Using Semi-Supervised Domain Adaptation to Enhance EEG-Based Cross-Task Mental Workload Classification Performance

Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 12; pp. 7032 - 7039
Main Authors Wang, Tao, Ke, Yufeng, Huang, Yichao, He, Feng, Zhong, Wenxiao, Liu, Shuang, Ming, Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3452410

Cover

Loading…
Abstract Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.
AbstractList Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.
Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.
Author Zhong, Wenxiao
Ming, Dong
He, Feng
Wang, Tao
Ke, Yufeng
Huang, Yichao
Liu, Shuang
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0001-9085-7240
  surname: Wang
  fullname: Wang, Tao
  email: wangtao0331@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Yufeng
  orcidid: 0000-0002-8434-0322
  surname: Ke
  fullname: Ke, Yufeng
  email: clarenceke@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Yichao
  surname: Huang
  fullname: Huang, Yichao
  email: huangyichao39@gmail.com
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Feng
  orcidid: 0000-0001-8359-2635
  surname: He
  fullname: He, Feng
  email: heaven@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Wenxiao
  orcidid: 0000-0001-9068-428X
  surname: Zhong
  fullname: Zhong, Wenxiao
  email: z_wenxiao@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 6
  givenname: Shuang
  orcidid: 0000-0002-4372-8443
  surname: Liu
  fullname: Liu, Shuang
  email: shuangliu@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 7
  givenname: Dong
  orcidid: 0000-0002-8192-2538
  surname: Ming
  fullname: Ming, Dong
  email: richardming@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39213268$$D View this record in MEDLINE/PubMed
BookMark eNpNkVFLwzAQx4NMnM59AEGkj750JmmbJo9uTp1MFLbhY0nbq8a1yUw6wW9vyjbxXu64-_0P7v5nqKeNBoQuCB4RgsXN0_hxNqKYxqMoTmhM8BE6pYTxkFLMe4eaiLiPhs59Yh_ctwQ7Qf1IUBJRxk-RXTml34MFNCpcbDdgv5WDMrgzjVQ6uC3lppWtMjpoTTDVH1IXEEynD-FYdtjEGufCpXTr4Bl0K-vgzdh1baQf1dI5ValiJ38FWxnbdPpzdFzJ2sFwnwdodT9dTh7D-cvDbHI7Dwuaxm13Bk1yluYyTWWeYMZEGfMySXyT57ISIpWYYeKnFc6hLAjn3JeUl4zxkkcDdL3bu7HmawuuzRrlCqhrqcFsXRZhITiOIxp59GqPbvMGymxjVSPtT3b4kwfIDii6iy1UfwjBWWdH1tmRdXZkezu85nKnUQDwj2cMx4JFv73UhO0
CODEN IJBHA9
Cites_doi 10.1007/978-3-030-73197-7_29
10.3389/fnins.2018.00097
10.1109/TNSRE.2022.3156546
10.1109/TPAMI.2018.2832198
10.1109/TNSRE.2023.3277867
10.1016/j.neubiorev.2012.10.003
10.1177/1541931214581179
10.1016/j.neuroimage.2011.07.047
10.3389/fnhum.2020.00158
10.1109/CVPR.2017.547
10.1609/aaai.v30i1.10306
10.1016/j.neuroimage.2018.03.032
10.1109/TNSRE.2020.2980299
10.1518/001872008x288394
10.1609/aaai.v35i1.16169
10.1016/j.ijpsycho.2015.10.004
10.1088/1741-2552/aace8c
10.1038/s41597-022-01898-y
10.1109/TNSRE.2018.2884641
10.1109/TNSRE.2017.2701002
10.1109/tcyb.2019.2939399
10.3389/fpsyg.2022.883321
10.1088/1741-2560/13/2/026019
10.1088/1741-2552/ac6828
10.1109/TNSRE.2022.3140456
10.3389/fnhum.2016.00539
10.3389/fnins.2021.703139
10.3389/fnins.2020.00268
10.1088/1741-2552/acf345
10.1016/j.neucom.2020.09.017
10.1109/JBHI.2022.3210158
10.1109/JBHI.2021.3085131
10.1088/1741-2552/abbc27
10.1002/hbm.20131
10.1109/EMBC46164.2021.9629575
10.3389/fnhum.2017.00359
10.1109/TAFFC.2022.3164516
10.1109/TCDS.2020.3007453
10.1109/TAFFC.2021.3098237
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3452410
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 7039
ExternalDocumentID 39213268
10_1109_JBHI_2024_3452410
10660496
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021YFF1200603
– fundername: National Natural Science Foundation of China
  grantid: 62276184; 61806141
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c274t-22025b67ba77ab50669d48d555b68baf997a060177af0bedc1888af028d668d83
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 09:30:20 EDT 2025
Fri Apr 25 03:26:26 EDT 2025
Tue Jul 01 03:00:11 EDT 2025
Wed Aug 27 02:33:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-22025b67ba77ab50669d48d555b68baf997a060177af0bedc1888af028d668d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8359-2635
0000-0002-8434-0322
0000-0001-9068-428X
0000-0002-4372-8443
0000-0002-8192-2538
0000-0001-9085-7240
PMID 39213268
PQID 3099804323
PQPubID 23479
PageCount 8
ParticipantIDs crossref_primary_10_1109_JBHI_2024_3452410
ieee_primary_10660496
proquest_miscellaneous_3099804323
pubmed_primary_39213268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Long (ref26)
ref6
ref5
ref40
References_xml – ident: ref35
  doi: 10.1007/978-3-030-73197-7_29
– ident: ref34
  doi: 10.3389/fnins.2018.00097
– ident: ref15
  doi: 10.1109/TNSRE.2022.3156546
– ident: ref29
  doi: 10.1109/TPAMI.2018.2832198
– ident: ref24
  doi: 10.1109/TNSRE.2023.3277867
– ident: ref3
  doi: 10.1016/j.neubiorev.2012.10.003
– ident: ref31
  doi: 10.1177/1541931214581179
– ident: ref38
  doi: 10.1016/j.neuroimage.2011.07.047
– ident: ref37
  doi: 10.3389/fnhum.2020.00158
– ident: ref28
  doi: 10.1109/CVPR.2017.547
– ident: ref27
  doi: 10.1609/aaai.v30i1.10306
– ident: ref23
  doi: 10.1016/j.neuroimage.2018.03.032
– ident: ref25
  doi: 10.1109/TNSRE.2020.2980299
– ident: ref2
  doi: 10.1518/001872008x288394
– ident: ref20
  doi: 10.1609/aaai.v35i1.16169
– ident: ref40
  doi: 10.1016/j.ijpsycho.2015.10.004
– ident: ref17
  doi: 10.1088/1741-2552/aace8c
– ident: ref33
  doi: 10.1038/s41597-022-01898-y
– start-page: 97
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Learning transferable features with deep adaptation networks
– ident: ref11
  doi: 10.1109/TNSRE.2018.2884641
– ident: ref39
  doi: 10.1109/TNSRE.2017.2701002
– ident: ref8
  doi: 10.1109/tcyb.2019.2939399
– ident: ref1
  doi: 10.3389/fpsyg.2022.883321
– ident: ref9
  doi: 10.1088/1741-2560/13/2/026019
– ident: ref10
  doi: 10.1088/1741-2552/ac6828
– ident: ref12
  doi: 10.1109/TNSRE.2022.3140456
– ident: ref7
  doi: 10.3389/fnhum.2016.00539
– ident: ref14
  doi: 10.3389/fnins.2021.703139
– ident: ref5
  doi: 10.3389/fnins.2020.00268
– ident: ref16
  doi: 10.1088/1741-2552/acf345
– ident: ref22
  doi: 10.1016/j.neucom.2020.09.017
– ident: ref21
  doi: 10.1109/JBHI.2022.3210158
– ident: ref13
  doi: 10.1109/JBHI.2021.3085131
– ident: ref6
  doi: 10.1088/1741-2552/abbc27
– ident: ref32
  doi: 10.1002/hbm.20131
– ident: ref36
  doi: 10.1109/EMBC46164.2021.9629575
– ident: ref4
  doi: 10.3389/fnhum.2017.00359
– ident: ref19
  doi: 10.1109/TAFFC.2022.3164516
– ident: ref18
  doi: 10.1109/TCDS.2020.3007453
– ident: ref30
  doi: 10.1109/TAFFC.2021.3098237
SSID ssj0000816896
Score 2.454216
Snippet Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7032
SubjectTerms Adult
Algorithms
Brain modeling
Brain-Computer Interfaces
Calibration
cross-subject classification
cross-task classification
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Female
Humans
Male
Mental workload
Optimization
Signal Processing, Computer-Assisted
Task analysis
Task Performance and Analysis
Transfer learning
Workload - classification
Young Adult
Title Using Semi-Supervised Domain Adaptation to Enhance EEG-Based Cross-Task Mental Workload Classification Performance
URI https://ieeexplore.ieee.org/document/10660496
https://www.ncbi.nlm.nih.gov/pubmed/39213268
https://www.proquest.com/docview/3099804323
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcAQcEJfSBy3bB3KlnpC8XRLbiY88lm6RQEiAxC2yY1tFlGTFJpd-fWfsLCAkJG5WbCe2Z5x5zwD8CGXuhQ2GyyAVF1pMuK3rjGceiZ_QOZJoUuifnqnZlTi5ltdDsHqMhfHeR-czP6ZmtOW7tu5JVYY3XCnkaNUqrKLkloK1HhQqsYJErMeVYYPjTRSDFXNvon-eHMx-ozSYiXEuJFItqgCHrAHKYpRk9QlJijVWXmY3I9k53oSz5YKTt8ntuO_suP73LJfjq3f0Ft4MDCjbTxjzDlZ88x7WTwcT-we4j04E7MLf3fCLfk6_koV37Ki9MzcN23dmnoz3rGvZtPlDSMOm01_8wNCwQ9ohvzSLW5ayAzHSxv9tDXYRn06OSWn6-WPEwhZcHU8vD2d8KMzAaxRiO57hQUqrCmuKwliJe9BOlE5KfFhaE7QuDOV5wd4wsd7VeyhnYzMrnVKlK_OPsNa0jd8GlilX2yI4bSkRX5BaalUXTiivUDYNYQS7S9hU85R_o4pyy0RXBNOKYFoNMB3BFh3xk4HpdEfwfQnOCm8PmURM49t-UeXIIJeUlTAfwacE54fZS_T4_MJbv8AGfTz5tnyFte6-99-QQ-nsTsTM_67e3lU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcARFAi48CyxPI3FC8rJNbCc-tmXLtnRXSN1KvUV2bIuqNFl1kwtfz4ydLRVSJW6WH5HtGWfeMwCfQpl7YYPhMkjFhRYTbus645lH4id0jiSaFPrzhZqdiqMzeTYEq8dYGO99dD7zY2pGW75r655UZfjClUKOVt2Fe5KicVO41rVKJdaQiBW5MmxwfItisGPuTPSXo73ZIcqDmRjnQiLdohpwyBygNEZpVm8QpVhl5XaGMxKeg8ew2Gw5-ZtcjPvOjuvf_2Rz_O8zPYFHAwvKdhPOPIU7vnkG9-eDkf05XEU3AnbiL8_5Sb-in8naO_a1vTTnDdt1ZpXM96xr2bT5SWjDptNvfM_QtH06IV-a9QVL-YEY6eN_tQaHiFMn16S0_MffmIVtOD2YLvdnfCjNwGsUYzue4UVKqwprisJYiWfQTpROSuwsrQlaF4YyveBomFjv6h2UtLGZlU6p0pX5C9hq2sa_ApYpV9siOG0pFV-QWmpVF04or1A6DWEEnzewqVYpA0cVJZeJrgimFcG0GmA6gm264hsT0-2O4OMGnBW-HzKKmMa3_brKkUUuKS9hPoKXCc7Xqzfo8fqWr36AB7Pl_Lg6Plx8fwMPaSPJ0-UtbHVXvX-H_Epn30cs_QNxKeGd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Semi-Supervised+Domain+Adaptation+to+Enhance+EEG-Based+Cross-Task+Mental+Workload+Classification+Performance&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Tao&rft.au=Ke%2C+Yufeng&rft.au=Huang%2C+Yichao&rft.au=He%2C+Feng&rft.date=2024-12-01&rft.eissn=2168-2208&rft.volume=28&rft.issue=12&rft.spage=7032&rft_id=info:doi/10.1109%2FJBHI.2024.3452410&rft_id=info%3Apmid%2F39213268&rft.externalDocID=39213268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon