Comparison of Homologies and Automatic Extensions of Invariant Distributions
Let G be a reductive Nash group, acting on a Nash manifold X . Let Z be a G -stable closed Nash submanifold of X and denote by U the complement of Z in X . Let χ be a character of G and denote by g the complexified Lie algebra of G . We give a sufficient condition for the natural linear map H k ( g...
Saved in:
Published in | Acta mathematica scientia Vol. 43; no. 4; pp. 1561 - 1570 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.07.2023
School of Sciences,Jiangnan University,Wuxi 214122,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
G
be a reductive Nash group, acting on a Nash manifold
X
. Let
Z
be a
G
-stable closed Nash submanifold of
X
and denote by
U
the complement of
Z
in
X
. Let
χ
be a character of
G
and denote by
g
the complexified Lie algebra of
G
. We give a sufficient condition for the natural linear map
H
k
(
g
,
S
(
U
)
⊗
χ
)
→
H
k
(
g
,
S
(
X
)
⊗
χ
)
between the Lie algebra homologies of Schwartz functions to be an isomorphism. For
k
= 0, by considering the dual, we obtain the automatic extensions of
g
-invariant (twisted by -
χ
) Schwartz distributions. |
---|---|
AbstractList | Let
G
be a reductive Nash group, acting on a Nash manifold
X
. Let
Z
be a
G
-stable closed Nash submanifold of
X
and denote by
U
the complement of
Z
in
X
. Let
χ
be a character of
G
and denote by
g
the complexified Lie algebra of
G
. We give a sufficient condition for the natural linear map
H
k
(
g
,
S
(
U
)
⊗
χ
)
→
H
k
(
g
,
S
(
X
)
⊗
χ
)
between the Lie algebra homologies of Schwartz functions to be an isomorphism. For
k
= 0, by considering the dual, we obtain the automatic extensions of
g
-invariant (twisted by -
χ
) Schwartz distributions. Let G be a reductive Nash group,acting on a Nash manifold X.Let Z be a G-stable closed Nash submanifold of X and denote by U the complement of Z in X.Let x be a character of G and denote by g the complexified Lie algebra of G.We give a sufficient condition for the natural linear map Hk(g,S(U)(⊕)x)→ Hk(g,S(X)(⊕)x)between the Lie algebra homologies of Schwartz functions to be an isomorphism.For k=0,by considering the dual,we obtain the automatic extensions of g-invariant(twisted by-x)Schwartz distributions. |
Author | Chen, Yangyang |
AuthorAffiliation | School of Sciences,Jiangnan University,Wuxi 214122,China |
AuthorAffiliation_xml | – name: School of Sciences,Jiangnan University,Wuxi 214122,China |
Author_xml | – sequence: 1 givenname: Yangyang surname: Chen fullname: Chen, Yangyang email: chenyy@amss.ac.cn organization: School of Sciences, Jiangnan University |
BookMark | eNp1kMFKAzEQhoMo2FYfwNtePaxOprvJ7rHUagsFL3oO2TQpKd2kJFu7vr1ZVvDkYZiB-b8Z-Kbk2nmnCXmg8EQB-HOkUPB5DpiqAJ73V2RCS455DRW_JhPAMs0M8JZMYzwAUIasmJDt0rcnGWz0LvMmW_vWH_3e6phJt8sW5863srMqW_WddtF6F4fYxn0lRroue7GxC7Y5d8PqjtwYeYz6_rfPyOfr6mO5zrfvb5vlYpsr5EWXm5JJJVGxilEOaKTaaaC1BomGVZpxKOuCVo0CanaqMbqZU2wqULUsUSPOZ-RxvHuRzki3Fwd_Di59FLG_HPtGaEwikgfgKUvHrAo-xqCNOAXbyvAtKIhBnRjViUSIQZ3oE4MjE1PW7XX4e_A_9APK3XTM |
Cites_doi | 10.1007/BFb0078571 10.1007/s11856-010-0042-9 10.1007/s00209-016-1699-5 10.4153/CJM-1989-019-5 10.1007/s00208-016-1444-8 10.1007/s00229-011-0437-x 10.1016/j.jfa.2020.108817 10.1007/s11401-015-0915-7 10.1353/ajm.2013.0000 10.1093/imrn/rnm155 10.24033/asens.1628 10.1007/978-3-662-03718-8 10.1515/9781400883936 10.1007/s00209-016-1629-6 |
ContentType | Journal Article |
Copyright | Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10473-023-0407-x |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1572-9087 |
EndPage | 1570 |
ExternalDocumentID | sxwlxb_e202304007 10_1007_s10473_023_0407_x |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 7-5 71M 8P~ 92E 92I 92M 92Q 93N 9D9 9DA AACDK AACTN AAEDT AAEDW AAHNG AAIKJ AAJBT AAKOC AALRI AAOAW AASML AATNV AAUYE AAXDM AAXKI AAXUO ABAKF ABAOU ABECU ABFNM ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABWVN ABXDB ABXPI ACAOD ACDAQ ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACRLP ACRPL ACZOJ ADBBV ADEZE ADKNI ADMUD ADNMO ADTPH ADURQ ADYFF AEBSH AEFQL AEIPS AEJRE AEKER AEMSY AENEX AESKC AFBBN AFKWA AFQWF AFUIB AGDGC AGHFR AGJBK AGMZJ AGQEE AGUBO AGYEJ AIAKS AIEXJ AIGIU AIGVJ AIKHN AILAN AITGF AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ANKPU ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIGPU FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HG6 HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 4A8 PSX |
ID | FETCH-LOGICAL-c274t-f56aca2c6861702facde019e0a2f68e67059418bc01fdcbfeb312b80c9a52e223 |
ISSN | 0252-9602 |
IngestDate | Thu May 29 04:00:09 EDT 2025 Tue Jul 01 02:27:42 EDT 2025 Fri Feb 21 02:43:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Schwartz distributions Hausdorffness automatic extensions Schwartz functions 46T30 22E20 Lie algebra homology Schwartz distribu-tions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c274t-f56aca2c6861702facde019e0a2f68e67059418bc01fdcbfeb312b80c9a52e223 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_sxwlxb_e202304007 crossref_primary_10_1007_s10473_023_0407_x springer_journals_10_1007_s10473_023_0407_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Acta mathematica scientia |
PublicationTitleAbbrev | Acta Math Sci |
PublicationTitle_FL | Acta Mathematica Scientia |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore School of Sciences,Jiangnan University,Wuxi 214122,China |
Publisher_xml | – name: Springer Nature Singapore – name: School of Sciences,Jiangnan University,Wuxi 214122,China |
References | Aizenbud A, Gourevitch D. Schwartz functions on Nash manifolds. Int Math Res Not, 2008, 2008 (5): Art rnm155 KnappAVoganDCohomological Induction and Unitary Representations1995PrincetonPrinceton University Press10.1515/97814008839360863.22011 ChenYSunBSchwartz homologies of representations of almost linear Nash groupsJournal of Functional Analysis20212807108817421101810.1016/j.jfa.2020.1088171478.22008 Borel A, Wallach N. Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 1980: No 94 CasselmanWHechtHMiličićDDoranRVaradarajanVBruhat filtrations and Whittaker vectors for real groupsProceedings of Symposia in Pure Mathematics2000Providence, RIAmer Math Soc151191 ShiotaMNash Manifolds1987BerlinSpringer-Verlag10.1007/BFb00785710629.58002 ShiotaMNash Functions and Manifolds//Broglia F. Lectures in Real Geometry1996Berlinde Gruyter AizenbudAGourevitchDSmooth transfer of Kloostermann integrals (the Archimedean case)American Journal of Mathematics2013135143182302296110.1353/ajm.2013.00001329.11049 HongJSunBGeneralized semi-invariant distributions on p-adic spacesMath Ann201736717271776362323610.1007/s00208-016-1444-81362.22012 AizenbudAGourevitchDThe de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifoldsIsrael J Math2010177155188268441710.1007/s11856-010-0042-91208.58002 AizenbudAGourevitchDKrötzBLiuGErratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit201628399399410.1007/s00209-016-1699-51404.22028 TrèvesFTopological Vector Spaces, Distributions and Kernels1967New YorkAcademic Press0171.10402 SunBAlmost linear Nash groupsChina Ann Math Ser B201536355400334116410.1007/s11401-015-0915-71322.22009 BochnakJCosteMRoyM FReal Algebraic Geometry1998BerlinSpringer10.1007/978-3-662-03718-80912.14023 CasselmanWCanonical extensions of Harish-Chandra modules to representations of GCanad J Math198941385438101346210.4153/CJM-1989-019-50702.22016 Taylor J L. Notes on locally convex topological vector spaces. Lecture Notes, University of Utah, 1995 du ClouxFSur les représentations différentiables des groupes de Lie algébriquesAnn Sci Ecole Norm Sup1991243257318110099210.24033/asens.16280748.22006 SunBZhuC BA general form of Gelfand-Kazhdan criterionManu Math2011136185197282040110.1007/s00229-011-0437-x1229.22014 AizenbudAGourevitchDKrötzBLiuGHausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit2016283979992351999010.1007/s00209-016-1629-61347.22010 407_CR1 W Casselman (407_CR9) 2000 B Sun (407_CR17) 2011; 136 A Aizenbud (407_CR4) 2016; 283 A Knapp (407_CR13) 1995 407_CR18 B Sun (407_CR16) 2015; 36 Y Chen (407_CR10) 2021; 280 A Aizenbud (407_CR3) 2010; 177 W Casselman (407_CR8) 1989; 41 M Shiota (407_CR15) 1996 A Aizenbud (407_CR5) 2016; 283 M Shiota (407_CR14) 1987 J Hong (407_CR12) 2017; 367 J Bochnak (407_CR6) 1998 407_CR7 F Trèves (407_CR19) 1967 A Aizenbud (407_CR2) 2013; 135 F du Cloux (407_CR11) 1991; 24 |
References_xml | – reference: du ClouxFSur les représentations différentiables des groupes de Lie algébriquesAnn Sci Ecole Norm Sup1991243257318110099210.24033/asens.16280748.22006 – reference: ShiotaMNash Functions and Manifolds//Broglia F. Lectures in Real Geometry1996Berlinde Gruyter – reference: AizenbudAGourevitchDKrötzBLiuGErratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit201628399399410.1007/s00209-016-1699-51404.22028 – reference: CasselmanWHechtHMiličićDDoranRVaradarajanVBruhat filtrations and Whittaker vectors for real groupsProceedings of Symposia in Pure Mathematics2000Providence, RIAmer Math Soc151191 – reference: BochnakJCosteMRoyM FReal Algebraic Geometry1998BerlinSpringer10.1007/978-3-662-03718-80912.14023 – reference: ShiotaMNash Manifolds1987BerlinSpringer-Verlag10.1007/BFb00785710629.58002 – reference: KnappAVoganDCohomological Induction and Unitary Representations1995PrincetonPrinceton University Press10.1515/97814008839360863.22011 – reference: TrèvesFTopological Vector Spaces, Distributions and Kernels1967New YorkAcademic Press0171.10402 – reference: AizenbudAGourevitchDSmooth transfer of Kloostermann integrals (the Archimedean case)American Journal of Mathematics2013135143182302296110.1353/ajm.2013.00001329.11049 – reference: AizenbudAGourevitchDThe de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifoldsIsrael J Math2010177155188268441710.1007/s11856-010-0042-91208.58002 – reference: SunBZhuC BA general form of Gelfand-Kazhdan criterionManu Math2011136185197282040110.1007/s00229-011-0437-x1229.22014 – reference: SunBAlmost linear Nash groupsChina Ann Math Ser B201536355400334116410.1007/s11401-015-0915-71322.22009 – reference: Aizenbud A, Gourevitch D. Schwartz functions on Nash manifolds. Int Math Res Not, 2008, 2008 (5): Art rnm155 – reference: Borel A, Wallach N. Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 1980: No 94 – reference: CasselmanWCanonical extensions of Harish-Chandra modules to representations of GCanad J Math198941385438101346210.4153/CJM-1989-019-50702.22016 – reference: AizenbudAGourevitchDKrötzBLiuGHausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit2016283979992351999010.1007/s00209-016-1629-61347.22010 – reference: HongJSunBGeneralized semi-invariant distributions on p-adic spacesMath Ann201736717271776362323610.1007/s00208-016-1444-81362.22012 – reference: ChenYSunBSchwartz homologies of representations of almost linear Nash groupsJournal of Functional Analysis20212807108817421101810.1016/j.jfa.2020.1088171478.22008 – reference: Taylor J L. Notes on locally convex topological vector spaces. Lecture Notes, University of Utah, 1995 – volume-title: Nash Manifolds year: 1987 ident: 407_CR14 doi: 10.1007/BFb0078571 – start-page: 151 volume-title: Proceedings of Symposia in Pure Mathematics year: 2000 ident: 407_CR9 – volume: 177 start-page: 155 year: 2010 ident: 407_CR3 publication-title: Israel J Math doi: 10.1007/s11856-010-0042-9 – volume: 283 start-page: 993 year: 2016 ident: 407_CR5 publication-title: Math Zeit doi: 10.1007/s00209-016-1699-5 – volume: 41 start-page: 385 year: 1989 ident: 407_CR8 publication-title: Canad J Math doi: 10.4153/CJM-1989-019-5 – volume: 367 start-page: 1727 year: 2017 ident: 407_CR12 publication-title: Math Ann doi: 10.1007/s00208-016-1444-8 – volume: 136 start-page: 185 year: 2011 ident: 407_CR17 publication-title: Manu Math doi: 10.1007/s00229-011-0437-x – volume-title: Topological Vector Spaces, Distributions and Kernels year: 1967 ident: 407_CR19 – volume: 280 start-page: 108817 issue: 7 year: 2021 ident: 407_CR10 publication-title: Journal of Functional Analysis doi: 10.1016/j.jfa.2020.108817 – volume: 36 start-page: 355 year: 2015 ident: 407_CR16 publication-title: China Ann Math Ser B doi: 10.1007/s11401-015-0915-7 – volume-title: Nash Functions and Manifolds//Broglia F. Lectures in Real Geometry year: 1996 ident: 407_CR15 – volume: 135 start-page: 143 year: 2013 ident: 407_CR2 publication-title: American Journal of Mathematics doi: 10.1353/ajm.2013.0000 – ident: 407_CR18 – ident: 407_CR1 doi: 10.1093/imrn/rnm155 – volume: 24 start-page: 257 issue: 3 year: 1991 ident: 407_CR11 publication-title: Ann Sci Ecole Norm Sup doi: 10.24033/asens.1628 – ident: 407_CR7 – volume-title: Real Algebraic Geometry year: 1998 ident: 407_CR6 doi: 10.1007/978-3-662-03718-8 – volume-title: Cohomological Induction and Unitary Representations year: 1995 ident: 407_CR13 doi: 10.1515/9781400883936 – volume: 283 start-page: 979 year: 2016 ident: 407_CR4 publication-title: Math Zeit doi: 10.1007/s00209-016-1629-6 |
SSID | ssj0016264 |
Score | 2.278339 |
Snippet | Let
G
be a reductive Nash group, acting on a Nash manifold
X
. Let
Z
be a
G
-stable closed Nash submanifold of
X
and denote by
U
the complement of
Z
in
X
. Let... Let G be a reductive Nash group,acting on a Nash manifold X.Let Z be a G-stable closed Nash submanifold of X and denote by U the complement of Z in X.Let x be... |
SourceID | wanfang crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1561 |
SubjectTerms | Analysis Mathematics Mathematics and Statistics |
Title | Comparison of Homologies and Automatic Extensions of Invariant Distributions |
URI | https://link.springer.com/article/10.1007/s10473-023-0407-x https://d.wanfangdata.com.cn/periodical/sxwlxb-e202304007 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQ48FhYsbwUIXyhyip2Esc5Jt1U7YqmaJtCOUVO4qyQUHZFW1E48C_4v4zzrhahhUOjxHYenfk8nrFnxgi9IVaaMy5snZvE1gEhUk9MI9cdS2U6cUGlKKcGZiGbLK2zlb0aDH71vJa2m-Qk_fHHuJL_4SqUAV9VlOw_cLZ9KBTAOfAXjsBhON6Ix6P57L13Pl3MQ-W8M5nPyq0NgkWZMwq-cT7zIqBysIqCcFGGC0OzafgB7vHCaHg6XUTnU39ZRhL3tVQcMOza2DdwYGPvFHsMBw7mLvZcdeIamLNeFcPcw56NgzH2R5hzHHDMfeyT8jlQ69S3q6qqTTv98EkUF9-F8j2YBGF_CoKarbtqPQVZ5QtVQTaVPFIIPAN0XxQgozoHEyj9uN19HlJiEUrhqt0ivBZ41KY6WFR70rlK4lSj0OqJWjA8SW_YJna1Acm1IcFoQqQtR61Yww9sWH3XjX-tV-J69-3LLoml-otKtjm30G0K1ofaGOPkZ-s5RMAGLLOSNZ_bLJZXEZn7r9lXd5q19jJCrMiBQj1lJnqI7tdWiOZVkHqEBrI4RA9qi0Rr6HuI7s3arL5wdad0F07Xj9G7DnnafKx1yNMAeVqLPK1DnmrWIk_bQ94TtBwH0Wii1_ty6Cl1rI2e20ykgqaMq2z-NBdpJsFSkIag0O8lc1QOIMKT1CB5lia5TExCE26krrCpBH30CB0Ul4V8ijTJGOisgkrhJFZmmiIDC0QpVRmM4BZjx-htQ774qkq_EneJthWtY6B1rGgd747RsCFwXPfS9d9av6550DW-hoBnN2n0HN3tesULdLD5upUvQVXdJK9K4PwGXWd1yQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPARISON+OF+HOMOLOGIES+AND+AUTOMATIC+EXTENSIONS+OF+INVARIANT+DISTRIBUTIONS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yangyang+CHEN&rft.date=2023-07-01&rft.pub=School+of+Sciences%2CJiangnan+University%2CWuxi+214122%2CChina&rft.issn=0252-9602&rft.volume=43&rft.issue=4&rft.spage=1561&rft.epage=1570&rft_id=info:doi/10.1007%2Fs10473-023-0407-x&rft.externalDocID=sxwlxb_e202304007 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |