Comparison of Homologies and Automatic Extensions of Invariant Distributions

Let G be a reductive Nash group, acting on a Nash manifold X . Let Z be a G -stable closed Nash submanifold of X and denote by U the complement of Z in X . Let χ be a character of G and denote by g the complexified Lie algebra of G . We give a sufficient condition for the natural linear map H k ( g...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 43; no. 4; pp. 1561 - 1570
Main Author Chen, Yangyang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.07.2023
School of Sciences,Jiangnan University,Wuxi 214122,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let G be a reductive Nash group, acting on a Nash manifold X . Let Z be a G -stable closed Nash submanifold of X and denote by U the complement of Z in X . Let χ be a character of G and denote by g the complexified Lie algebra of G . We give a sufficient condition for the natural linear map H k ( g , S ( U ) ⊗ χ ) → H k ( g , S ( X ) ⊗ χ ) between the Lie algebra homologies of Schwartz functions to be an isomorphism. For k = 0, by considering the dual, we obtain the automatic extensions of g -invariant (twisted by - χ ) Schwartz distributions.
AbstractList Let G be a reductive Nash group, acting on a Nash manifold X . Let Z be a G -stable closed Nash submanifold of X and denote by U the complement of Z in X . Let χ be a character of G and denote by g the complexified Lie algebra of G . We give a sufficient condition for the natural linear map H k ( g , S ( U ) ⊗ χ ) → H k ( g , S ( X ) ⊗ χ ) between the Lie algebra homologies of Schwartz functions to be an isomorphism. For k = 0, by considering the dual, we obtain the automatic extensions of g -invariant (twisted by - χ ) Schwartz distributions.
Let G be a reductive Nash group,acting on a Nash manifold X.Let Z be a G-stable closed Nash submanifold of X and denote by U the complement of Z in X.Let x be a character of G and denote by g the complexified Lie algebra of G.We give a sufficient condition for the natural linear map Hk(g,S(U)(⊕)x)→ Hk(g,S(X)(⊕)x)between the Lie algebra homologies of Schwartz functions to be an isomorphism.For k=0,by considering the dual,we obtain the automatic extensions of g-invariant(twisted by-x)Schwartz distributions.
Author Chen, Yangyang
AuthorAffiliation School of Sciences,Jiangnan University,Wuxi 214122,China
AuthorAffiliation_xml – name: School of Sciences,Jiangnan University,Wuxi 214122,China
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  email: chenyy@amss.ac.cn
  organization: School of Sciences, Jiangnan University
BookMark eNp1kMFKAzEQhoMo2FYfwNtePaxOprvJ7rHUagsFL3oO2TQpKd2kJFu7vr1ZVvDkYZiB-b8Z-Kbk2nmnCXmg8EQB-HOkUPB5DpiqAJ73V2RCS455DRW_JhPAMs0M8JZMYzwAUIasmJDt0rcnGWz0LvMmW_vWH_3e6phJt8sW5863srMqW_WddtF6F4fYxn0lRroue7GxC7Y5d8PqjtwYeYz6_rfPyOfr6mO5zrfvb5vlYpsr5EWXm5JJJVGxilEOaKTaaaC1BomGVZpxKOuCVo0CanaqMbqZU2wqULUsUSPOZ-RxvHuRzki3Fwd_Di59FLG_HPtGaEwikgfgKUvHrAo-xqCNOAXbyvAtKIhBnRjViUSIQZ3oE4MjE1PW7XX4e_A_9APK3XTM
Cites_doi 10.1007/BFb0078571
10.1007/s11856-010-0042-9
10.1007/s00209-016-1699-5
10.4153/CJM-1989-019-5
10.1007/s00208-016-1444-8
10.1007/s00229-011-0437-x
10.1016/j.jfa.2020.108817
10.1007/s11401-015-0915-7
10.1353/ajm.2013.0000
10.1093/imrn/rnm155
10.24033/asens.1628
10.1007/978-3-662-03718-8
10.1515/9781400883936
10.1007/s00209-016-1629-6
ContentType Journal Article
Copyright Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10473-023-0407-x
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1572-9087
EndPage 1570
ExternalDocumentID sxwlxb_e202304007
10_1007_s10473_023_0407_x
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
92E
92I
92M
92Q
93N
9D9
9DA
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABAOU
ABECU
ABFNM
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABWVN
ABXDB
ABXPI
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADBBV
ADEZE
ADKNI
ADMUD
ADNMO
ADTPH
ADURQ
ADYFF
AEBSH
AEFQL
AEIPS
AEJRE
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGIU
AIGVJ
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIGPU
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HG6
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
4A8
PSX
ID FETCH-LOGICAL-c274t-f56aca2c6861702facde019e0a2f68e67059418bc01fdcbfeb312b80c9a52e223
ISSN 0252-9602
IngestDate Thu May 29 04:00:09 EDT 2025
Tue Jul 01 02:27:42 EDT 2025
Fri Feb 21 02:43:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Schwartz distributions
Hausdorffness
automatic extensions
Schwartz functions
46T30
22E20
Lie algebra homology
Schwartz distribu-tions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c274t-f56aca2c6861702facde019e0a2f68e67059418bc01fdcbfeb312b80c9a52e223
PageCount 10
ParticipantIDs wanfang_journals_sxwlxb_e202304007
crossref_primary_10_1007_s10473_023_0407_x
springer_journals_10_1007_s10473_023_0407_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Acta mathematica scientia
PublicationTitleAbbrev Acta Math Sci
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2023
Publisher Springer Nature Singapore
School of Sciences,Jiangnan University,Wuxi 214122,China
Publisher_xml – name: Springer Nature Singapore
– name: School of Sciences,Jiangnan University,Wuxi 214122,China
References Aizenbud A, Gourevitch D. Schwartz functions on Nash manifolds. Int Math Res Not, 2008, 2008 (5): Art rnm155
KnappAVoganDCohomological Induction and Unitary Representations1995PrincetonPrinceton University Press10.1515/97814008839360863.22011
ChenYSunBSchwartz homologies of representations of almost linear Nash groupsJournal of Functional Analysis20212807108817421101810.1016/j.jfa.2020.1088171478.22008
Borel A, Wallach N. Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 1980: No 94
CasselmanWHechtHMiličićDDoranRVaradarajanVBruhat filtrations and Whittaker vectors for real groupsProceedings of Symposia in Pure Mathematics2000Providence, RIAmer Math Soc151191
ShiotaMNash Manifolds1987BerlinSpringer-Verlag10.1007/BFb00785710629.58002
ShiotaMNash Functions and Manifolds//Broglia F. Lectures in Real Geometry1996Berlinde Gruyter
AizenbudAGourevitchDSmooth transfer of Kloostermann integrals (the Archimedean case)American Journal of Mathematics2013135143182302296110.1353/ajm.2013.00001329.11049
HongJSunBGeneralized semi-invariant distributions on p-adic spacesMath Ann201736717271776362323610.1007/s00208-016-1444-81362.22012
AizenbudAGourevitchDThe de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifoldsIsrael J Math2010177155188268441710.1007/s11856-010-0042-91208.58002
AizenbudAGourevitchDKrötzBLiuGErratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit201628399399410.1007/s00209-016-1699-51404.22028
TrèvesFTopological Vector Spaces, Distributions and Kernels1967New YorkAcademic Press0171.10402
SunBAlmost linear Nash groupsChina Ann Math Ser B201536355400334116410.1007/s11401-015-0915-71322.22009
BochnakJCosteMRoyM FReal Algebraic Geometry1998BerlinSpringer10.1007/978-3-662-03718-80912.14023
CasselmanWCanonical extensions of Harish-Chandra modules to representations of GCanad J Math198941385438101346210.4153/CJM-1989-019-50702.22016
Taylor J L. Notes on locally convex topological vector spaces. Lecture Notes, University of Utah, 1995
du ClouxFSur les représentations différentiables des groupes de Lie algébriquesAnn Sci Ecole Norm Sup1991243257318110099210.24033/asens.16280748.22006
SunBZhuC BA general form of Gelfand-Kazhdan criterionManu Math2011136185197282040110.1007/s00229-011-0437-x1229.22014
AizenbudAGourevitchDKrötzBLiuGHausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit2016283979992351999010.1007/s00209-016-1629-61347.22010
407_CR1
W Casselman (407_CR9) 2000
B Sun (407_CR17) 2011; 136
A Aizenbud (407_CR4) 2016; 283
A Knapp (407_CR13) 1995
407_CR18
B Sun (407_CR16) 2015; 36
Y Chen (407_CR10) 2021; 280
A Aizenbud (407_CR3) 2010; 177
W Casselman (407_CR8) 1989; 41
M Shiota (407_CR15) 1996
A Aizenbud (407_CR5) 2016; 283
M Shiota (407_CR14) 1987
J Hong (407_CR12) 2017; 367
J Bochnak (407_CR6) 1998
407_CR7
F Trèves (407_CR19) 1967
A Aizenbud (407_CR2) 2013; 135
F du Cloux (407_CR11) 1991; 24
References_xml – reference: du ClouxFSur les représentations différentiables des groupes de Lie algébriquesAnn Sci Ecole Norm Sup1991243257318110099210.24033/asens.16280748.22006
– reference: ShiotaMNash Functions and Manifolds//Broglia F. Lectures in Real Geometry1996Berlinde Gruyter
– reference: AizenbudAGourevitchDKrötzBLiuGErratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit201628399399410.1007/s00209-016-1699-51404.22028
– reference: CasselmanWHechtHMiličićDDoranRVaradarajanVBruhat filtrations and Whittaker vectors for real groupsProceedings of Symposia in Pure Mathematics2000Providence, RIAmer Math Soc151191
– reference: BochnakJCosteMRoyM FReal Algebraic Geometry1998BerlinSpringer10.1007/978-3-662-03718-80912.14023
– reference: ShiotaMNash Manifolds1987BerlinSpringer-Verlag10.1007/BFb00785710629.58002
– reference: KnappAVoganDCohomological Induction and Unitary Representations1995PrincetonPrinceton University Press10.1515/97814008839360863.22011
– reference: TrèvesFTopological Vector Spaces, Distributions and Kernels1967New YorkAcademic Press0171.10402
– reference: AizenbudAGourevitchDSmooth transfer of Kloostermann integrals (the Archimedean case)American Journal of Mathematics2013135143182302296110.1353/ajm.2013.00001329.11049
– reference: AizenbudAGourevitchDThe de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifoldsIsrael J Math2010177155188268441710.1007/s11856-010-0042-91208.58002
– reference: SunBZhuC BA general form of Gelfand-Kazhdan criterionManu Math2011136185197282040110.1007/s00229-011-0437-x1229.22014
– reference: SunBAlmost linear Nash groupsChina Ann Math Ser B201536355400334116410.1007/s11401-015-0915-71322.22009
– reference: Aizenbud A, Gourevitch D. Schwartz functions on Nash manifolds. Int Math Res Not, 2008, 2008 (5): Art rnm155
– reference: Borel A, Wallach N. Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 1980: No 94
– reference: CasselmanWCanonical extensions of Harish-Chandra modules to representations of GCanad J Math198941385438101346210.4153/CJM-1989-019-50702.22016
– reference: AizenbudAGourevitchDKrötzBLiuGHausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjectureMath Zeit2016283979992351999010.1007/s00209-016-1629-61347.22010
– reference: HongJSunBGeneralized semi-invariant distributions on p-adic spacesMath Ann201736717271776362323610.1007/s00208-016-1444-81362.22012
– reference: ChenYSunBSchwartz homologies of representations of almost linear Nash groupsJournal of Functional Analysis20212807108817421101810.1016/j.jfa.2020.1088171478.22008
– reference: Taylor J L. Notes on locally convex topological vector spaces. Lecture Notes, University of Utah, 1995
– volume-title: Nash Manifolds
  year: 1987
  ident: 407_CR14
  doi: 10.1007/BFb0078571
– start-page: 151
  volume-title: Proceedings of Symposia in Pure Mathematics
  year: 2000
  ident: 407_CR9
– volume: 177
  start-page: 155
  year: 2010
  ident: 407_CR3
  publication-title: Israel J Math
  doi: 10.1007/s11856-010-0042-9
– volume: 283
  start-page: 993
  year: 2016
  ident: 407_CR5
  publication-title: Math Zeit
  doi: 10.1007/s00209-016-1699-5
– volume: 41
  start-page: 385
  year: 1989
  ident: 407_CR8
  publication-title: Canad J Math
  doi: 10.4153/CJM-1989-019-5
– volume: 367
  start-page: 1727
  year: 2017
  ident: 407_CR12
  publication-title: Math Ann
  doi: 10.1007/s00208-016-1444-8
– volume: 136
  start-page: 185
  year: 2011
  ident: 407_CR17
  publication-title: Manu Math
  doi: 10.1007/s00229-011-0437-x
– volume-title: Topological Vector Spaces, Distributions and Kernels
  year: 1967
  ident: 407_CR19
– volume: 280
  start-page: 108817
  issue: 7
  year: 2021
  ident: 407_CR10
  publication-title: Journal of Functional Analysis
  doi: 10.1016/j.jfa.2020.108817
– volume: 36
  start-page: 355
  year: 2015
  ident: 407_CR16
  publication-title: China Ann Math Ser B
  doi: 10.1007/s11401-015-0915-7
– volume-title: Nash Functions and Manifolds//Broglia F. Lectures in Real Geometry
  year: 1996
  ident: 407_CR15
– volume: 135
  start-page: 143
  year: 2013
  ident: 407_CR2
  publication-title: American Journal of Mathematics
  doi: 10.1353/ajm.2013.0000
– ident: 407_CR18
– ident: 407_CR1
  doi: 10.1093/imrn/rnm155
– volume: 24
  start-page: 257
  issue: 3
  year: 1991
  ident: 407_CR11
  publication-title: Ann Sci Ecole Norm Sup
  doi: 10.24033/asens.1628
– ident: 407_CR7
– volume-title: Real Algebraic Geometry
  year: 1998
  ident: 407_CR6
  doi: 10.1007/978-3-662-03718-8
– volume-title: Cohomological Induction and Unitary Representations
  year: 1995
  ident: 407_CR13
  doi: 10.1515/9781400883936
– volume: 283
  start-page: 979
  year: 2016
  ident: 407_CR4
  publication-title: Math Zeit
  doi: 10.1007/s00209-016-1629-6
SSID ssj0016264
Score 2.278339
Snippet Let G be a reductive Nash group, acting on a Nash manifold X . Let Z be a G -stable closed Nash submanifold of X and denote by U the complement of Z in X . Let...
Let G be a reductive Nash group,acting on a Nash manifold X.Let Z be a G-stable closed Nash submanifold of X and denote by U the complement of Z in X.Let x be...
SourceID wanfang
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1561
SubjectTerms Analysis
Mathematics
Mathematics and Statistics
Title Comparison of Homologies and Automatic Extensions of Invariant Distributions
URI https://link.springer.com/article/10.1007/s10473-023-0407-x
https://d.wanfangdata.com.cn/periodical/sxwlxb-e202304007
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQ48FhYsbwUIXyhyip2Esc5Jt1U7YqmaJtCOUVO4qyQUHZFW1E48C_4v4zzrhahhUOjxHYenfk8nrFnxgi9IVaaMy5snZvE1gEhUk9MI9cdS2U6cUGlKKcGZiGbLK2zlb0aDH71vJa2m-Qk_fHHuJL_4SqUAV9VlOw_cLZ9KBTAOfAXjsBhON6Ix6P57L13Pl3MQ-W8M5nPyq0NgkWZMwq-cT7zIqBysIqCcFGGC0OzafgB7vHCaHg6XUTnU39ZRhL3tVQcMOza2DdwYGPvFHsMBw7mLvZcdeIamLNeFcPcw56NgzH2R5hzHHDMfeyT8jlQ69S3q6qqTTv98EkUF9-F8j2YBGF_CoKarbtqPQVZ5QtVQTaVPFIIPAN0XxQgozoHEyj9uN19HlJiEUrhqt0ivBZ41KY6WFR70rlK4lSj0OqJWjA8SW_YJna1Acm1IcFoQqQtR61Yww9sWH3XjX-tV-J69-3LLoml-otKtjm30G0K1ofaGOPkZ-s5RMAGLLOSNZ_bLJZXEZn7r9lXd5q19jJCrMiBQj1lJnqI7tdWiOZVkHqEBrI4RA9qi0Rr6HuI7s3arL5wdad0F07Xj9G7DnnafKx1yNMAeVqLPK1DnmrWIk_bQ94TtBwH0Wii1_ty6Cl1rI2e20ykgqaMq2z-NBdpJsFSkIag0O8lc1QOIMKT1CB5lia5TExCE26krrCpBH30CB0Ul4V8ijTJGOisgkrhJFZmmiIDC0QpVRmM4BZjx-htQ774qkq_EneJthWtY6B1rGgd747RsCFwXPfS9d9av6550DW-hoBnN2n0HN3tesULdLD5upUvQVXdJK9K4PwGXWd1yQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPARISON+OF+HOMOLOGIES+AND+AUTOMATIC+EXTENSIONS+OF+INVARIANT+DISTRIBUTIONS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yangyang+CHEN&rft.date=2023-07-01&rft.pub=School+of+Sciences%2CJiangnan+University%2CWuxi+214122%2CChina&rft.issn=0252-9602&rft.volume=43&rft.issue=4&rft.spage=1561&rft.epage=1570&rft_id=info:doi/10.1007%2Fs10473-023-0407-x&rft.externalDocID=sxwlxb_e202304007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg