Semi-Global Stabilization of Discrete-Time Linear Systems Subject to Infinite Distributed Input Delays and Actuator Saturations
The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this article. This article develops two low-gain feedback control laws for two types of systems, respectively. It is shown that the resulting system...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 12; pp. 7555 - 7565 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2024.3465437 |
Cover
Loading…
Abstract | The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this article. This article develops two low-gain feedback control laws for two types of systems, respectively. It is shown that the resulting system is semi-globally exponentially stabilized. Our results include those existing results on systems subject to only input saturations and systems subject to bounded delays and input saturations as special cases. Compared with existing results on infinite delays and actuator saturations, this article develops a more accurate scaling utilizing a more general framework. Furthermore, a novel converse Lyapunov theorem for discrete-time linear infinite-delayed systems and a novel stability analysis theorem for perturbed discrete-time linear infinite-delayed systems are developed to handle the nonlinearity induced by saturations. Finally, this article provides two numerical examples to illustrate the effectiveness of the developed theorems. |
---|---|
AbstractList | The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this article. This article develops two low-gain feedback control laws for two types of systems, respectively. It is shown that the resulting system is semi-globally exponentially stabilized. Our results include those existing results on systems subject to only input saturations and systems subject to bounded delays and input saturations as special cases. Compared with existing results on infinite delays and actuator saturations, this article develops a more accurate scaling utilizing a more general framework. Furthermore, a novel converse Lyapunov theorem for discrete-time linear infinite-delayed systems and a novel stability analysis theorem for perturbed discrete-time linear infinite-delayed systems are developed to handle the nonlinearity induced by saturations. Finally, this article provides two numerical examples to illustrate the effectiveness of the developed theorems.The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this article. This article develops two low-gain feedback control laws for two types of systems, respectively. It is shown that the resulting system is semi-globally exponentially stabilized. Our results include those existing results on systems subject to only input saturations and systems subject to bounded delays and input saturations as special cases. Compared with existing results on infinite delays and actuator saturations, this article develops a more accurate scaling utilizing a more general framework. Furthermore, a novel converse Lyapunov theorem for discrete-time linear infinite-delayed systems and a novel stability analysis theorem for perturbed discrete-time linear infinite-delayed systems are developed to handle the nonlinearity induced by saturations. Finally, this article provides two numerical examples to illustrate the effectiveness of the developed theorems. The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this article. This article develops two low-gain feedback control laws for two types of systems, respectively. It is shown that the resulting system is semi-globally exponentially stabilized. Our results include those existing results on systems subject to only input saturations and systems subject to bounded delays and input saturations as special cases. Compared with existing results on infinite delays and actuator saturations, this article develops a more accurate scaling utilizing a more general framework. Furthermore, a novel converse Lyapunov theorem for discrete-time linear infinite-delayed systems and a novel stability analysis theorem for perturbed discrete-time linear infinite-delayed systems are developed to handle the nonlinearity induced by saturations. Finally, this article provides two numerical examples to illustrate the effectiveness of the developed theorems. |
Author | Guo, Yige Xu, Xiang Liu, Lu Wang, Yong Feng, Gang |
Author_xml | – sequence: 1 givenname: Yige orcidid: 0000-0003-2733-3801 surname: Guo fullname: Guo, Yige email: guoyg@zgclab.edu.cn organization: Department Three, Zhongguancun Laboratory, Beijing, China – sequence: 2 givenname: Xiang orcidid: 0000-0002-8663-9029 surname: Xu fullname: Xu, Xiang email: xiangxu5-c@my.cityu.edu.hk organization: Shenzhen Key Laboratory of Control Theory and Intelligent Systems and the School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Lu orcidid: 0000-0003-2741-2542 surname: Liu fullname: Liu, Lu email: luliu45@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China – sequence: 4 givenname: Yong orcidid: 0000-0002-6773-6544 surname: Wang fullname: Wang, Yong email: yongwang@ustc.edu.cn organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: Gang orcidid: 0000-0001-8508-8416 surname: Feng fullname: Feng, Gang email: megfeng@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39392733$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkTlv4zAQhYkgi1ybHxAgCFhuI0c8xKNM7FyAgS3sLVIJFDUCGEiiQ1KF0-SvLx17g52Gg8H33oDzztHx6EdA6IqUM0JKfbuev97PaEn5jHFRcSaP0BklQhWUyur4uxfyFF3G-FbmUnmk1Qk6ZZppKhk7Q58rGFzx1PvG9HiVTON692GS8yP2HV64aAMkKNZuALx0I5iAV9uYYIh4NTVvYBNOHr-MnRtdgp0gBddMCdo83EwJL6A324jN2OI7myaTfHYwaQpfS-JP9KMzfYTLw3uB_jw-rOfPxfL308v8bllYKnkqhBJaKiWJlKWmyhALVlPWCd5ySaUF3VSNItAKIzvLq3wWQQyhRtgGVKfZBfq1990E_z5BTPWQ_wZ9b0bwU6wZIVX2plJl9OaATs0Abb0JbjBhW_87WgbIHrDBxxig-0ZIWe-yqXfZ1Lts6kM2WXO91zgA-I-XhHMl2F_2e4q4 |
CODEN | ITCEB8 |
Cites_doi | 10.1007/978-3-642-54206-0 10.1109/TCYB.2021.3050177 10.1016/j.automatica.2008.06.019 10.1016/0362-546X(94)90231-3 10.1109/TCYB.2021.3119922 10.1007/978-1-4612-4342-7 10.1109/TCYB.2022.3168090 10.1137/060670766 10.1016/0898-1221(94)00102-2 10.1103/PhysRevLett.91.094101 10.1109/TAC.2005.844723 10.1016/0022-247X(74)90233-9 10.1109/TCYB.2017.2665683 10.1109/TCST.2007.899718 10.1109/TCYB.2023.3264913 10.1109/TIE.2004.837866 10.1016/j.automatica.2020.109387 10.1109/TAC.1985.1103789 10.1371/journal.pcbi.1002264 10.1109/TAC.2020.2989791 10.1016/S0167-6911(97)00021-2 10.1016/j.automatica.2013.08.025 10.1109/TAC.2015.2513371 10.1016/j.automatica.2022.110786 10.1109/TAC.1982.1103023 10.1109/TCSI.2012.2215777 10.1109/TCYB.2021.3085735 10.1007/978-1-4612-0205-9 10.1109/TCYB.2022.3218849 10.1109/CDC.2015.7403442 10.1016/0167-6911(94)00020-V 10.1109/9.533685 10.1016/S0167-6911(00)00113-4 10.1080/00207170701516397 10.1016/j.automatica.2016.02.038 10.1049/iet-cta.2017.0853 10.1109/TAC.2011.2170451 10.1109/TAC.2007.899007 10.2748/tmj/1178229804 10.1109/TAC.2019.2958557 10.1109/TCYB.2019.2924446 10.1016/j.automatica.2019.06.005 10.1109/9.935057 10.1016/S0005-1098(03)00167-5 10.1007/978-1-4612-0039-0 10.1016/j.ins.2021.06.060 10.1016/j.automatica.2018.04.049 10.1016/j.automatica.2021.110043 10.1109/TAC.2021.3069718 10.1109/TAC.2020.2991013 10.1109/TCYB.2020.2977554 10.1109/TCYB.2022.3228325 10.1016/0167-6911(93)90033-3 10.1109/ICCA.2007.4376394 10.1109/TCSI.2011.2143170 10.1109/TCYB.2015.2489563 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3465437 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 7565 |
ExternalDocumentID | 39392733 10_1109_TCYB_2024_3465437 10714486 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong grantid: CityU-11201120 funderid: 10.13039/501100004787 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c274t-686978871770928a1cec923f64d4727ce9b5b81ed6a7fc4502461a12a6cbe8f93 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 23:52:20 EDT 2025 Wed Mar 05 02:44:40 EST 2025 Tue Jul 01 00:54:07 EDT 2025 Wed Aug 27 03:05:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c274t-686978871770928a1cec923f64d4727ce9b5b81ed6a7fc4502461a12a6cbe8f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2741-2542 0000-0002-6773-6544 0000-0003-2733-3801 0000-0002-8663-9029 0000-0001-8508-8416 |
PMID | 39392733 |
PQID | 3115770278 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3465437 ieee_primary_10714486 proquest_miscellaneous_3115770278 pubmed_primary_39392733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Khalil (ref51) 2002 Hale (ref1) 1993 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 Kato (ref18) 1978; 21 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref57 doi: 10.1007/978-3-642-54206-0 – ident: ref28 doi: 10.1109/TCYB.2021.3050177 – ident: ref56 doi: 10.1016/j.automatica.2008.06.019 – ident: ref21 doi: 10.1016/0362-546X(94)90231-3 – ident: ref15 doi: 10.1109/TCYB.2021.3119922 – volume-title: Introduction to Functional Differential Equations year: 1993 ident: ref1 doi: 10.1007/978-1-4612-4342-7 – ident: ref16 doi: 10.1109/TCYB.2022.3168090 – ident: ref24 doi: 10.1137/060670766 – ident: ref12 doi: 10.1016/0898-1221(94)00102-2 – ident: ref14 doi: 10.1103/PhysRevLett.91.094101 – ident: ref7 doi: 10.1109/TAC.2005.844723 – ident: ref17 doi: 10.1016/0022-247X(74)90233-9 – ident: ref10 doi: 10.1109/TCYB.2017.2665683 – ident: ref54 doi: 10.1109/TCST.2007.899718 – ident: ref33 doi: 10.1109/TCYB.2023.3264913 – ident: ref11 doi: 10.1109/TIE.2004.837866 – ident: ref34 doi: 10.1016/j.automatica.2020.109387 – ident: ref4 doi: 10.1109/TAC.1985.1103789 – ident: ref13 doi: 10.1371/journal.pcbi.1002264 – ident: ref41 doi: 10.1109/TAC.2020.2989791 – volume: 21 start-page: 63 year: 1978 ident: ref18 article-title: Stability problem in functional differential equations with infinite delay publication-title: Funkcialaj Ekvacioj – ident: ref52 doi: 10.1016/S0167-6911(97)00021-2 – volume-title: Nonlinear Systems year: 2002 ident: ref51 – ident: ref25 doi: 10.1016/j.automatica.2013.08.025 – ident: ref40 doi: 10.1109/TAC.2015.2513371 – ident: ref23 doi: 10.1016/j.automatica.2022.110786 – ident: ref58 doi: 10.1109/TAC.1982.1103023 – ident: ref47 doi: 10.1109/TCSI.2012.2215777 – ident: ref43 doi: 10.1109/TCYB.2021.3085735 – ident: ref30 doi: 10.1007/978-1-4612-0205-9 – ident: ref35 doi: 10.1109/TCYB.2022.3218849 – ident: ref27 doi: 10.1109/CDC.2015.7403442 – ident: ref37 doi: 10.1016/0167-6911(94)00020-V – ident: ref48 doi: 10.1109/9.533685 – ident: ref5 doi: 10.1016/S0167-6911(00)00113-4 – ident: ref55 doi: 10.1080/00207170701516397 – ident: ref26 doi: 10.1016/j.automatica.2016.02.038 – ident: ref53 doi: 10.1049/iet-cta.2017.0853 – ident: ref8 doi: 10.1109/TAC.2011.2170451 – ident: ref38 doi: 10.1109/TAC.2007.899007 – ident: ref19 doi: 10.2748/tmj/1178229804 – ident: ref20 doi: 10.1109/TAC.2019.2958557 – ident: ref42 doi: 10.1109/TCYB.2019.2924446 – ident: ref45 doi: 10.1016/j.automatica.2019.06.005 – ident: ref6 doi: 10.1109/9.935057 – ident: ref2 doi: 10.1016/S0005-1098(03)00167-5 – ident: ref3 doi: 10.1007/978-1-4612-0039-0 – ident: ref49 doi: 10.1016/j.ins.2021.06.060 – ident: ref22 doi: 10.1016/j.automatica.2018.04.049 – ident: ref50 doi: 10.1016/j.automatica.2021.110043 – ident: ref29 doi: 10.1109/TAC.2021.3069718 – ident: ref44 doi: 10.1109/TAC.2020.2991013 – ident: ref32 doi: 10.1109/TCYB.2020.2977554 – ident: ref31 doi: 10.1109/TCYB.2022.3228325 – ident: ref36 doi: 10.1016/0167-6911(93)90033-3 – ident: ref39 doi: 10.1109/ICCA.2007.4376394 – ident: ref46 doi: 10.1109/TCSI.2011.2143170 – ident: ref9 doi: 10.1109/TCYB.2015.2489563 |
SSID | ssj0000816898 |
Score | 2.3731089 |
Snippet | The semi-global stabilization problem of discrete-time systems subject to infinite distributed input delays and actuator saturations is investigated in this... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7555 |
SubjectTerms | Actuators Aerospace electronics Control systems Delay effects Delays Discrete-time systems infinite delays Kernel Linear systems Numerical stability saturation Stability criteria stabilization Vectors |
Title | Semi-Global Stabilization of Discrete-Time Linear Systems Subject to Infinite Distributed Input Delays and Actuator Saturations |
URI | https://ieeexplore.ieee.org/document/10714486 https://www.ncbi.nlm.nih.gov/pubmed/39392733 https://www.proquest.com/docview/3115770278 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy4FCi3bQuVKHNpK3ua1cXzkUQRI5QJI9BT5MZFWtAnqJgd66V_vjJ1FpRJSb1YU5-GZsb95AxxY43RGMFg6l3pZWKukbVwjVemQAB2dYYqzkb9elmc3xcXt7HZMVg-5MIgYgs9wysPgy_edG9hURhKuCP9X5SqskuYWk7UeDSqhg0TofZvRQBKsUKMXM0305-vjb0ekDWbFNOcKYjk338s1gQOV50-OpNBj5Xm4GY6d0w24XH5wjDa5mw69nbpf_9Ry_O8_2oQXIwAVh5FjtmAF25ewNYr4QnwY61B_3IbfV_hjLmNTAEGglMNoY9Km6BpxMqcNhxC35CQSQSotiYwY658L2o7YviP6Tpy3zZxxLU-I3bXQ08X7oRcn-N08LIRpvTjkPBZS_8UVFxqNVsQduDn9cn18Jsd-DdIRUXtZVqXm4MRUqURnlUkdEiPkTVn4gmCSQ21ntkrRl0Y1rpglXMvOpJkpncWq0fkrWGu7FndB-FQ59hga0-RFgqTCW--1tm5GJLOFnsCnJcnq-1iWow7qTKJrJnXNpK5HUk9gh1f-rxvjok_g_ZLKNQkVe0pMi92wqEMJIsVO2Qm8juR_nL3kmjfPPPUtrPPLY8jLHqz1PwfcJ-DS23eBYf8AKlfoLw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxRBEK4gHPSCogiLik3CQU16mXdPH5FHFoW9uCR4mvRrkg0wQ9iZg17861Z1zxI1IfE2mUx3erqqur6uJ8C-VkYmCIO5MbHlmdaC69rUXBTGIaBDHSYoG_liWkwusy9X-dWQrO5zYZxzPvjMjenR-_Jta3oylaGEC8T_ZfEE1lDx53FI13owqfgeEr77bYIPHIGFGPyYcSQPZkffP-N9MMnGKdUQS6n9XioRHog0_Usp-S4rjwNOr3hOn8N0ueQQb3I97js9Nj__qeb43__0AtYHCMoOA89swIprXsLGIOQL9mGoRP3xFfz65m7nPLQFYAhLKZA2pG2ytmbHczxyEHNzSiNheKlFoWFDBXSGBxJZeFjXsrOmnhOypQGhv5az-PKu79ixu1E_Fkw1lh1SJkvX4gxUajTYETfh8vRkdjThQ8cGbpCsHS_KQlJ4YixEJJNSxcYhK6R1kdkMgZJxUue6jJ0tlKhNlkdUzU7FiSqMdmUt09ew2rSN2wZmY2HIZ6hUnWaRw0u8tlZKbXIkmc7kCD4tSVbdhcIclb_QRLIiUldE6mog9Qg2aef_-DBs-gj2llSuUKzIV6Ia1_aLyhchEuSWHcFWIP_D6CXX7Dwy63t4OpldnFfnZ9Ovb-AZLSQEwLyF1e6-d-8QxnR61zPvb2_s63g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Global+Stabilization+of+Discrete-Time+Linear+Systems+Subject+to+Infinite+Distributed+Input+Delays+and+Actuator+Saturations&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Guo%2C+Yige&rft.au=Xu%2C+Xiang&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Yong&rft.date=2024-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7555&rft_id=info:doi/10.1109%2FTCYB.2024.3465437&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |