Lifelong Learning-Based Optimal Trajectory Tracking Control of Constrained Nonlinear Affine Systems Using Deep Neural Networks
This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approxi...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 12; pp. 7133 - 7146 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2024.3405354 |
Cover
Abstract | This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method. |
---|---|
AbstractList | This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method. This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method.This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method. |
Author | Ganie, Irfan Jagannathan, Sarangapani |
Author_xml | – sequence: 1 givenname: Irfan orcidid: 0000-0002-0376-735X surname: Ganie fullname: Ganie, Irfan email: iag76b@mst.edu organization: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA – sequence: 2 givenname: Sarangapani orcidid: 0000-0002-2310-3737 surname: Jagannathan fullname: Jagannathan, Sarangapani email: sarangap@mst.edu organization: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38865226$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc1uGjEURq2KqkkID1CpqrzsZoh_x_YyIU0bCcGisMhqZDx30ITBpvagiE2fvR5Bo3rjI_t8d3G_GzTywQNCnymZUkrM3Wr28jBlhIkpF0RyKT6ga0ZLXTCm5OidS3WFJim9knx0fjL6E7riWpcy_12jP_O2gS74LZ6Djb712-LBJqjx8tC3e9vhVbSv4PoQTwO6XTbwLPg-hg6HZsDUR9v6HFkE32WwEd83TQb865R62Ce8TkPqEeCAF3CMeeoC-rcQd-kWfWxsl2Byucdo_fR9NftZzJc_nmf388IxJfpCu1rXjpTUEVYTZpQSJQWgsiGUm1ITxRgRjFEnGmOsYRvpjBV04wxwpSwfo2_nuYcYfh8h9dW-TQ66znoIx1RxUipDhaYkq18v6nGzh7o6xLyHeKr-7SwL9Cy4GFKK0LwrlFRDNdVQTTVUU12qyZkv50wLAP_5UkrGGf8L8l6JpA |
CODEN | ITCEB8 |
Cites_doi | 10.1109/TCYB.2020.2979694 10.1109/ADPRL.2011.5967359 10.1109/TSMC.2023.3299556 10.1016/j.automatica.2014.10.103 10.1109/TSMCB.2010.2043839 10.1109/TCYB.2019.2939424 10.1109/TSMC.2023.3259389 10.1109/ACC.2010.5531586 10.1109/TNNLS.2019.2899589 10.1016/j.automatica.2014.05.011 10.1109/TSMC.2020.3003224 10.23919/ECC.2019.8796030 10.1109/TCYB.2020.3027344 10.1073/pnas.1611835114 10.1002/rnc.7039 10.1109/TCYB.2020.3002108 10.1109/TCYB.2023.3283771 10.1007/s13748-020-00218-y 10.1109/TCYB.2021.3069587 10.23919/ACC45564.2020.9147584 10.1080/00207179.2021.1890824 10.1201/9781003062714 10.1109/ROBOT.1998.677069 10.1109/ACSSC.2018.8645556 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3405354 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 7146 |
ExternalDocumentID | 38865226 10_1109_TCYB_2024_3405354 10555232 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: ISC Center at the Missouri University of Science and Technology, Rolla – fundername: Office of Naval Research grantid: N00014-21-1-2232; N00014-24-1-2338; N00014-23-1-2195 funderid: 10.13039/100000006 – fundername: Army Research Office grantid: W911NF-21-2-0260; W911NF-22-2-0185 funderid: 10.13039/100000183 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c274t-8cd8dc061c02d02977461ee15f013968072204221c4f99a92b5c9a41bc9e377a3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 07:30:05 EDT 2025 Wed Mar 05 02:44:36 EST 2025 Tue Jul 01 00:54:06 EDT 2025 Wed Aug 27 03:05:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c274t-8cd8dc061c02d02977461ee15f013968072204221c4f99a92b5c9a41bc9e377a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0376-735X 0000-0002-2310-3737 |
PMID | 38865226 |
PQID | 3067914810 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3405354 ieee_primary_10555232 proquest_miscellaneous_3067914810 pubmed_primary_38865226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref15 Khalil (ref26) 2002 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Kutalev (ref12) 2021 ref24 ref23 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – year: 2021 ident: ref12 article-title: Stabilizing elastic weight consolidation method in practical ML tasks and using weight importances for neural network pruning publication-title: arXiv:2109.10021 – ident: ref25 doi: 10.1109/TCYB.2020.2979694 – ident: ref2 doi: 10.1109/ADPRL.2011.5967359 – ident: ref6 doi: 10.1109/TSMC.2023.3299556 – ident: ref21 doi: 10.1016/j.automatica.2014.10.103 – ident: ref22 doi: 10.1109/TSMCB.2010.2043839 – ident: ref4 doi: 10.1109/TCYB.2019.2939424 – volume-title: Nonlinear Systems year: 2002 ident: ref26 – ident: ref16 doi: 10.1109/TSMC.2023.3259389 – ident: ref20 doi: 10.1109/ACC.2010.5531586 – ident: ref17 doi: 10.1109/TNNLS.2019.2899589 – ident: ref3 doi: 10.1016/j.automatica.2014.05.011 – ident: ref24 doi: 10.1109/TSMC.2020.3003224 – ident: ref14 doi: 10.23919/ECC.2019.8796030 – ident: ref18 doi: 10.1109/TCYB.2020.3027344 – ident: ref11 doi: 10.1073/pnas.1611835114 – ident: ref8 doi: 10.1002/rnc.7039 – ident: ref5 doi: 10.1109/TCYB.2020.3002108 – ident: ref13 doi: 10.1109/TCYB.2023.3283771 – ident: ref9 doi: 10.1007/s13748-020-00218-y – ident: ref15 doi: 10.1109/TCYB.2021.3069587 – ident: ref19 doi: 10.23919/ACC45564.2020.9147584 – ident: ref23 doi: 10.1080/00207179.2021.1890824 – ident: ref7 doi: 10.1201/9781003062714 – ident: ref1 doi: 10.1109/ROBOT.1998.677069 – ident: ref10 doi: 10.1109/ACSSC.2018.8645556 |
SSID | ssj0000816898 |
Score | 2.4023802 |
Snippet | This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7133 |
SubjectTerms | Artificial neural networks Lifelong learning (LL) Multi-layer neural network multilayer neural network (MNN) Multitasking Optimal control reinforcement learning singular value decomposition (SVD) Trajectory Trajectory tracking Vectors |
Title | Lifelong Learning-Based Optimal Trajectory Tracking Control of Constrained Nonlinear Affine Systems Using Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/10555232 https://www.ncbi.nlm.nih.gov/pubmed/38865226 https://www.proquest.com/docview/3067914810 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJy7QlgW2pZWROACSt4njTexju21VIVguW6mcotgZV-WRrPZxKAd-OzO2t4JKlbjNIbETz9jz8Mw3jL3NQHpttRUavBKqaCphwWZC5ha3lkQDtaUC58_T8uJSfbwaX6Vi9VALAwAh-QxGRIa7_LZ3awqVHVEzR3Sc8MR9jHIWi7XuAiqhg0TofSuREGhWVOkWM8_M0Wzy9QS9QalGhSJIE-rHU2hdkvnxj0oKPVYeNjeD2jl_xqabD47ZJt9H65UduV_3sBz_-4-22dNkgPLjKDE77BF0u2wnbfElf5dwqN8_Z78_3Xj40XfXPIGwXosT1Hkt_4LHzE8cA_XctxD0vyXSUdCdT2LqO-89kcvQgQJfmUZEjmbBj71HgiekdB5SFvgpwJwTTgiOOo2J6csBuzw_m00uRGrXIBy6tiuhXatbh_aBy2RLPbEqVeYA-diTmVnqrJKSEMdyp7wxjZF27EyjcusMFFXVFC_YVtd38IpxD6UtjM9bVUnlC29U5rSTtmqkhkZnQ_Zhw7F6HlE56uDNZKYmTtfE6TpxesgGtPB_PRjXfMjebJhc456ii5Kmg369rMmNMugn5jjRy8j9u7c3QrP3wKj77AlNHjNeXrOt1WINB2i3rOxhkNc_VFPm1Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQOcAFKBS6fBqJAyB5mzjexD62C9UC23DZSuUUxc64Atqk6u4e4MBvZ8b2VoBUidscEsfx2J434_Ebxl5lIL222goNXglVtJWwYDMhc4tLSyJA7eiC81Fdzo7Vx5PJSbqsHu7CAEBIPoMxieEsvxvcmkJle1TMER0n3HFvouFXk3hd6yqkEmpIhOq3EgWBwKJK55h5ZvYW0y8H6A9KNS4UkZpQRZ5C65IAyF9GKVRZuR5wBsNzeJfVmy7HfJPv4_XKjt3Pf9gc__uf7rE7CYLy_ThnttkN6O-z7bTIl_x1YqJ-84D9mn_1cDb0pzzRsJ6KA7R6Hf-MG805toGW7lsI-_8g0VHYnU9j8jsfPInLUIMCX6kjJ0d7yfe9R4EnrnQekhb4O4ALTkwh2GodU9OXO-z48P1iOhOpYINw6NyuhHad7hwiBJfJjqpiVarMAfKJJ6BZ6qySkjjHcqe8Ma2RduJMq3LrDBRV1RYP2VY_9LDLuIfSFsbnnaqk8oU3KnPaSVu1UkOrsxF7u9FYcxF5OZrgz2SmIU03pOkmaXrEdmjg_3gwjvmIvdwoucFVRUclbQ_DetmQI2XQU8zxQ4-i9q_e3kyax9e0-oLdmi2O5s38Q_3pCbtNHYn5L0_Z1upyDc8Qxazs8zB3fwOTeuoi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lifelong+Learning-Based+Optimal+Trajectory+Tracking+Control+of+Constrained+Nonlinear+Affine+Systems+Using+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ganie%2C+Irfan&rft.au=Jagannathan%2C+Sarangapani&rft.date=2024-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7133&rft.epage=7146&rft_id=info:doi/10.1109%2FTCYB.2024.3405354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2024_3405354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |