Some comments on infinities on quantum field theory: A functional integral approach

We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.

Saved in:
Bibliographic Details
Published inRandom operators and stochastic equations Vol. 24; no. 2; pp. 79 - 92
Main Author Botelho, Luiz C. L.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.06.2016
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0926-6364
1569-397X
DOI10.1515/rose-2016-0006

Cover

Abstract We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.
AbstractList We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.
Author Botelho, Luiz C. L.
Author_xml – sequence: 1
  givenname: Luiz C. L.
  surname: Botelho
  fullname: Botelho, Luiz C. L.
  email: botelho.luiz@ig.com.br
  organization: Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal Fluminense, Rua Mario Santos Braga, 24220-140, Niterói, Rio de Janeiro, Brazil
BookMark eNptkEtLAzEUhYNUsK1uXQ-4nprXJI2uSvEFBRdVcBeSmcRO6SRtkkH6781YFy7c3Aeccx_fBIycdwaAawRnqELVbfDRlBgiVkII2RkYo4qJkgj-MQJjKDArGWH0Akxi3EKI5pCLMVivfWeK2nedcSkW3hWts61rU2t-ukOvXOq7wrZm1xRpY3w43hWLwvauTq13apcNyXyGXKj9PnhVby7BuVW7aK5-8xS8Pz68LZ_L1evTy3KxKmvMaSoJQRUlBupKG15hzGpUaTsEgvWcaVFzpExFUaNsY5BuFGo0oRZryhSknEzBzWluXnvoTUxy6_uQT4oScYEhp1AMqtlJVWdAMRgr96HtVDhKBOUATg7g5ABODuCy4f5k-FK7ZEKTn-uPufgz_V8jppgL8g0d6Hfa
Cites_doi 10.1142/6856
10.1515/rose-2013-0012
10.1515/ROSE.2011.020
10.1007/s00220-008-0467-8
10.1515/rose.2010.017
10.1155/2011/257916
10.1166/jama.2014.1047
10.1007/978-1-4612-4728-9
10.1142/S0217984999000270
10.1515/rose-2014-0029
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH Jun 2016
Copyright_xml – notice: Copyright Walter de Gruyter GmbH Jun 2016
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/rose-2016-0006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-397X
EndPage 92
ExternalDocumentID 4070139921
10_1515_rose_2016_0006
10_1515_rose_2016_000624279
GroupedDBID 0R~
0~D
123
4.4
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAONY
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACUND
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AEKEB
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
AMVHM
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CS3
DSRVY
EBS
EJD
FSTRU
HZ~
IY9
KDIRW
O9-
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c274t-331543e0b5be75226c15bfc15b32b86b9c71ae541dafde1bda1db34f2b46a0473
ISSN 0926-6364
IngestDate Wed Aug 13 07:10:48 EDT 2025
Tue Jul 01 02:25:45 EDT 2025
Sat Sep 06 17:02:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c274t-331543e0b5be75226c15bfc15b32b86b9c71ae541dafde1bda1db34f2b46a0473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1792074097
PQPubID 2030084
PageCount 14
ParticipantIDs proquest_journals_1792074097
crossref_primary_10_1515_rose_2016_0006
walterdegruyter_journals_10_1515_rose_2016_000624279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-6-1
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-6-1
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Random operators and stochastic equations
PublicationYear 2016
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Botelho, L. C. L. (j_rose-2016-0006_ref_005) 2011; 2011
Botelho, L. C. L. (j_rose-2016-0006_ref_004) 2011; 19
Pickrell, D. (j_rose-2016-0006_ref_000) 2008; 280
Botelho, L. C. L. (j_rose-2016-0006_ref_001) 1999; 13
Botelho, L. C. L. (j_rose-2016-0006_ref_006) 2013; 21
Botelho, L. C. L. (j_rose-2016-0006_ref_008) 2015; 23
Botelho, L. C. L. (j_rose-2016-0006_ref_003) 2010; 18
Botelho, L. C. L. (j_rose-2016-0006_ref_007) 2014; 3
2023040102282528478_j_rose-2016-0006_ref_002_w2aab2b8b2b1b7b1ab1b1b2Aa
2023040102282528478_j_rose-2016-0006_ref_012_w2aab2b8b2b1b7b1ab1b1c13Aa
2023040102282528478_j_rose-2016-0006_ref_008_w2aab2b8b2b1b7b1ab1b1b8Aa
2023040102282528478_j_rose-2016-0006_ref_004_w2aab2b8b2b1b7b1ab1b1b4Aa
2023040102282528478_j_rose-2016-0006_ref_010_w2aab2b8b2b1b7b1ab1b1c10Aa
2023040102282528478_j_rose-2016-0006_ref_007_w2aab2b8b2b1b7b1ab1b1b7Aa
2023040102282528478_j_rose-2016-0006_ref_003_w2aab2b8b2b1b7b1ab1b1b3Aa
2023040102282528478_j_rose-2016-0006_ref_005_w2aab2b8b2b1b7b1ab1b1b5Aa
2023040102282528478_j_rose-2016-0006_ref_011_w2aab2b8b2b1b7b1ab1b1c11Aa
2023040102282528478_j_rose-2016-0006_ref_009_w2aab2b8b2b1b7b1ab1b1b9Aa
2023040102282528478_j_rose-2016-0006_ref_000_w2aab2b8b2b1b7b1ab1b1c12Aa
2023040102282528478_j_rose-2016-0006_ref_001_w2aab2b8b2b1b7b1ab1b1b1Aa
2023040102282528478_j_rose-2016-0006_ref_006_w2aab2b8b2b1b7b1ab1b1b6Aa
References_xml – volume: 19
  start-page: 361
  issue: 4
  year: 2011
  end-page: 386
  ident: j_rose-2016-0006_ref_004
  article-title: Semi-linear diffusion in ℝD and in Hilbert spaces, a Feynman–Wiener path integral study
  publication-title: Random Oper. Stoch. Equ.
– volume: 21
  start-page: 271
  year: 2013
  end-page: 292
  ident: j_rose-2016-0006_ref_006
  article-title: A note an Feynman Kac path integral representations for scalar wave motions
  publication-title: Random Oper. Stoch. Equ.
– volume: 2011
  year: 2011
  ident: j_rose-2016-0006_ref_005
  article-title: Some comments on rigorous finite-volume Euclidean quantum field path integrals in the analytical regularization scheme
  publication-title: Adv. Math. Phys.
– volume: 23
  start-page: 53
  issue: 1
  year: 2015
  end-page: 77
  ident: j_rose-2016-0006_ref_008
  article-title: On the rigorous ergodic theorem for a class of non-linear Klein Gordon wave propagations
  publication-title: Random Oper. Stoch. Equ.
– volume: 18
  start-page: 301
  issue: 4
  year: 2010
  end-page: 325
  ident: j_rose-2016-0006_ref_003
  article-title: A method of integration for wave equation and some applications to wave physics
  publication-title: Random Oper. Stoch. Equ.
– volume: 3
  start-page: 1
  year: 2014
  end-page: 11
  ident: j_rose-2016-0006_ref_007
  article-title: Non-linear diffusion and wave damped propagation: Weak solutions and statistical turbulence behavior
  publication-title: J. Adv. Math. Appl.
– volume: 280
  start-page: 403
  year: 2008
  end-page: 425
  ident: j_rose-2016-0006_ref_000
  article-title: P(φ)2 quantum field theories and Segal's axioms
  publication-title: Commun. Math. Phys.
– volume: 13
  start-page: 203
  issue: 6–7
  year: 1999
  end-page: 207
  ident: j_rose-2016-0006_ref_001
  article-title: A simple renormalization scheme in random surface theory
  publication-title: Modern Phys. Lett. B
– ident: 2023040102282528478_j_rose-2016-0006_ref_002_w2aab2b8b2b1b7b1ab1b1b2Aa
  doi: 10.1142/6856
– ident: 2023040102282528478_j_rose-2016-0006_ref_006_w2aab2b8b2b1b7b1ab1b1b6Aa
  doi: 10.1515/rose-2013-0012
– ident: 2023040102282528478_j_rose-2016-0006_ref_004_w2aab2b8b2b1b7b1ab1b1b4Aa
  doi: 10.1515/ROSE.2011.020
– ident: 2023040102282528478_j_rose-2016-0006_ref_012_w2aab2b8b2b1b7b1ab1b1c13Aa
– ident: 2023040102282528478_j_rose-2016-0006_ref_000_w2aab2b8b2b1b7b1ab1b1c12Aa
  doi: 10.1007/s00220-008-0467-8
– ident: 2023040102282528478_j_rose-2016-0006_ref_003_w2aab2b8b2b1b7b1ab1b1b3Aa
  doi: 10.1515/rose.2010.017
– ident: 2023040102282528478_j_rose-2016-0006_ref_005_w2aab2b8b2b1b7b1ab1b1b5Aa
  doi: 10.1155/2011/257916
– ident: 2023040102282528478_j_rose-2016-0006_ref_007_w2aab2b8b2b1b7b1ab1b1b7Aa
  doi: 10.1166/jama.2014.1047
– ident: 2023040102282528478_j_rose-2016-0006_ref_009_w2aab2b8b2b1b7b1ab1b1b9Aa
  doi: 10.1007/978-1-4612-4728-9
– ident: 2023040102282528478_j_rose-2016-0006_ref_001_w2aab2b8b2b1b7b1ab1b1b1Aa
  doi: 10.1142/S0217984999000270
– ident: 2023040102282528478_j_rose-2016-0006_ref_011_w2aab2b8b2b1b7b1ab1b1c11Aa
– ident: 2023040102282528478_j_rose-2016-0006_ref_010_w2aab2b8b2b1b7b1ab1b1c10Aa
– ident: 2023040102282528478_j_rose-2016-0006_ref_008_w2aab2b8b2b1b7b1ab1b1b8Aa
  doi: 10.1515/rose-2014-0029
SSID ssj0018079
Score 1.9962182
Snippet We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 79
SubjectTerms 35L15
35Q40
35Q80
constructive quantum field theory
Probabilistic infinite-dimensional measures
Quantum field theory
Title Some comments on infinities on quantum field theory: A functional integral approach
URI https://www.degruyter.com/doi/10.1515/rose-2016-0006
https://www.proquest.com/docview/1792074097
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVauLQHBLRVt6WVD0g9RN7GiWNvelsQFFXQQ4Fqb5GdOAKJTaAkquDXd_yRD-geaC_WJtp4s55nz7M984zQLtVClFrEJFVlTphUoelzlBTga62EObfHdJ5850fn7NsiWQzHHdnskkZN8_uVeSX_Y1W4B3Y1WbL_YNm-UrgBn8G-UIKFoXySjU_rpQk2X7o0NRu0WF5WViPVXN200GztMrBRai5l8c5lohtv5hcBvV7EVa8uPqarP2RV1MugvtZ2N97pOQNdzC-k0XcO9E07WvGzUYeNvrqwy6_H7eV9sD8NjqfjlQXKhwiobokw4oTHTmV8qv0AyVMCHGYxHkFdFrRHSjQaDt05Md6xujPv_hqyE6tuAZRAE_cSYbhCG_uRz-ojCc0cBmrIzPOZed7spvPnaD0Swmzbr8-_7h387PeVZqFXX_T_zMt4Qg2fH77BQ5oyzD02ftsohgIs09413a65JSNnm2jDzyLw3EFiCz3T1TZ6edJL8N6-QqcGHLgDB64rPIDDXHlwYAsO7MDxBc_xAA3cQQN30HiNzg8PzvaPiD9Bg-SRYA2JY2DIsQ5VorQwTDunCfRJKOJIzbhKc0GlThgtZFloqgpJCxWzMlKMy5CJ-A1aq-pKv0U4TIpcqsRMMI1Em1SKlbGmuTKad0rMJuhT12DZtRNKyVYbZ4J2uvbMfGe6zcAvRMBmw1RMEHvUxqNvrawQWKZI3z3599-jFwPad9Ba86vVH4BZNuqjh8sf1UF7Yg
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5ROKgHfxvxZw8mngYr7VrwhgZEBS6A8basXadGGIpbjP71tttARE96WbJke-n6tXtf3-v7CnCCFeeB4sSqikBa1BO2mXPY8rWvTSTMWXJMZ7vDmn16fefczdTCmG2Vvrofx-9RqpBa8kcyNoGyqdaA9sAl7UGUBhgzUxXNSg_RcLAIeZNCoznI1y7P67fTXELFzhT3ysxihNFMuvGnme-u6Ytvrr4lmetps2YcUGMN5KTp6b6Tp2IciaL8mFN1_N-3rcNqxk9RLR1QG7Cgwk1YaU_FXV-3oNsdDRXShpPqODQKkR6lj2EizWruXmKNVjxEyeY4lFRKvp-hGjIuNI08okykYoAmkubb0G_UexdNKzubwZJ6HRtZhGjuRZQtHKG44XASOxptfSFlUWGiKjn2lEOx7wW-wsL3sC8IDcqCMs-mnOxALhyFaheQ7fjSE45ZuhjxL08IGhCFpTBqaoJXCnA6gcV9TiU4XLN00X3lmr5yTV-ZJDorwMEENTebiq-u_uOUNU-yq7wAdA7Jmad-Naj5C6_u_e21Y1hq9tott3XVudmH5RRQE705gFw0jtWhJjOROMpG6yceofHa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BK1X0sLQF1KXb4gNST2HjtWPvclsoy6OAKvEQtygTOwi1ZGE3EaK_nnEey_MEl0iRkpHjz858Mx5_BljjVuvEauH1MYk9GaHv5hz3DPnaQsJcFcd0Hh6p3VO5fx7U1YSTqqzS2ItxfpeVCqkdM4pzlyibag2QB-6QB7EEMFduV7TqXJtkFhoUq_Qo_moMdja3z6ZLCT2_EtzrKk8JJSvlxpdWnnqmB7rZvC0WrqeteuR_hguAdcvLspO_63mG6_H_Z6KO7_q0T9Cs2CkblMPpM8zY9At8PJxKu04W4fh4dGUZ2S32xrFRymiMXqaFMKu7u8kJq_yKFaVxrNgnebfBBsw50DLvyCqJin-sFjRfgtPh9snWrledzODFFMVmnhDEvIT1MUCrHYOLeUBY00V0saewH2se2UByEyXGcjQRNyhk0kWpIl9qsQxz6Si1X4H5gYkjDFzg4qS_IkSZCMtjdFpqqHst-FmjEl6XAhyhC1yoq0LXVaHrKreErlrQrkELq4k4Cel_0yWW5Pd1C-QzIB899apBYi-6v_K211bhw59fw_Bg7-j3N5gv4XSpmzbMZePcficmk-GPaqzeA3Nk8Io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+comments+on+infinities+on+quantum+field+theory%3A+A+functional+integral+approach&rft.jtitle=Random+operators+and+stochastic+equations&rft.au=Botelho%2C+Luiz+C.+L.&rft.date=2016-06-01&rft.issn=0926-6364&rft.eissn=1569-397X&rft.volume=24&rft.issue=2&rft.spage=79&rft.epage=92&rft_id=info:doi/10.1515%2Frose-2016-0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_rose_2016_0006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6364&client=summon