(cit54)/*[position()=1]) 2004; 228
Kalos (C5MB00457H-(cit38)/*[position()=1]) 1986
Jungreuthmayer (C5MB00457H-(cit25)/*[position()=1]) 2015; 10
de Oliveira Dal'Molin (C5MB00457H-(cit3)/*[position()=1]) 2013; 24
Kim (C5MB00457H-(cit20)/*[position()=1]) 2010; 4
David (C5MB00457H-(cit42)/*[position()=1]) 2011; 12
Bordel (C5MB00457H-(cit45)/*[position()=1]) 2010; 6
Thiele (C5MB00457H-(cit5)/*[position()=1]) 2013; 31
Patil (C5MB00457H-(cit17)/*[position()=1]) 2005; 6
Shlomi (C5MB00457H-(cit11)/*[position()=1]) 2005; 102
Schellenberger (C5MB00457H-(cit31)/*[position()=1]) 2009; 284
Jensen (C5MB00457H-(cit16)/*[position()=1]) 2011; 27
Schellenberger (C5MB00457H-(cit41)/*[position()=1]) 2011; 6
Price (C5MB00457H-(cit44)/*[position()=1]) 2002; 83
Price (C5MB00457H-(cit23)/*[position()=1]) 2003; 84
Puchalka (C5MB00457H-(cit58)/*[position()=1]) 2008; 4
Cozzone (C5MB00457H-(cit50)/*[position()=1]) 1998; 52
Price (C5MB00457H-(cit43)/*[position()=1]) 2006; 90
Covert (C5MB00457H-(cit13)/*[position()=1]) 2008; 24
Machado (C5MB00457H-(cit27)/*[position()=1]) 2012; 28
Megchelenbrink (C5MB00457H-(cit30)/*[position()=1]) 2014; 9
Hastie (C5MB00457H-(cit36)/*[position()=1]) 2003
Bakker (C5MB00457H-(cit49)/*[position()=1]) 2000; 182
McKay (C5MB00457H-(cit47)/*[position()=1]) 1979; 21
Jolliffe (C5MB00457H-(cit35)/*[position()=1]) 2002
McCloskey (C5MB00457H-(cit1)/*[position()=1]) 2013; 9
McLachlan (C5MB00457H-(cit46)/*[position()=1]) 1992
Swidzinski (C5MB00457H-(cit34)/*[position()=1]) 2000
De Martino (C5MB00457H-(cit32)/*[position()=1]) 2015; 10
Covert (C5MB00457H-(cit12)/*[position()=1]) 2002; 277
Acuna (C5MB00457H-(cit53)/*[position()=1]) 2010; 99
Oberhardt (C5MB00457H-(cit40)/*[position()=1]) 2011; 7
Lewis (C5MB00457H-(cit8)/*[position()=1]) 2010; 6
Ranganathan (C5MB00457H-(cit22)/*[position()=1]) 2010; 6
Vǒrechovský (C5MB00457H-(cit55)/*[position()=1])
Colijn (C5MB00457H-(cit14)/*[position()=1]) 2009; 5
Mahadevan (C5MB00457H-(cit6)/*[position()=1]) 2003; 5
Burgard (C5MB00457H-(cit7)/*[position()=1]) 2003; 84
Hunt (C5MB00457H-(cit51)/*[position()=1]) 1983; 154
Sigurdsson (C5MB00457H-(cit4)/*[position()=1]) 2010; 4
Werbos (C5MB00457H-(cit56)/*[position()=1]) 2012; 32
Segre (C5MB00457H-(cit10)/*[position()=1]) 2002; 99
Bakker (C5MB00457H-(cit48)/*[position()=1]) 2001; 25
Lee (C5MB00457H-(cit28)/*[position()=1]) 2000; 24
Kelk (C5MB00457H-(cit29)/*[position()=1]) 2012; 2
Jol (C5MB00457H-(cit39)/*[position()=1]) 2012; 8
Lun (C5MB00457H-(cit18)/*[position()=1]) 2009; 5
Oh (C5MB00457H-(cit57)/*[position()=1]) 2002; 277
Stelling (C5MB00457H-(cit24)/*[position()=1]) 2002; 420
Cakir (C5MB00457H-(cit9)/*[position()=1]) 2007; 4
Kim (C5MB00457H-(cit2)/*[position()=1]) 2012; 23
Barrett (C5MB00457H-(cit37)/*[position()=1]) 2009; 3
Jerby (C5MB00457H-(cit15)/*[position()=1]) 2010; 6
Tabe-Bordbar (C5MB00457H-(cit26)/*[position()=1]) 2013; 35
Tepper (C5MB00457H-(cit21)/*[position()=1]) 2010; 26
Pharkya (C5MB00457H-(cit19)/*[position()=1]) 2006; 8
Papin (C5MB00457H-(cit52)/*[position()=1]) 2004; 22
References_xml – doi: Vo&cmb.caron;rechovský
– issn: 2000
  end-page: p 887-890
  publication-title: Conference proceeding published in Microwave Symposium Digest, 2000 IEEE MTT-S International
  doi: Swidzinski Chang
– issn: 2002
  publication-title: Principal Component Analysis
  doi: Jolliffe
– issn: 1992
  publication-title: Discriminant Analysis and Statistical Pattern Recognition
  doi: McLachlan
– issn: 1986
  publication-title: Monte Carlo Methods Volume 1: Basics.
  doi: Kalos Whitlock
– issn: 2003
  publication-title: The Elements of Statistical Learning
  doi: Hastie Tibshirani Friedman
– volume: 284
  start-page: 5457
  year: 2009
  ident: C5MB00457H-(cit31)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R800048200
– volume: 52
  start-page: 127
  year: 1998
  ident: C5MB00457H-(cit50)/*[position()=1]
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.52.1.127
– volume: 154
  start-page: 793
  year: 1983
  ident: C5MB00457H-(cit51)/*[position()=1]
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.154.2.793-802.1983
– volume: 12
  start-page: 236
  year: 2011
  ident: C5MB00457H-(cit42)/*[position()=1]
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-12-236
– volume: 6
  start-page: 308
  year: 2005
  ident: C5MB00457H-(cit17)/*[position()=1]
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-6-308
– volume: 8
  start-page: e1002415
  year: 2012
  ident: C5MB00457H-(cit39)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002415
– volume: 228
  start-page: 437
  year: 2004
  ident: C5MB00457H-(cit54)/*[position()=1]
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2004.02.006
– volume: 22
  start-page: 400
  year: 2004
  ident: C5MB00457H-(cit52)/*[position()=1]
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2004.06.010
– volume: 83
  start-page: 2879
  year: 2002
  ident: C5MB00457H-(cit44)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75297-1
– volume: 23
  start-page: 617
  year: 2012
  ident: C5MB00457H-(cit2)/*[position()=1]
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.10.007
– volume-title: Discriminant Analysis and Statistical Pattern Recognition
  year: 1992
  ident: C5MB00457H-(cit46)/*[position()=1]
  doi: 10.1002/0471725293
– volume: 28
  start-page: i515
  year: 2012
  ident: C5MB00457H-(cit27)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts401
– volume: 4
  start-page: 140
  year: 2010
  ident: C5MB00457H-(cit4)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-140
– volume: 10
  start-page: e0129840
  year: 2015
  ident: C5MB00457H-(cit25)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129840
– volume: 9
  start-page: e86587
  year: 2014
  ident: C5MB00457H-(cit30)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086587
– volume: 99
  start-page: 210
  year: 2010
  ident: C5MB00457H-(cit53)/*[position()=1]
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2009.11.004
– volume: 27
  start-page: 541
  year: 2011
  ident: C5MB00457H-(cit16)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq702
– volume: 4
  start-page: e1000210
  year: 2008
  ident: C5MB00457H-(cit58)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000210
– volume: 21
  start-page: 239
  year: 1979
  ident: C5MB00457H-(cit47)/*[position()=1]
  publication-title: Technometrics
– volume: 6
  start-page: 390
  year: 2010
  ident: C5MB00457H-(cit8)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.47
– volume: 24
  start-page: 711
  year: 2000
  ident: C5MB00457H-(cit28)/*[position()=1]
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00323-9
– volume-title: Conference proceeding published in Microwave Symposium Digest, 2000 IEEE MTT-S International
  year: 2000
  ident: C5MB00457H-(cit34)/*[position()=1]
– volume: 277
  start-page: 13175
  year: 2002
  ident: C5MB00457H-(cit57)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110809200
– volume: 5
  start-page: e1000489
  year: 2009
  ident: C5MB00457H-(cit14)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000489
– volume: 32
  start-page: 179
  year: 2012
  ident: C5MB00457H-(cit56)/*[position()=1]
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.036
– volume: 420
  start-page: 190
  year: 2002
  ident: C5MB00457H-(cit24)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01166
– volume: 8
  start-page: 1
  year: 2006
  ident: C5MB00457H-(cit19)/*[position()=1]
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2005.08.003
– volume-title: The Elements of Statistical Learning
  year: 2003
  ident: C5MB00457H-(cit36)/*[position()=1]
– volume: 4
  start-page: 53
  year: 2010
  ident: C5MB00457H-(cit20)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-53
– volume: 25
  start-page: 15
  year: 2001
  ident: C5MB00457H-(cit48)/*[position()=1]
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2001.tb00570.x
– volume: 6
  start-page: 401
  year: 2010
  ident: C5MB00457H-(cit15)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.56
– volume: 6
  start-page: e1000859
  year: 2010
  ident: C5MB00457H-(cit45)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000859
– volume: 24
  start-page: 2044
  year: 2008
  ident: C5MB00457H-(cit13)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn352
– volume: 6
  start-page: e1000744
  year: 2010
  ident: C5MB00457H-(cit22)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000744
– volume: 2
  start-page: 580
  year: 2012
  ident: C5MB00457H-(cit29)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00580
– volume: 10
  start-page: e0122670
  year: 2015
  ident: C5MB00457H-(cit32)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122670
– volume: 5
  start-page: 264
  year: 2003
  ident: C5MB00457H-(cit6)/*[position()=1]
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2003.09.002
– volume: 90
  start-page: 3919
  year: 2006
  ident: C5MB00457H-(cit43)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.072645
– volume: 99
  start-page: 15112
  year: 2002
  ident: C5MB00457H-(cit10)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.232349399
– volume: 3
  start-page: 30
  year: 2009
  ident: C5MB00457H-(cit37)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-3-30
– volume: 182
  start-page: 4730
  year: 2000
  ident: C5MB00457H-(cit49)/*[position()=1]
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.17.4730-4737.2000
– volume: 7
  start-page: e1001116
  year: 2011
  ident: C5MB00457H-(cit40)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001116
– volume: 9
  start-page: 661
  year: 2013
  ident: C5MB00457H-(cit1)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.18
– volume: 35
  start-page: 2039
  year: 2013
  ident: C5MB00457H-(cit26)/*[position()=1]
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-013-1328-x
– volume-title: Principal Component Analysis
  year: 2002
  ident: C5MB00457H-(cit35)/*[position()=1]
– volume: 6
  start-page: 1290
  year: 2011
  ident: C5MB00457H-(cit41)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.308
– volume: 31
  start-page: 419
  year: 2013
  ident: C5MB00457H-(cit5)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2488
– volume-title: Monte Carlo Methods Volume 1: Basics.
  year: 1986
  ident: C5MB00457H-(cit38)/*[position()=1]
  doi: 10.1002/9783527617395
– volume: 102
  start-page: 7695
  year: 2005
  ident: C5MB00457H-(cit11)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0406346102
– volume: 29
  start-page: 143
  year: 1987
  ident: C5MB00457H-(cit33)/*[position()=1]
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– ident: C5MB00457H-(cit55)/*[position()=1]
– volume: 24
  start-page: 271
  year: 2013
  ident: C5MB00457H-(cit3)/*[position()=1]
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.08.007
– volume: 277
  start-page: 28058
  year: 2002
  ident: C5MB00457H-(cit12)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201691200
– volume: 5
  start-page: 296
  year: 2009
  ident: C5MB00457H-(cit18)/*[position()=1]
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2009.57
– volume: 4
  start-page: 48
  year: 2007
  ident: C5MB00457H-(cit9)/*[position()=1]
  publication-title: Theor. Biol. Med. Modell.
  doi: 10.1186/1742-4682-4-48
– volume: 84
  start-page: 794
  year: 2003
  ident: C5MB00457H-(cit23)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74899-1
– volume: 26
  start-page: 536
  year: 2010
  ident: C5MB00457H-(cit21)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp704
– volume: 84
  start-page: 647
  year: 2003
  ident: C5MB00457H-(cit7)/*[position()=1]
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10803
SSID ssj0038410
Score 2.1098769
Snippet Genome-Scale Metabolic Reconstructions (GSMRs), along with optimization-based methods, predominantly Flux Balance Analysis (FBA) and its derivatives, are...
SourceID wageningen
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 994
SubjectTerms Algorithms
Computer Simulation
Discriminant Analysis
Genome
Genome, Bacterial
Genome, Fungal
Metabolic Networks and Pathways
Principal Component Analysis
Pseudomonas aeruginosa - genetics
Reproducibility of Results
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Systeem en Synthetische Biologie
Systems and Synthetic Biology
VLAG
Title Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling
URI https://www.ncbi.nlm.nih.gov/pubmed/26818782
https://www.proquest.com/docview/1768167444
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F495643
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FVkjlgNgKZtMguCDLxc54PSahKCDKhVTqzZoZj0lFYqM4Vmn_Cf-W9zzjpQsScEmisWNZ-b68Zfze9wh5MxZC5iLKHZ6jqDYW5UBwpBzGMyVV7olQYXPy0Zdwfux_OglORqNfg6qleisO5MWNfSX_gyqsAa7YJfsPyHYXhQX4DPjCKyAMr3-F8axTW75ou55KMAFrbEpc1T9tsBay2RNAJda1cioAROHQaEB-1Wg3y7JXkK26oT3rMjvNMTbFQrnCWUKuupG1UHbFsQDdOLt2DlQ7YNcWp-VQAF0XDdQZ3KQ25GrZ-YAFPqCfxkWmiwS0qel4Ol3ybcG_mdpv_l1V3aa1lj2o7Kys7K84AFlPc2-e97_flht7cmBa1sxWhhf2tVzG-kbYK-Q2ow3BOQ3XjCpta7LHA2qygf1N9MRk48p1o-g1J-Ey1FiVwRpNVhAte1fYFSj2B2-R3TFkIGDzdyeHi4-fWzfPYt8z3bb6nlvtW5a86799Odq5lsJAQLOp5B2ydwa3WzTddIPoZnGP3DVpCZ1ojt0nI1U8ILf1oNLzh-T8MtMoMI0aplFkGm2YRsucDplGO6bRK0yjhmm0ZRq9wjTaMu0ROf5wuJjNHTO0w5FjSH3BrSvXlZ5yE66UClXOfV_ymMlcRpFiHNJnWGZhHLMYtfBkHOYZpBmuTJQnIFjdJztFWagnhPoqjCSH6ImzxE9CJaJQQPyfSwhzAxEEFnnb_ripNIr2OFhllTaVFSxJZ8HRtAFibpHX3bk_tI7LjWe9ajFKwcziszNeqLKuUg_ScmzY8X2LPNbgddcZw6EYIm2L7AOa3XLPAouwHuC0wCFhVYq67manNj2rN2mxwje4dJXipoXPnv7pcs_IXv_veU52ADz1AkLjrXhpSPob-hbC-g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+optimal+flux+space+of+genome-scale+metabolic+reconstructions+through+modified+latin-hypercube+sampling&rft.jtitle=Molecular+bioSystems&rft.au=Chaudhary%2C+Neha&rft.au=T%C3%B8ndel%2C+Kristin&rft.au=Bhatnagar%2C+Rakesh&rft.au=Martins+dos+Santos%2C+V%C3%ADtor+A.+P&rft.date=2016-03-01&rft.issn=1742-206X&rft.eissn=1742-2051&rft.volume=12&rft.issue=3&rft.spage=994&rft.epage=15&rft_id=info:doi/10.1039%2Fc5mb00457h&rft.externalDocID=c5mb00457h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon