Using Semi-Supervised Domain Adaptation to Enhance EEG-Based Cross-Task Mental Workload Classification Performance
Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 12; pp. 7032 - 7039 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3452410 |
Cover
Loading…
Abstract | Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment. |
---|---|
AbstractList | Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment. Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% ± 9.36% and 96.61% ± 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% ± 9.56% on our data, 90.98% ± 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment. |
Author | Zhong, Wenxiao Ming, Dong He, Feng Wang, Tao Ke, Yufeng Huang, Yichao Liu, Shuang |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0001-9085-7240 surname: Wang fullname: Wang, Tao email: wangtao0331@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 2 givenname: Yufeng orcidid: 0000-0002-8434-0322 surname: Ke fullname: Ke, Yufeng email: clarenceke@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 3 givenname: Yichao surname: Huang fullname: Huang, Yichao email: huangyichao39@gmail.com organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 4 givenname: Feng orcidid: 0000-0001-8359-2635 surname: He fullname: He, Feng email: heaven@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 5 givenname: Wenxiao orcidid: 0000-0001-9068-428X surname: Zhong fullname: Zhong, Wenxiao email: z_wenxiao@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 6 givenname: Shuang orcidid: 0000-0002-4372-8443 surname: Liu fullname: Liu, Shuang email: shuangliu@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 7 givenname: Dong orcidid: 0000-0002-8192-2538 surname: Ming fullname: Ming, Dong email: richardming@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39213268$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkVFLwzAQx4NMnM59AEGkj750JmmbJo9uTp1MFLbhY0nbq8a1yUw6wW9vyjbxXu64-_0P7v5nqKeNBoQuCB4RgsXN0_hxNqKYxqMoTmhM8BE6pYTxkFLMe4eaiLiPhs59Yh_ctwQ7Qf1IUBJRxk-RXTml34MFNCpcbDdgv5WDMrgzjVQ6uC3lppWtMjpoTTDVH1IXEEynD-FYdtjEGufCpXTr4Bl0K-vgzdh1baQf1dI5ValiJ38FWxnbdPpzdFzJ2sFwnwdodT9dTh7D-cvDbHI7Dwuaxm13Bk1yluYyTWWeYMZEGfMySXyT57ISIpWYYeKnFc6hLAjn3JeUl4zxkkcDdL3bu7HmawuuzRrlCqhrqcFsXRZhITiOIxp59GqPbvMGymxjVSPtT3b4kwfIDii6iy1UfwjBWWdH1tmRdXZkezu85nKnUQDwj2cMx4JFv73UhO0 |
CODEN | IJBHA9 |
Cites_doi | 10.1007/978-3-030-73197-7_29 10.3389/fnins.2018.00097 10.1109/TNSRE.2022.3156546 10.1109/TPAMI.2018.2832198 10.1109/TNSRE.2023.3277867 10.1016/j.neubiorev.2012.10.003 10.1177/1541931214581179 10.1016/j.neuroimage.2011.07.047 10.3389/fnhum.2020.00158 10.1109/CVPR.2017.547 10.1609/aaai.v30i1.10306 10.1016/j.neuroimage.2018.03.032 10.1109/TNSRE.2020.2980299 10.1518/001872008x288394 10.1609/aaai.v35i1.16169 10.1016/j.ijpsycho.2015.10.004 10.1088/1741-2552/aace8c 10.1038/s41597-022-01898-y 10.1109/TNSRE.2018.2884641 10.1109/TNSRE.2017.2701002 10.1109/tcyb.2019.2939399 10.3389/fpsyg.2022.883321 10.1088/1741-2560/13/2/026019 10.1088/1741-2552/ac6828 10.1109/TNSRE.2022.3140456 10.3389/fnhum.2016.00539 10.3389/fnins.2021.703139 10.3389/fnins.2020.00268 10.1088/1741-2552/acf345 10.1016/j.neucom.2020.09.017 10.1109/JBHI.2022.3210158 10.1109/JBHI.2021.3085131 10.1088/1741-2552/abbc27 10.1002/hbm.20131 10.1109/EMBC46164.2021.9629575 10.3389/fnhum.2017.00359 10.1109/TAFFC.2022.3164516 10.1109/TCDS.2020.3007453 10.1109/TAFFC.2021.3098237 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/JBHI.2024.3452410 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 7039 |
ExternalDocumentID | 39213268 10_1109_JBHI_2024_3452410 10660496 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2021YFF1200603 – fundername: National Natural Science Foundation of China grantid: 62276184; 61806141 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c274t-22025b67ba77ab50669d48d555b68baf997a060177af0bedc1888af028d668d83 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 09:30:20 EDT 2025 Fri Apr 25 03:26:26 EDT 2025 Tue Jul 01 03:00:11 EDT 2025 Wed Aug 27 02:33:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c274t-22025b67ba77ab50669d48d555b68baf997a060177af0bedc1888af028d668d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8359-2635 0000-0002-8434-0322 0000-0001-9068-428X 0000-0002-4372-8443 0000-0002-8192-2538 0000-0001-9085-7240 |
PMID | 39213268 |
PQID | 3099804323 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_JBHI_2024_3452410 ieee_primary_10660496 proquest_miscellaneous_3099804323 pubmed_primary_39213268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Long (ref26) ref6 ref5 ref40 |
References_xml | – ident: ref35 doi: 10.1007/978-3-030-73197-7_29 – ident: ref34 doi: 10.3389/fnins.2018.00097 – ident: ref15 doi: 10.1109/TNSRE.2022.3156546 – ident: ref29 doi: 10.1109/TPAMI.2018.2832198 – ident: ref24 doi: 10.1109/TNSRE.2023.3277867 – ident: ref3 doi: 10.1016/j.neubiorev.2012.10.003 – ident: ref31 doi: 10.1177/1541931214581179 – ident: ref38 doi: 10.1016/j.neuroimage.2011.07.047 – ident: ref37 doi: 10.3389/fnhum.2020.00158 – ident: ref28 doi: 10.1109/CVPR.2017.547 – ident: ref27 doi: 10.1609/aaai.v30i1.10306 – ident: ref23 doi: 10.1016/j.neuroimage.2018.03.032 – ident: ref25 doi: 10.1109/TNSRE.2020.2980299 – ident: ref2 doi: 10.1518/001872008x288394 – ident: ref20 doi: 10.1609/aaai.v35i1.16169 – ident: ref40 doi: 10.1016/j.ijpsycho.2015.10.004 – ident: ref17 doi: 10.1088/1741-2552/aace8c – ident: ref33 doi: 10.1038/s41597-022-01898-y – start-page: 97 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: Learning transferable features with deep adaptation networks – ident: ref11 doi: 10.1109/TNSRE.2018.2884641 – ident: ref39 doi: 10.1109/TNSRE.2017.2701002 – ident: ref8 doi: 10.1109/tcyb.2019.2939399 – ident: ref1 doi: 10.3389/fpsyg.2022.883321 – ident: ref9 doi: 10.1088/1741-2560/13/2/026019 – ident: ref10 doi: 10.1088/1741-2552/ac6828 – ident: ref12 doi: 10.1109/TNSRE.2022.3140456 – ident: ref7 doi: 10.3389/fnhum.2016.00539 – ident: ref14 doi: 10.3389/fnins.2021.703139 – ident: ref5 doi: 10.3389/fnins.2020.00268 – ident: ref16 doi: 10.1088/1741-2552/acf345 – ident: ref22 doi: 10.1016/j.neucom.2020.09.017 – ident: ref21 doi: 10.1109/JBHI.2022.3210158 – ident: ref13 doi: 10.1109/JBHI.2021.3085131 – ident: ref6 doi: 10.1088/1741-2552/abbc27 – ident: ref32 doi: 10.1002/hbm.20131 – ident: ref36 doi: 10.1109/EMBC46164.2021.9629575 – ident: ref4 doi: 10.3389/fnhum.2017.00359 – ident: ref19 doi: 10.1109/TAFFC.2022.3164516 – ident: ref18 doi: 10.1109/TCDS.2020.3007453 – ident: ref30 doi: 10.1109/TAFFC.2021.3098237 |
SSID | ssj0000816896 |
Score | 2.454216 |
Snippet | Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7032 |
SubjectTerms | Adult Algorithms Brain modeling Brain-Computer Interfaces Calibration cross-subject classification cross-task classification EEG Electrodes Electroencephalography Electroencephalography - methods Female Humans Male Mental workload Optimization Signal Processing, Computer-Assisted Task analysis Task Performance and Analysis Transfer learning Workload - classification Young Adult |
Title | Using Semi-Supervised Domain Adaptation to Enhance EEG-Based Cross-Task Mental Workload Classification Performance |
URI | https://ieeexplore.ieee.org/document/10660496 https://www.ncbi.nlm.nih.gov/pubmed/39213268 https://www.proquest.com/docview/3099804323 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcAQcEJfSBy3bB3KlnpC8XRLbiY88lm6RQEiAxC2yY1tFlGTFJpd-fWfsLCAkJG5WbCe2Z5x5zwD8CGXuhQ2GyyAVF1pMuK3rjGceiZ_QOZJoUuifnqnZlTi5ltdDsHqMhfHeR-czP6ZmtOW7tu5JVYY3XCnkaNUqrKLkloK1HhQqsYJErMeVYYPjTRSDFXNvon-eHMx-ozSYiXEuJFItqgCHrAHKYpRk9QlJijVWXmY3I9k53oSz5YKTt8ntuO_suP73LJfjq3f0Ft4MDCjbTxjzDlZ88x7WTwcT-we4j04E7MLf3fCLfk6_koV37Ki9MzcN23dmnoz3rGvZtPlDSMOm01_8wNCwQ9ohvzSLW5ayAzHSxv9tDXYRn06OSWn6-WPEwhZcHU8vD2d8KMzAaxRiO57hQUqrCmuKwliJe9BOlE5KfFhaE7QuDOV5wd4wsd7VeyhnYzMrnVKlK_OPsNa0jd8GlilX2yI4bSkRX5BaalUXTiivUDYNYQS7S9hU85R_o4pyy0RXBNOKYFoNMB3BFh3xk4HpdEfwfQnOCm8PmURM49t-UeXIIJeUlTAfwacE54fZS_T4_MJbv8AGfTz5tnyFte6-99-QQ-nsTsTM_67e3lU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcARFAi48CyxPI3FC8rJNbCc-tmXLtnRXSN1KvUV2bIuqNFl1kwtfz4ydLRVSJW6WH5HtGWfeMwCfQpl7YYPhMkjFhRYTbus645lH4id0jiSaFPrzhZqdiqMzeTYEq8dYGO99dD7zY2pGW75r655UZfjClUKOVt2Fe5KicVO41rVKJdaQiBW5MmxwfItisGPuTPSXo73ZIcqDmRjnQiLdohpwyBygNEZpVm8QpVhl5XaGMxKeg8ew2Gw5-ZtcjPvOjuvf_2Rz_O8zPYFHAwvKdhPOPIU7vnkG9-eDkf05XEU3AnbiL8_5Sb-in8naO_a1vTTnDdt1ZpXM96xr2bT5SWjDptNvfM_QtH06IV-a9QVL-YEY6eN_tQaHiFMn16S0_MffmIVtOD2YLvdnfCjNwGsUYzue4UVKqwprisJYiWfQTpROSuwsrQlaF4YyveBomFjv6h2UtLGZlU6p0pX5C9hq2sa_ApYpV9siOG0pFV-QWmpVF04or1A6DWEEnzewqVYpA0cVJZeJrgimFcG0GmA6gm264hsT0-2O4OMGnBW-HzKKmMa3_brKkUUuKS9hPoKXCc7Xqzfo8fqWr36AB7Pl_Lg6Plx8fwMPaSPJ0-UtbHVXvX-H_Epn30cs_QNxKeGd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Semi-Supervised+Domain+Adaptation+to+Enhance+EEG-Based+Cross-Task+Mental+Workload+Classification+Performance&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Tao&rft.au=Ke%2C+Yufeng&rft.au=Huang%2C+Yichao&rft.au=He%2C+Feng&rft.date=2024-12-01&rft.eissn=2168-2208&rft.volume=28&rft.issue=12&rft.spage=7032&rft_id=info:doi/10.1109%2FJBHI.2024.3452410&rft_id=info%3Apmid%2F39213268&rft.externalDocID=39213268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |