Lifelong Learning-Based Optimal Trajectory Tracking Control of Constrained Nonlinear Affine Systems Using Deep Neural Networks

This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approxi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 12; pp. 7133 - 7146
Main Authors Ganie, Irfan, Jagannathan, Sarangapani
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2024.3405354

Cover

Abstract This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method.
AbstractList This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method.
This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method.This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep neural network (Deep NN) for the uncertain nonlinear continuous-time (CT) affine systems subject to state constraints. A critic MNN, which approximates the value function, and a second NN identifier are together used to generate the optimal control policies. The weights of the critic MNN are tuned online using a novel singular value decomposition (SVD)-based method, which can be extended to MNN with the N-hidden layers. Moreover, an online lifelong learning (LL) scheme is incorporated with the critic MNN to mitigate the problem of catastrophic forgetting in the multitasking systems. Additionally, the proposed optimal framework addresses state constraints by utilizing a time-varying barrier function (TVBF). The uniform ultimate boundedness (UUB) of the overall closed-loop system is shown using the Lyapunov stability analysis. A two-link robotic manipulator that compares to recent literature shows a 47% total cost reduction, demonstrating the effectiveness of the proposed method.
Author Ganie, Irfan
Jagannathan, Sarangapani
Author_xml – sequence: 1
  givenname: Irfan
  orcidid: 0000-0002-0376-735X
  surname: Ganie
  fullname: Ganie, Irfan
  email: iag76b@mst.edu
  organization: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
– sequence: 2
  givenname: Sarangapani
  orcidid: 0000-0002-2310-3737
  surname: Jagannathan
  fullname: Jagannathan, Sarangapani
  email: sarangap@mst.edu
  organization: Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38865226$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1uGjEURq2KqkkID1CpqrzsZoh_x_YyIU0bCcGisMhqZDx30ITBpvagiE2fvR5Bo3rjI_t8d3G_GzTywQNCnymZUkrM3Wr28jBlhIkpF0RyKT6ga0ZLXTCm5OidS3WFJim9knx0fjL6E7riWpcy_12jP_O2gS74LZ6Djb712-LBJqjx8tC3e9vhVbSv4PoQTwO6XTbwLPg-hg6HZsDUR9v6HFkE32WwEd83TQb865R62Ce8TkPqEeCAF3CMeeoC-rcQd-kWfWxsl2Byucdo_fR9NftZzJc_nmf388IxJfpCu1rXjpTUEVYTZpQSJQWgsiGUm1ITxRgRjFEnGmOsYRvpjBV04wxwpSwfo2_nuYcYfh8h9dW-TQ66znoIx1RxUipDhaYkq18v6nGzh7o6xLyHeKr-7SwL9Cy4GFKK0LwrlFRDNdVQTTVUU12qyZkv50wLAP_5UkrGGf8L8l6JpA
CODEN ITCEB8
Cites_doi 10.1109/TCYB.2020.2979694
10.1109/ADPRL.2011.5967359
10.1109/TSMC.2023.3299556
10.1016/j.automatica.2014.10.103
10.1109/TSMCB.2010.2043839
10.1109/TCYB.2019.2939424
10.1109/TSMC.2023.3259389
10.1109/ACC.2010.5531586
10.1109/TNNLS.2019.2899589
10.1016/j.automatica.2014.05.011
10.1109/TSMC.2020.3003224
10.23919/ECC.2019.8796030
10.1109/TCYB.2020.3027344
10.1073/pnas.1611835114
10.1002/rnc.7039
10.1109/TCYB.2020.3002108
10.1109/TCYB.2023.3283771
10.1007/s13748-020-00218-y
10.1109/TCYB.2021.3069587
10.23919/ACC45564.2020.9147584
10.1080/00207179.2021.1890824
10.1201/9781003062714
10.1109/ROBOT.1998.677069
10.1109/ACSSC.2018.8645556
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3405354
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 7146
ExternalDocumentID 38865226
10_1109_TCYB_2024_3405354
10555232
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ISC Center at the Missouri University of Science and Technology, Rolla
– fundername: Office of Naval Research
  grantid: N00014-21-1-2232; N00014-24-1-2338; N00014-23-1-2195
  funderid: 10.13039/100000006
– fundername: Army Research Office
  grantid: W911NF-21-2-0260; W911NF-22-2-0185
  funderid: 10.13039/100000183
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c274t-8cd8dc061c02d02977461ee15f013968072204221c4f99a92b5c9a41bc9e377a3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 07:30:05 EDT 2025
Wed Mar 05 02:44:36 EST 2025
Tue Jul 01 00:54:06 EDT 2025
Wed Aug 27 03:05:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-8cd8dc061c02d02977461ee15f013968072204221c4f99a92b5c9a41bc9e377a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0376-735X
0000-0002-2310-3737
PMID 38865226
PQID 3067914810
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2024_3405354
ieee_primary_10555232
proquest_miscellaneous_3067914810
pubmed_primary_38865226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
Khalil (ref26) 2002
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Kutalev (ref12) 2021
ref24
ref23
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2021
  ident: ref12
  article-title: Stabilizing elastic weight consolidation method in practical ML tasks and using weight importances for neural network pruning
  publication-title: arXiv:2109.10021
– ident: ref25
  doi: 10.1109/TCYB.2020.2979694
– ident: ref2
  doi: 10.1109/ADPRL.2011.5967359
– ident: ref6
  doi: 10.1109/TSMC.2023.3299556
– ident: ref21
  doi: 10.1016/j.automatica.2014.10.103
– ident: ref22
  doi: 10.1109/TSMCB.2010.2043839
– ident: ref4
  doi: 10.1109/TCYB.2019.2939424
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref26
– ident: ref16
  doi: 10.1109/TSMC.2023.3259389
– ident: ref20
  doi: 10.1109/ACC.2010.5531586
– ident: ref17
  doi: 10.1109/TNNLS.2019.2899589
– ident: ref3
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref24
  doi: 10.1109/TSMC.2020.3003224
– ident: ref14
  doi: 10.23919/ECC.2019.8796030
– ident: ref18
  doi: 10.1109/TCYB.2020.3027344
– ident: ref11
  doi: 10.1073/pnas.1611835114
– ident: ref8
  doi: 10.1002/rnc.7039
– ident: ref5
  doi: 10.1109/TCYB.2020.3002108
– ident: ref13
  doi: 10.1109/TCYB.2023.3283771
– ident: ref9
  doi: 10.1007/s13748-020-00218-y
– ident: ref15
  doi: 10.1109/TCYB.2021.3069587
– ident: ref19
  doi: 10.23919/ACC45564.2020.9147584
– ident: ref23
  doi: 10.1080/00207179.2021.1890824
– ident: ref7
  doi: 10.1201/9781003062714
– ident: ref1
  doi: 10.1109/ROBOT.1998.677069
– ident: ref10
  doi: 10.1109/ACSSC.2018.8645556
SSID ssj0000816898
Score 2.4023802
Snippet This article presents a novel lifelong integral reinforcement learning (LIRL)-based optimal trajectory tracking scheme using the multilayer (MNN) or deep...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7133
SubjectTerms Artificial neural networks
Lifelong learning (LL)
Multi-layer neural network
multilayer neural network (MNN)
Multitasking
Optimal control
reinforcement learning
singular value decomposition (SVD)
Trajectory
Trajectory tracking
Vectors
Title Lifelong Learning-Based Optimal Trajectory Tracking Control of Constrained Nonlinear Affine Systems Using Deep Neural Networks
URI https://ieeexplore.ieee.org/document/10555232
https://www.ncbi.nlm.nih.gov/pubmed/38865226
https://www.proquest.com/docview/3067914810
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJy7QlgW2pZWROACSt4njTexju21VIVguW6mcotgZV-WRrPZxKAd-OzO2t4JKlbjNIbETz9jz8Mw3jL3NQHpttRUavBKqaCphwWZC5ha3lkQDtaUC58_T8uJSfbwaX6Vi9VALAwAh-QxGRIa7_LZ3awqVHVEzR3Sc8MR9jHIWi7XuAiqhg0TofSuREGhWVOkWM8_M0Wzy9QS9QalGhSJIE-rHU2hdkvnxj0oKPVYeNjeD2jl_xqabD47ZJt9H65UduV_3sBz_-4-22dNkgPLjKDE77BF0u2wnbfElf5dwqN8_Z78_3Xj40XfXPIGwXosT1Hkt_4LHzE8cA_XctxD0vyXSUdCdT2LqO-89kcvQgQJfmUZEjmbBj71HgiekdB5SFvgpwJwTTgiOOo2J6csBuzw_m00uRGrXIBy6tiuhXatbh_aBy2RLPbEqVeYA-diTmVnqrJKSEMdyp7wxjZF27EyjcusMFFXVFC_YVtd38IpxD6UtjM9bVUnlC29U5rSTtmqkhkZnQ_Zhw7F6HlE56uDNZKYmTtfE6TpxesgGtPB_PRjXfMjebJhc456ii5Kmg369rMmNMugn5jjRy8j9u7c3QrP3wKj77AlNHjNeXrOt1WINB2i3rOxhkNc_VFPm1Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQOcAFKBS6fBqJAyB5mzjexD62C9UC23DZSuUUxc64Atqk6u4e4MBvZ8b2VoBUidscEsfx2J434_Ebxl5lIL222goNXglVtJWwYDMhc4tLSyJA7eiC81Fdzo7Vx5PJSbqsHu7CAEBIPoMxieEsvxvcmkJle1TMER0n3HFvouFXk3hd6yqkEmpIhOq3EgWBwKJK55h5ZvYW0y8H6A9KNS4UkZpQRZ5C65IAyF9GKVRZuR5wBsNzeJfVmy7HfJPv4_XKjt3Pf9gc__uf7rE7CYLy_ThnttkN6O-z7bTIl_x1YqJ-84D9mn_1cDb0pzzRsJ6KA7R6Hf-MG805toGW7lsI-_8g0VHYnU9j8jsfPInLUIMCX6kjJ0d7yfe9R4EnrnQekhb4O4ALTkwh2GodU9OXO-z48P1iOhOpYINw6NyuhHad7hwiBJfJjqpiVarMAfKJJ6BZ6qySkjjHcqe8Ma2RduJMq3LrDBRV1RYP2VY_9LDLuIfSFsbnnaqk8oU3KnPaSVu1UkOrsxF7u9FYcxF5OZrgz2SmIU03pOkmaXrEdmjg_3gwjvmIvdwoucFVRUclbQ_DetmQI2XQU8zxQ4-i9q_e3kyax9e0-oLdmi2O5s38Q_3pCbtNHYn5L0_Z1upyDc8Qxazs8zB3fwOTeuoi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lifelong+Learning-Based+Optimal+Trajectory+Tracking+Control+of+Constrained+Nonlinear+Affine+Systems+Using+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ganie%2C+Irfan&rft.au=Jagannathan%2C+Sarangapani&rft.date=2024-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7133&rft.epage=7146&rft_id=info:doi/10.1109%2FTCYB.2024.3405354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2024_3405354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon