Some comments on infinities on quantum field theory: A functional integral approach
We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.
Saved in:
Published in | Random operators and stochastic equations Vol. 24; no. 2; pp. 79 - 92 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.06.2016
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0926-6364 1569-397X |
DOI | 10.1515/rose-2016-0006 |
Cover
Abstract | We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject. |
---|---|
AbstractList | We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject. |
Author | Botelho, Luiz C. L. |
Author_xml | – sequence: 1 givenname: Luiz C. L. surname: Botelho fullname: Botelho, Luiz C. L. email: botelho.luiz@ig.com.br organization: Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal Fluminense, Rua Mario Santos Braga, 24220-140, Niterói, Rio de Janeiro, Brazil |
BookMark | eNptkEtLAzEUhYNUsK1uXQ-4nprXJI2uSvEFBRdVcBeSmcRO6SRtkkH6781YFy7c3Aeccx_fBIycdwaAawRnqELVbfDRlBgiVkII2RkYo4qJkgj-MQJjKDArGWH0Akxi3EKI5pCLMVivfWeK2nedcSkW3hWts61rU2t-ukOvXOq7wrZm1xRpY3w43hWLwvauTq13apcNyXyGXKj9PnhVby7BuVW7aK5-8xS8Pz68LZ_L1evTy3KxKmvMaSoJQRUlBupKG15hzGpUaTsEgvWcaVFzpExFUaNsY5BuFGo0oRZryhSknEzBzWluXnvoTUxy6_uQT4oScYEhp1AMqtlJVWdAMRgr96HtVDhKBOUATg7g5ABODuCy4f5k-FK7ZEKTn-uPufgz_V8jppgL8g0d6Hfa |
Cites_doi | 10.1142/6856 10.1515/rose-2013-0012 10.1515/ROSE.2011.020 10.1007/s00220-008-0467-8 10.1515/rose.2010.017 10.1155/2011/257916 10.1166/jama.2014.1047 10.1007/978-1-4612-4728-9 10.1142/S0217984999000270 10.1515/rose-2014-0029 |
ContentType | Journal Article |
Copyright | Copyright Walter de Gruyter GmbH Jun 2016 |
Copyright_xml | – notice: Copyright Walter de Gruyter GmbH Jun 2016 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/rose-2016-0006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-397X |
EndPage | 92 |
ExternalDocumentID | 4070139921 10_1515_rose_2016_0006 10_1515_rose_2016_000624279 |
GroupedDBID | 0R~ 0~D 123 4.4 AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAONY AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABRQL ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACMKP ACPMA ACUND ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEGVQ AEICA AEJTT AEKEB AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFGNR AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIKXB AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY AMVHM ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV CS3 DSRVY EBS EJD FSTRU HZ~ IY9 KDIRW O9- PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c274t-331543e0b5be75226c15bfc15b32b86b9c71ae541dafde1bda1db34f2b46a0473 |
ISSN | 0926-6364 |
IngestDate | Wed Aug 13 07:10:48 EDT 2025 Tue Jul 01 02:25:45 EDT 2025 Sat Sep 06 17:02:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c274t-331543e0b5be75226c15bfc15b32b86b9c71ae541dafde1bda1db34f2b46a0473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1792074097 |
PQPubID | 2030084 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1792074097 crossref_primary_10_1515_rose_2016_0006 walterdegruyter_journals_10_1515_rose_2016_000624279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-6-1 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-6-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Random operators and stochastic equations |
PublicationYear | 2016 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Botelho, L. C. L. (j_rose-2016-0006_ref_005) 2011; 2011 Botelho, L. C. L. (j_rose-2016-0006_ref_004) 2011; 19 Pickrell, D. (j_rose-2016-0006_ref_000) 2008; 280 Botelho, L. C. L. (j_rose-2016-0006_ref_001) 1999; 13 Botelho, L. C. L. (j_rose-2016-0006_ref_006) 2013; 21 Botelho, L. C. L. (j_rose-2016-0006_ref_008) 2015; 23 Botelho, L. C. L. (j_rose-2016-0006_ref_003) 2010; 18 Botelho, L. C. L. (j_rose-2016-0006_ref_007) 2014; 3 2023040102282528478_j_rose-2016-0006_ref_002_w2aab2b8b2b1b7b1ab1b1b2Aa 2023040102282528478_j_rose-2016-0006_ref_012_w2aab2b8b2b1b7b1ab1b1c13Aa 2023040102282528478_j_rose-2016-0006_ref_008_w2aab2b8b2b1b7b1ab1b1b8Aa 2023040102282528478_j_rose-2016-0006_ref_004_w2aab2b8b2b1b7b1ab1b1b4Aa 2023040102282528478_j_rose-2016-0006_ref_010_w2aab2b8b2b1b7b1ab1b1c10Aa 2023040102282528478_j_rose-2016-0006_ref_007_w2aab2b8b2b1b7b1ab1b1b7Aa 2023040102282528478_j_rose-2016-0006_ref_003_w2aab2b8b2b1b7b1ab1b1b3Aa 2023040102282528478_j_rose-2016-0006_ref_005_w2aab2b8b2b1b7b1ab1b1b5Aa 2023040102282528478_j_rose-2016-0006_ref_011_w2aab2b8b2b1b7b1ab1b1c11Aa 2023040102282528478_j_rose-2016-0006_ref_009_w2aab2b8b2b1b7b1ab1b1b9Aa 2023040102282528478_j_rose-2016-0006_ref_000_w2aab2b8b2b1b7b1ab1b1c12Aa 2023040102282528478_j_rose-2016-0006_ref_001_w2aab2b8b2b1b7b1ab1b1b1Aa 2023040102282528478_j_rose-2016-0006_ref_006_w2aab2b8b2b1b7b1ab1b1b6Aa |
References_xml | – volume: 19 start-page: 361 issue: 4 year: 2011 end-page: 386 ident: j_rose-2016-0006_ref_004 article-title: Semi-linear diffusion in ℝD and in Hilbert spaces, a Feynman–Wiener path integral study publication-title: Random Oper. Stoch. Equ. – volume: 21 start-page: 271 year: 2013 end-page: 292 ident: j_rose-2016-0006_ref_006 article-title: A note an Feynman Kac path integral representations for scalar wave motions publication-title: Random Oper. Stoch. Equ. – volume: 2011 year: 2011 ident: j_rose-2016-0006_ref_005 article-title: Some comments on rigorous finite-volume Euclidean quantum field path integrals in the analytical regularization scheme publication-title: Adv. Math. Phys. – volume: 23 start-page: 53 issue: 1 year: 2015 end-page: 77 ident: j_rose-2016-0006_ref_008 article-title: On the rigorous ergodic theorem for a class of non-linear Klein Gordon wave propagations publication-title: Random Oper. Stoch. Equ. – volume: 18 start-page: 301 issue: 4 year: 2010 end-page: 325 ident: j_rose-2016-0006_ref_003 article-title: A method of integration for wave equation and some applications to wave physics publication-title: Random Oper. Stoch. Equ. – volume: 3 start-page: 1 year: 2014 end-page: 11 ident: j_rose-2016-0006_ref_007 article-title: Non-linear diffusion and wave damped propagation: Weak solutions and statistical turbulence behavior publication-title: J. Adv. Math. Appl. – volume: 280 start-page: 403 year: 2008 end-page: 425 ident: j_rose-2016-0006_ref_000 article-title: P(φ)2 quantum field theories and Segal's axioms publication-title: Commun. Math. Phys. – volume: 13 start-page: 203 issue: 6–7 year: 1999 end-page: 207 ident: j_rose-2016-0006_ref_001 article-title: A simple renormalization scheme in random surface theory publication-title: Modern Phys. Lett. B – ident: 2023040102282528478_j_rose-2016-0006_ref_002_w2aab2b8b2b1b7b1ab1b1b2Aa doi: 10.1142/6856 – ident: 2023040102282528478_j_rose-2016-0006_ref_006_w2aab2b8b2b1b7b1ab1b1b6Aa doi: 10.1515/rose-2013-0012 – ident: 2023040102282528478_j_rose-2016-0006_ref_004_w2aab2b8b2b1b7b1ab1b1b4Aa doi: 10.1515/ROSE.2011.020 – ident: 2023040102282528478_j_rose-2016-0006_ref_012_w2aab2b8b2b1b7b1ab1b1c13Aa – ident: 2023040102282528478_j_rose-2016-0006_ref_000_w2aab2b8b2b1b7b1ab1b1c12Aa doi: 10.1007/s00220-008-0467-8 – ident: 2023040102282528478_j_rose-2016-0006_ref_003_w2aab2b8b2b1b7b1ab1b1b3Aa doi: 10.1515/rose.2010.017 – ident: 2023040102282528478_j_rose-2016-0006_ref_005_w2aab2b8b2b1b7b1ab1b1b5Aa doi: 10.1155/2011/257916 – ident: 2023040102282528478_j_rose-2016-0006_ref_007_w2aab2b8b2b1b7b1ab1b1b7Aa doi: 10.1166/jama.2014.1047 – ident: 2023040102282528478_j_rose-2016-0006_ref_009_w2aab2b8b2b1b7b1ab1b1b9Aa doi: 10.1007/978-1-4612-4728-9 – ident: 2023040102282528478_j_rose-2016-0006_ref_001_w2aab2b8b2b1b7b1ab1b1b1Aa doi: 10.1142/S0217984999000270 – ident: 2023040102282528478_j_rose-2016-0006_ref_011_w2aab2b8b2b1b7b1ab1b1c11Aa – ident: 2023040102282528478_j_rose-2016-0006_ref_010_w2aab2b8b2b1b7b1ab1b1c10Aa – ident: 2023040102282528478_j_rose-2016-0006_ref_008_w2aab2b8b2b1b7b1ab1b1b8Aa doi: 10.1515/rose-2014-0029 |
SSID | ssj0018079 |
Score | 1.9962182 |
Snippet | We analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 79 |
SubjectTerms | 35L15 35Q40 35Q80 constructive quantum field theory Probabilistic infinite-dimensional measures Quantum field theory |
Title | Some comments on infinities on quantum field theory: A functional integral approach |
URI | https://www.degruyter.com/doi/10.1515/rose-2016-0006 https://www.proquest.com/docview/1792074097 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVauLQHBLRVt6WVD0g9RN7GiWNvelsQFFXQQ4Fqb5GdOAKJTaAkquDXd_yRD-geaC_WJtp4s55nz7M984zQLtVClFrEJFVlTphUoelzlBTga62EObfHdJ5850fn7NsiWQzHHdnskkZN8_uVeSX_Y1W4B3Y1WbL_YNm-UrgBn8G-UIKFoXySjU_rpQk2X7o0NRu0WF5WViPVXN200GztMrBRai5l8c5lohtv5hcBvV7EVa8uPqarP2RV1MugvtZ2N97pOQNdzC-k0XcO9E07WvGzUYeNvrqwy6_H7eV9sD8NjqfjlQXKhwiobokw4oTHTmV8qv0AyVMCHGYxHkFdFrRHSjQaDt05Md6xujPv_hqyE6tuAZRAE_cSYbhCG_uRz-ojCc0cBmrIzPOZed7spvPnaD0Swmzbr8-_7h387PeVZqFXX_T_zMt4Qg2fH77BQ5oyzD02ftsohgIs09413a65JSNnm2jDzyLw3EFiCz3T1TZ6edJL8N6-QqcGHLgDB64rPIDDXHlwYAsO7MDxBc_xAA3cQQN30HiNzg8PzvaPiD9Bg-SRYA2JY2DIsQ5VorQwTDunCfRJKOJIzbhKc0GlThgtZFloqgpJCxWzMlKMy5CJ-A1aq-pKv0U4TIpcqsRMMI1Em1SKlbGmuTKad0rMJuhT12DZtRNKyVYbZ4J2uvbMfGe6zcAvRMBmw1RMEHvUxqNvrawQWKZI3z3599-jFwPad9Ba86vVH4BZNuqjh8sf1UF7Yg |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5ROKgHfxvxZw8mngYr7VrwhgZEBS6A8basXadGGIpbjP71tttARE96WbJke-n6tXtf3-v7CnCCFeeB4sSqikBa1BO2mXPY8rWvTSTMWXJMZ7vDmn16fefczdTCmG2Vvrofx-9RqpBa8kcyNoGyqdaA9sAl7UGUBhgzUxXNSg_RcLAIeZNCoznI1y7P67fTXELFzhT3ysxihNFMuvGnme-u6Ytvrr4lmetps2YcUGMN5KTp6b6Tp2IciaL8mFN1_N-3rcNqxk9RLR1QG7Cgwk1YaU_FXV-3oNsdDRXShpPqODQKkR6lj2EizWruXmKNVjxEyeY4lFRKvp-hGjIuNI08okykYoAmkubb0G_UexdNKzubwZJ6HRtZhGjuRZQtHKG44XASOxptfSFlUWGiKjn2lEOx7wW-wsL3sC8IDcqCMs-mnOxALhyFaheQ7fjSE45ZuhjxL08IGhCFpTBqaoJXCnA6gcV9TiU4XLN00X3lmr5yTV-ZJDorwMEENTebiq-u_uOUNU-yq7wAdA7Jmad-Naj5C6_u_e21Y1hq9tott3XVudmH5RRQE705gFw0jtWhJjOROMpG6yceofHa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BK1X0sLQF1KXb4gNST2HjtWPvclsoy6OAKvEQtygTOwi1ZGE3EaK_nnEey_MEl0iRkpHjz858Mx5_BljjVuvEauH1MYk9GaHv5hz3DPnaQsJcFcd0Hh6p3VO5fx7U1YSTqqzS2ItxfpeVCqkdM4pzlyibag2QB-6QB7EEMFduV7TqXJtkFhoUq_Qo_moMdja3z6ZLCT2_EtzrKk8JJSvlxpdWnnqmB7rZvC0WrqeteuR_hguAdcvLspO_63mG6_H_Z6KO7_q0T9Cs2CkblMPpM8zY9At8PJxKu04W4fh4dGUZ2S32xrFRymiMXqaFMKu7u8kJq_yKFaVxrNgnebfBBsw50DLvyCqJin-sFjRfgtPh9snWrledzODFFMVmnhDEvIT1MUCrHYOLeUBY00V0saewH2se2UByEyXGcjQRNyhk0kWpIl9qsQxz6Si1X4H5gYkjDFzg4qS_IkSZCMtjdFpqqHst-FmjEl6XAhyhC1yoq0LXVaHrKreErlrQrkELq4k4Cel_0yWW5Pd1C-QzIB899apBYi-6v_K211bhw59fw_Bg7-j3N5gv4XSpmzbMZePcficmk-GPaqzeA3Nk8Io |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+comments+on+infinities+on+quantum+field+theory%3A+A+functional+integral+approach&rft.jtitle=Random+operators+and+stochastic+equations&rft.au=Botelho%2C+Luiz+C.+L.&rft.date=2016-06-01&rft.issn=0926-6364&rft.eissn=1569-397X&rft.volume=24&rft.issue=2&rft.spage=79&rft.epage=92&rft_id=info:doi/10.1515%2Frose-2016-0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_rose_2016_0006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6364&client=summon |