Liquid Metal Enabled Thermoelectric Effects: Fundamental and Application

The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 32
Main Authors Guan, Tangzhen, Gao, Jianye, Hua, Chen, Tao, Yiyue, Ma, Yibing, Liu, Jing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 08.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed. This review systematically explores liquid metal (LM)‐enabled thermoelectric (TE) effects, highlighting fundamental properties and multifunctional application scenarios. With unique traits such as fluidity, high electrical/thermal conductivity, and self‐healing, LMs impart stretchability and self‐repair capabilities to TE devices. Key challenges and future research opportunities for advancing this emerging field are also discussed.
AbstractList The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed.
The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed.
The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed. This review systematically explores liquid metal (LM)‐enabled thermoelectric (TE) effects, highlighting fundamental properties and multifunctional application scenarios. With unique traits such as fluidity, high electrical/thermal conductivity, and self‐healing, LMs impart stretchability and self‐repair capabilities to TE devices. Key challenges and future research opportunities for advancing this emerging field are also discussed.
Author Guan, Tangzhen
Hua, Chen
Liu, Jing
Gao, Jianye
Tao, Yiyue
Ma, Yibing
Author_xml – sequence: 1
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jianye
  orcidid: 0000-0003-4024-4758
  surname: Gao
  fullname: Gao, Jianye
  email: gaojianye@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 3
  givenname: Chen
  surname: Hua
  fullname: Hua, Chen
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yiyue
  surname: Tao
  fullname: Tao, Yiyue
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yibing
  surname: Ma
  fullname: Ma, Yibing
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Jing
  orcidid: 0000-0002-0844-5296
  surname: Liu
  fullname: Liu, Jing
  email: jliu@mail.ipc.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkM1PwkAQxTcGEwG9em7iuTi726_1RhDEBOIFE2-boTuNJe22bNsY_nvaYPDo6b3D772ZvAkb2coSY48cZhxAPKPJypkAEQipQN2wMY945EsQyejq-dcdmzTNAYDHsQzGbL3Jj11uvC21WHhLi_uCjLf7JldWVFDaujz1llnWu-bFW3XWYEl2YNEab17XRZ5im1f2nt1mWDT08KtT9rla7hZrf_Px9r6Yb_xUxIHyRSzC_Z6yhAKUBohLrgIB_f8hIoapwBQiDAKOMjSo4kFMmCigxKBMIjllT5fe2lXHjppWH6rO2f6klkImEkAlvKdmFyp1VdM4ynTt8hLdSXPQw1p6WEtf1-oD6hL4yQs6_UPr-etq-5c9A4SKbzU
Cites_doi 10.1002/admi.201701596
10.1016/j.biomaterials.2014.08.048
10.1039/C6EE00456C
10.1021/acsami.2c14815
10.1103/PhysRevB.84.085207
10.1007/s11431-017-9058-8
10.1016/j.nanoen.2021.106260
10.1142/S021798491750172X
10.1016/j.enconman.2021.115003
10.1016/j.cej.2022.135268
10.1016/j.pmatsci.2016.07.002
10.1002/adfm.202412178
10.1016/j.nanoen.2019.02.045
10.1002/smll.202006612
10.1016/j.progpolymsci.2018.06.001
10.1016/j.nanoen.2021.106818
10.1016/j.apenergy.2017.05.181
10.1038/s41528-024-00298-z
10.1016/j.mtphys.2021.100402
10.3390/mi15050592
10.1016/j.mtphys.2017.06.003
10.1016/j.matt.2020.03.016
10.1109/6144.846775
10.1002/adma.202103104
10.1002/smsc.202400284
10.1039/c3cp50993a
10.1016/j.solmat.2020.110925
10.3390/ma7042577
10.1039/D1MA00707F
10.1021/acsami.8b08696
10.1002/adma.202002702
10.26599/JAC.2023.9220676
10.1038/s41560-024-01518-6
10.1063/1.4746397
10.1039/C8NR09503E
10.1201/9781420049718
10.1002/adfm.202112772
10.1149/1.3385154
10.1002/adfm.202310225
10.1088/2399-7532/abd4f0
10.1002/adfm.202306086
10.1016/j.nanoen.2022.107678
10.1038/srep03442
10.1038/s41563-018-0084-7
10.1038/s41467-022-28480-9
10.1021/acsami.9b06455
10.1016/j.biomaterials.2017.09.006
10.1016/j.cis.2010.06.009
10.1016/j.apenergy.2012.05.033
10.1360/092013-1239
10.1016/j.cryogenics.2011.10.007
10.1002/admi.202100069
10.1016/j.enconman.2020.113080
10.1016/j.jnucmat.2013.03.043
10.1080/19475411.2024.2385349
10.1038/s41528-021-00101-3
10.1007/s11630-022-1610-0
10.1016/j.mattod.2021.03.019
10.1016/j.cej.2024.151815
10.1002/adma.200803705
10.1002/adma.201400843
10.1021/acsami.2c23028
10.1038/s41467-024-52841-1
10.1002/adfm.201901370
10.1016/j.renene.2011.06.012
10.1038/s41528-020-00082-9
10.1016/j.mser.2018.09.001
10.1002/aenm.201701797
10.1080/14786430802607119
10.1002/aenm.202204321
10.1021/acsami.9b02104
10.1016/j.pmatsci.2022.100970
10.1016/j.nanoen.2020.104773
10.1016/j.jssc.2019.121022
10.1002/admt.202301171
10.1016/j.enconman.2024.118826
10.1073/pnas.1616377114
10.1002/smll.201303701
10.1002/aenm.202201413
10.1038/s41467-020-19756-z
10.1080/15421400802458522
10.1016/j.enconman.2022.115591
10.1039/D0TC05493C
10.1002/adfm.201702589
10.1063/1.5084791
10.1016/j.applthermaleng.2021.117793
10.1021/acsaem.9b02243
10.1088/0370-1328/72/5/429
10.1016/j.solidstatesciences.2016.12.020
10.1021/acsami.7b04752
10.1002/adma.201900663
10.1016/j.enconman.2017.09.039
10.1021/am500009p
10.1002/anie.202212515
10.3390/mi7120206
10.1038/ncomms10066
10.1039/C4EE01905A
10.1002/adma.202004832
10.1016/j.solener.2022.01.019
10.1016/j.nanoen.2024.110001
10.1002/adfm.202404861
10.1039/D1LC00726B
10.1360/03wb0215
10.1016/j.egyr.2020.07.014
10.1002/adfm.201906098
10.1016/j.applthermaleng.2021.116937
10.1002/adma.201502569
10.1007/s00339-013-8191-4
10.1016/j.nanoen.2024.110388
10.1063/1.4872698
10.1088/1361-6528/abcbc2
10.1126/science.adp2444
10.1016/j.rser.2018.03.052
10.1021/acsami.8b08722
10.1016/S0925-4005(98)00056-2
10.1038/s41467-022-31664-y
10.1016/j.enconman.2016.01.065
10.1016/j.carbon.2020.06.012
10.1002/anie.201506469
10.1016/j.cej.2024.153352
10.1021/acsomega.1c06367
10.1063/5.0155822
10.1039/C8RA00262B
10.1126/science.1159725
10.1039/D1TC05087G
10.1016/j.compscitech.2022.109523
10.1002/adma.202408466
10.1016/j.jmat.2020.10.015
10.1063/1.4827302
10.1016/j.mtphys.2020.100311
10.1080/09506608.2016.1271090
10.1002/adma.202203391
10.1002/adma.202308346
10.1021/acsami.1c15014
10.1016/j.jpowsour.2021.230323
10.1016/j.renene.2018.10.109
10.1021/acsami.1c03328
10.1002/adma.201704386
10.1126/science.aak9997
10.1038/nmat4946
10.1002/adhm.201800318
10.1016/j.mtphys.2021.100468
10.1002/adfm.201907063
10.1007/s00231-010-0658-7
10.1007/s40843-023-2607-3
10.1021/acsami.3c05418
10.1038/s41467-024-51648-4
10.1002/adfm.202308128
10.1109/TCPMT.2012.2185792
10.1073/pnas.2320704121
10.1093/nsr/nwad302
10.1016/j.apenergy.2017.08.092
10.3390/s19020314
10.1063/1.4876909
10.1016/j.jmat.2019.04.004
10.1088/0022-3727/40/15/055
10.1016/j.energy.2019.116019
10.1016/j.pmatsci.2017.09.004
10.1016/j.cej.2024.158783
10.1016/j.ijheatmasstransfer.2020.119366
10.1038/asiamat.2010.138
10.1038/s41467-024-50175-6
10.1016/j.actbio.2019.11.023
10.1080/19475411.2023.2261775
10.1063/1.5101028
10.1002/aenm.202400623
10.1016/j.jeurceramsoc.2020.07.021
10.1063/5.0097346
10.1016/j.energy.2023.127304
10.1002/adfm.200701216
10.1007/s42114-017-0011-4
10.1002/adem.201700781
10.1002/smll.201805307
10.1016/j.mtsust.2024.100673
10.1002/adma.202200857
10.1126/science.adk9589
10.1038/s41467-023-37114-7
10.1007/s10853-023-08593-2
10.1002/aelm.202300300
10.1016/j.jallcom.2023.169260
10.3390/ma15124315
10.1038/ncomms5578
10.1021/acsami.2c09907
10.1002/adma.202407073
10.1016/j.apenergy.2010.02.013
10.1002/admt.202101203
10.1016/j.cej.2021.130816
10.1002/adfm.202309725
10.1016/j.jallcom.2021.163060
10.1002/smll.202405019
10.1021/acsami.1c11275
10.1016/j.enconman.2021.115167
10.1109/TBCAS.2019.2935026
10.1039/C6TC05358K
10.1039/C8NR09101C
10.1038/s41467-023-40588-0
10.1002/adma.201903387
10.1016/j.apenergy.2019.114370
10.1002/aenm.202103779
10.1016/j.mtphys.2017.09.001
10.1016/j.nanoen.2023.108909
10.1016/j.applthermaleng.2015.10.081
10.1080/2374068X.2020.1751514
10.1021/acsami.9b19837
10.1002/admt.202201391
10.1039/C4EE02657H
10.1039/C4TB00660G
10.1016/j.apenergy.2020.115065
10.1038/natrevmats.2016.32
10.1038/nmat4705
10.1016/j.solener.2020.03.009
10.1016/j.jechem.2021.08.062
10.1016/j.nanoen.2020.105419
10.1016/j.cap.2018.09.013
10.1016/j.nanoen.2021.106268
10.1039/c3ta13456c
10.1093/nsr/nwae329
10.1016/j.applthermaleng.2024.123098
10.1080/09506608.2017.1296605
10.1039/D1TC03495B
10.1126/sciadv.abe0586
10.1007/s00339-012-6887-5
10.1016/j.ijheatmasstransfer.2022.123444
10.1002/aenm.202100920
10.1002/advs.202001362
10.1002/admt.202200534
10.1016/j.compscitech.2023.110311
10.1007/s11708-007-0057-3
10.1016/j.rser.2023.113723
10.1016/j.rser.2016.10.042
10.1016/j.nanoen.2020.104854
10.1021/acsami.0c22206
10.1002/adfm.202204257
10.1016/j.coco.2023.101509
10.1002/aelm.201800769
10.1002/adma.201805536
10.1021/acsami.1c13223
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202423909
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202423909
ADFM202423909
Genre reviewArticle
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2023M731888
– fundername: National Natural Science Foundation of China
  funderid: 51890893
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2749-2725bbef8e4a3d0e13194200025aaa5c2ac06a441a35da97a35dd5890e8da3863
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Aug 11 15:41:09 EDT 2025
Wed Aug 13 23:47:50 EDT 2025
Wed Aug 13 09:41:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2749-2725bbef8e4a3d0e13194200025aaa5c2ac06a441a35da97a35dd5890e8da3863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0844-5296
0000-0003-4024-4758
PQID 3238300981
PQPubID 2045204
PageCount 32
ParticipantIDs proquest_journals_3238300981
crossref_primary_10_1002_adfm_202423909
wiley_primary_10_1002_adfm_202423909_ADFM202423909
PublicationCentury 2000
PublicationDate August 8, 2025
PublicationDateYYYYMMDD 2025-08-08
PublicationDate_xml – month: 08
  year: 2025
  text: August 8, 2025
  day: 08
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 89
2019; 11
2019; 13
2019; 15
2020; 281
2019; 19
2020; 12
2020; 168
2024; 34
2020; 11
2024; 36
2017; 72
2021; 79
2000; 14
2019; 29
2024; 25
2010; 2
2017; 62
2022; 199
2021; 49
2017; 60
2019; 31
2020; 262
2022; 93
2004; 49
2020; 40
2017; 65
2021; 426
2013; 103
2024; 10
2024; 11
2020; 32
2024; 14
2024; 15
2016; 15
2019; 188
2016; 7
2016; 1
2020; 272
2022; 7
2020; 150
2018; 91
2018; 93
2008; 497
2017; 146
2016; 9
2023; 35
2023; 33
2023; 38
2019; 59
2016; 101
2024; 383
2024; 386
2018; 83
2017; 114
2017; 357
2022; 896
2020; 7
2020; 6
2017; 31
2013; 15
2014; 5
2020; 4
2020; 3
2020; 2
2014; 2
2013; 438
2010; 159
2010; 157
2016; 114
2014; 7
2014; 6
2021; 9
2023; 10
2021; 8
2021; 7
2023; 13
2021; 5
2015; 6
2023; 14
2021; 4
2021; 88
2021; 2
2023; 12
2021; 222
2020; 220
2023; 15
2017; 27
2018; 63
1958; 72
2020; 102
2008; 321
2015; 8
2022; 437
2010; 87
2020; 74
2020; 73
2017; 16
2018
2024; 42
2007; 40
2013; 3
2013; 1
2023; 187
2014; 26
2024
2020; 201
2012; 99
2018; 7
2023; 62
2018; 8
2018; 5
2023; 66
2018; 1
2024; 8
2024; 9
2022; 34
2018; 30
2022; 31
2024; 4
2022; 32
2007; 1
2014; 10
2017; 205
2022; 201
2022; 233
2019; 7
2023; 58
2012; 101
2019; 5
2024; 247
2024; 129
2011; 84
2015; 54
2024; 121
2018; 20
2012; 107
2018; 18
2018; 17
2010; 46
2023; 274
2022; 12
2022; 13
2022; 14
2024; 495
2014; 35
2024; 132
2022; 15
2022; 10
2018; 10
2022; 226
2022; 102
2025; 504
2024; 490
2017; 5
1998; 48
2022; 253
2021; 21
2017; 1
2017; 2
2022; 251
2022; 130
2023; 8
2023; 9
2019; 126
2022; 67
2023; 945
2025; 35
2017; 9
2022; 259
2012; 52
2021; 32
2021; 33
2024; 316
2023; 134
2014; 1591
2021; 192
2016; 83
2014; 116
2014 2017; 44 202
2021; 507
2009; 21
2000; 23
2008; 18
2023; 244
2011; 36
2014; 115
2021; 13
2021; 16
2015; 27
2021; 11
2021; 18
2018; 156
2021; 17
2023; 117
2019; 138
2019; 134
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_60_1
e_1_2_7_83_1
Xilong Z. (e_1_2_7_98_1) 2024; 4
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
Liu S. (e_1_2_7_19_1) 2024
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_238_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_2
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
Fu Q. Q. (e_1_2_7_108_1) 2024
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
Hu Y. (e_1_2_7_23_1) 2024; 10
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_157_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
Zhang X. (e_1_2_7_225_1) 2024; 42
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
Fujita S. (e_1_2_7_213_1) 2000; 14
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
Wang Y. (e_1_2_7_21_1) 2023; 134
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_236_1
e_1_2_7_138_1
References_xml – volume: 15
  start-page: 469
  year: 2024
  publication-title: Int. J. Smart Nano Mater.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2024
  publication-title: Adv. Energy Mater.
– volume: 16
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 1328
  year: 2004
  publication-title: Chin. Sci. Bull.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1446
  year: 2020
  publication-title: Matter
– volume: 10
  year: 2023
  publication-title: Appl. Phys. Rev.
– volume: 896
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 10
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 2231
  year: 2000
  publication-title: Int. J. Mod. Phys. B
– volume: 83
  start-page: 97
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 2577
  year: 2014
  publication-title: Materials
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 159
  start-page: 198
  year: 2010
  publication-title: Adv. Colloid Interface Sci.
– volume: 187
  year: 2023
  publication-title: Renew. Sust. Energ. Rev.
– volume: 11
  year: 2024
  publication-title: Natl. Sci. Rev.
– volume: 18
  start-page: 1540
  year: 2018
  publication-title: Curr. Appl. Phys.
– volume: 13
  start-page: 1078
  year: 2022
  publication-title: Nat. Commun.
– volume: 132
  year: 2024
  publication-title: Nano Energy
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 168
  start-page: 65
  year: 2020
  publication-title: Carbon
– volume: 102
  start-page: 403
  year: 2020
  publication-title: Acta Biomater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4855
  year: 2023
  publication-title: Nat. Commun.
– volume: 16
  start-page: 892
  year: 2017
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 4280
  year: 2009
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4315
  year: 2022
  publication-title: Materials
– volume: 253
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 91
  start-page: 376
  year: 2018
  publication-title: Renew. Sust. Energ. Rev.
– volume: 226
  year: 2022
  publication-title: Compos. Sci. Technol.
– volume: 9
  year: 2024
  publication-title: Adv. Mater. Technol.
– volume: 89
  start-page: 143
  year: 2009
  publication-title: Philos. Mag.
– volume: 35
  year: 2023
  publication-title: Phys. Fluids
– volume: 87
  start-page: 3131
  year: 2010
  publication-title: Appl. Energy
– volume: 7
  start-page: 206
  year: 2016
  publication-title: Micromachines
– volume: 259
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 25
  year: 2024
  publication-title: Mater. Today Sustainability
– volume: 14
  start-page: 1366
  year: 2023
  publication-title: Nat. Commun.
– volume: 233
  start-page: 213
  year: 2022
  publication-title: Sol. Energy
– volume: 59
  start-page: 311
  year: 2019
  publication-title: Nano Energy
– volume: 1591
  start-page: 628
  year: 2014
  publication-title: AIP Conf. Proc.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 1
  start-page: 384
  year: 2007
  publication-title: Front. Energy Power Eng. China
– volume: 15
  start-page: 6757
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  start-page: 1091
  year: 2014
  publication-title: Appl. Phys. A
– volume: 44 202
  start-page: 407 736
  year: 2014 2017
  publication-title: Sci. Sin. Tech. Appl. Energy
– volume: 35
  start-page: 9789
  year: 2014
  publication-title: Biomaterials
– volume: 192
  year: 2021
  publication-title: Appl. Therm. Eng.
– volume: 157
  start-page: H666
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 152
  year: 2010
  publication-title: NPG Asia Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 126
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 2904
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 19
  start-page: 314
  year: 2019
  publication-title: Sensors
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 114
  start-page: 2143
  year: 2017
  publication-title: Proc. Natl. Acad. Sci.
– volume: 244
  year: 2023
  publication-title: Compos. Sci. Technol.
– volume: 15
  start-page: 7679
  year: 2024
  publication-title: Nat. Commun.
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 199
  year: 2022
  publication-title: Int. J. Heat Mass Transfer
– volume: 146
  start-page: 156
  year: 2017
  publication-title: Biomaterials
– volume: 13
  start-page: 3900
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 510
  year: 2023
  publication-title: Int. J. Smart Nano Mater.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2099
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 58
  year: 2012
  publication-title: Cryogenics
– volume: 357
  year: 2017
  publication-title: Science
– volume: 15
  year: 2019
  publication-title: Small
– volume: 2
  start-page: 6246
  year: 2021
  publication-title: Mater. Adv.
– volume: 15
  start-page: 5915
  year: 2024
  publication-title: Nat. Commun.
– volume: 9
  start-page: 803
  year: 2024
  publication-title: Nat. Energy
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 23
  start-page: 360
  year: 2000
  publication-title: IEEE Trans. Compon. Packag. Technol.
– volume: 27
  start-page: 7168
  year: 2015
  publication-title: Adv. Mater.
– volume: 60
  start-page: 1347
  year: 2017
  publication-title: Sci. China Technol. Sci.
– volume: 66
  start-page: 4001
  year: 2023
  publication-title: Sci. China Mater.
– volume: 504
  year: 2025
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 5441
  year: 2019
  publication-title: Nanoscale
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– year: 2024
  publication-title: Adv. Mater. Technol.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 281
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 274
  year: 2023
  publication-title: Energy
– volume: 129
  year: 2024
  publication-title: Nano Energy
– volume: 72
  start-page: 898
  year: 1958
  publication-title: Proc. Phys. Soc.
– volume: 31
  year: 2017
  publication-title: Mod. Phys. Lett. B
– volume: 21
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 3
  start-page: 3442
  year: 2013
  publication-title: Sci. Rep.
– volume: 11
  start-page: 5222
  year: 2019
  publication-title: Nanoscale
– volume: 945
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 23
  year: 2024
  publication-title: Soft Science
– volume: 46
  start-page: 1327
  year: 2010
  publication-title: Heat Mass Transfer
– volume: 18
  start-page: 1097
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 138
  year: 2019
  publication-title: Mater. Sci. Eng.: R: Rep.
– volume: 156
  start-page: 746
  year: 2018
  publication-title: Energy Convers. Manage.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 618
  year: 2018
  publication-title: Nat. Mater.
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 188
  year: 2019
  publication-title: Energy
– volume: 201
  start-page: 227
  year: 2020
  publication-title: Sol. Energy
– volume: 8
  year: 2023
  publication-title: Adv. Mater. Technol.
– volume: 40
  start-page: 4722
  year: 2007
  publication-title: J. Phys. D: Appl. Phys.
– volume: 42
  year: 2024
  publication-title: J. Vac. Sci. Technol., A
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 114
  start-page: 50
  year: 2016
  publication-title: Energy Convers. Manage.
– volume: 15
  start-page: 995
  year: 2016
  publication-title: Nat. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– year: 2024
  publication-title: Small Sci.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 15
  start-page: 592
  year: 2024
  publication-title: Micromachines
– volume: 11
  year: 2024
  publication-title: Small
– volume: 3
  start-page: 229
  year: 2013
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 10
  start-page: 2182
  year: 2014
  publication-title: Small
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63
  start-page: 1
  year: 2018
  publication-title: Int. Mater. Rev.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 134
  start-page: 25
  year: 2019
  publication-title: Renew. Energy
– volume: 11
  start-page: 5948
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 5739
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 130
  year: 2022
  publication-title: Prog. Mater. Sci.
– volume: 4
  year: 2021
  publication-title: Multifunct. Mater.
– volume: 48
  start-page: 277
  year: 1998
  publication-title: Sens. Actuators, B
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2556
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 612
  year: 2021
  publication-title: J. Materiomics
– volume: 497
  year: 2008
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 1
  start-page: 74
  year: 2017
  publication-title: Mater. Today Phys.
– volume: 15
  start-page: 8516
  year: 2024
  publication-title: Nat. Commun.
– volume: 72
  start-page: 1295
  year: 2017
  publication-title: Renew. Sust. Energ. Rev.
– volume: 121
  year: 2024
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 62
  start-page: 415
  year: 2017
  publication-title: Int. Mater. Rev.
– volume: 386
  year: 2024
  publication-title: Science
– volume: 4
  start-page: 19
  year: 2020
  publication-title: npj Flexible Electron.
– volume: 49
  start-page: 201
  year: 2021
  publication-title: Mater. Today
– volume: 58
  start-page: 9251
  year: 2023
  publication-title: J. Mater. Sci.
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 62
  year: 2017
  publication-title: Mater. Today Phys.
– volume: 201
  year: 2022
  publication-title: Appl. Therm. Eng.
– volume: 8
  start-page: 12
  year: 2024
  publication-title: npj Flexible Electron.
– volume: 507
  year: 2021
  publication-title: J. Power Sources
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 26
  start-page: 6036
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1586
  year: 2017
  publication-title: J. Mater. Chem. C
– year: 2018
– volume: 101
  start-page: 490
  year: 2016
  publication-title: Appl. Therm. Eng.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4578
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 1
  start-page: 114
  year: 2018
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 38
  year: 2023
  publication-title: Compos. Commun.
– volume: 5
  start-page: 321
  year: 2019
  publication-title: J. Materiomics
– volume: 6
  start-page: 6481
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1039
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 67
  start-page: 508
  year: 2022
  publication-title: J. Energy Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 321
  start-page: 554
  year: 2008
  publication-title: Science
– volume: 251
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 40
  start-page: 5549
  year: 2020
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 21
  start-page: 4566
  year: 2021
  publication-title: Lab Chip
– volume: 31
  start-page: 1106
  year: 2022
  publication-title: J. Therm. Sci.
– volume: 107
  start-page: 701
  year: 2012
  publication-title: Appl. Phys. A
– volume: 6
  start-page: 1942
  year: 2020
  publication-title: Energy Rep.
– volume: 222
  year: 2021
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 316
  year: 2024
  publication-title: Energy Convers. Manage.
– volume: 7
  start-page: 3801
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 8
  start-page: 55
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 495
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 1545
  year: 2019
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 490
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 35
  year: 2025
  publication-title: Adv. Funct. Mater.
– volume: 247
  year: 2024
  publication-title: Appl. Therm. Eng.
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 65
  start-page: 29
  year: 2017
  publication-title: Solid State Sci.
– volume: 134
  year: 2023
  publication-title: J. Appl. Phys.
– volume: 150
  year: 2020
  publication-title: Int. J. Heat Mass Transfer
– volume: 115
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 83
  start-page: 330
  year: 2016
  publication-title: Prog. Mater. Sci.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 383
  start-page: 1204
  year: 2024
  publication-title: Science
– volume: 20
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 272
  year: 2020
  publication-title: Appl. Energy
– volume: 262
  year: 2020
  publication-title: Appl. Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 205
  start-page: 868
  year: 2017
  publication-title: Appl. Energy
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1
  year: 2021
  publication-title: Adv. Mater. Process. Technol.
– volume: 93
  start-page: 270
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 36
  start-page: 3530
  year: 2011
  publication-title: Renew. Energy
– volume: 220
  year: 2020
  publication-title: Energy Convers. Manage.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 99
  start-page: 379
  year: 2012
  publication-title: Appl. Energy
– volume: 117
  year: 2023
  publication-title: Nano Energy
– volume: 12
  start-page: 228
  year: 2023
  publication-title: J. Adv. Ceram.
– volume: 438
  start-page: 224
  year: 2013
  publication-title: J. Nucl. Mater.
– ident: e_1_2_7_113_1
  doi: 10.1002/admi.201701596
– ident: e_1_2_7_120_1
  doi: 10.1016/j.biomaterials.2014.08.048
– ident: e_1_2_7_11_1
  doi: 10.1039/C6EE00456C
– ident: e_1_2_7_165_1
  doi: 10.1021/acsami.2c14815
– ident: e_1_2_7_100_1
  doi: 10.1103/PhysRevB.84.085207
– ident: e_1_2_7_17_1
  doi: 10.1007/s11431-017-9058-8
– ident: e_1_2_7_134_1
  doi: 10.1016/j.nanoen.2021.106260
– ident: e_1_2_7_215_1
  doi: 10.1142/S021798491750172X
– ident: e_1_2_7_133_1
  doi: 10.1016/j.enconman.2021.115003
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cej.2022.135268
– ident: e_1_2_7_95_1
  doi: 10.1016/j.pmatsci.2016.07.002
– ident: e_1_2_7_162_1
  doi: 10.1002/adfm.202412178
– ident: e_1_2_7_29_1
  doi: 10.1016/j.nanoen.2019.02.045
– ident: e_1_2_7_76_1
  doi: 10.1002/smll.202006612
– ident: e_1_2_7_106_1
  doi: 10.1016/j.progpolymsci.2018.06.001
– year: 2024
  ident: e_1_2_7_19_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_131_1
  doi: 10.1016/j.nanoen.2021.106818
– ident: e_1_2_7_54_2
  doi: 10.1016/j.apenergy.2017.05.181
– ident: e_1_2_7_143_1
  doi: 10.1038/s41528-024-00298-z
– ident: e_1_2_7_46_1
  doi: 10.1016/j.mtphys.2021.100402
– ident: e_1_2_7_194_1
  doi: 10.3390/mi15050592
– ident: e_1_2_7_38_1
  doi: 10.1016/j.mtphys.2017.06.003
– ident: e_1_2_7_117_1
  doi: 10.1016/j.matt.2020.03.016
– ident: e_1_2_7_97_1
  doi: 10.1109/6144.846775
– ident: e_1_2_7_187_1
  doi: 10.1002/adma.202103104
– ident: e_1_2_7_33_1
  doi: 10.1002/smsc.202400284
– ident: e_1_2_7_49_1
  doi: 10.1039/c3cp50993a
– ident: e_1_2_7_183_1
  doi: 10.1016/j.solmat.2020.110925
– ident: e_1_2_7_30_1
  doi: 10.3390/ma7042577
– ident: e_1_2_7_36_1
  doi: 10.1039/D1MA00707F
– ident: e_1_2_7_230_1
  doi: 10.1021/acsami.8b08696
– ident: e_1_2_7_199_1
  doi: 10.1002/adma.202002702
– ident: e_1_2_7_226_1
  doi: 10.26599/JAC.2023.9220676
– ident: e_1_2_7_1_1
  doi: 10.1038/s41560-024-01518-6
– ident: e_1_2_7_56_1
  doi: 10.1063/1.4746397
– ident: e_1_2_7_112_1
  doi: 10.1039/C8NR09503E
– ident: e_1_2_7_190_1
  doi: 10.1201/9781420049718
– ident: e_1_2_7_214_1
  doi: 10.1002/adfm.202112772
– ident: e_1_2_7_50_1
  doi: 10.1149/1.3385154
– ident: e_1_2_7_161_1
  doi: 10.1002/adfm.202310225
– ident: e_1_2_7_82_1
  doi: 10.1088/2399-7532/abd4f0
– ident: e_1_2_7_149_1
  doi: 10.1002/adfm.202306086
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2022.107678
– ident: e_1_2_7_118_1
  doi: 10.1038/srep03442
– ident: e_1_2_7_152_1
  doi: 10.1038/s41563-018-0084-7
– ident: e_1_2_7_218_1
  doi: 10.1038/s41467-022-28480-9
– ident: e_1_2_7_219_1
  doi: 10.1021/acsami.9b06455
– ident: e_1_2_7_122_1
  doi: 10.1016/j.biomaterials.2017.09.006
– ident: e_1_2_7_171_1
  doi: 10.1016/j.cis.2010.06.009
– ident: e_1_2_7_3_1
  doi: 10.1016/j.apenergy.2012.05.033
– ident: e_1_2_7_54_1
  doi: 10.1360/092013-1239
– volume: 10
  year: 2024
  ident: e_1_2_7_23_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_179_1
  doi: 10.1016/j.cryogenics.2011.10.007
– ident: e_1_2_7_115_1
  doi: 10.1002/admi.202100069
– ident: e_1_2_7_69_1
  doi: 10.1016/j.enconman.2020.113080
– volume: 14
  start-page: 2231
  year: 2000
  ident: e_1_2_7_213_1
  publication-title: Int. J. Mod. Phys. B
– ident: e_1_2_7_212_1
  doi: 10.1016/j.jnucmat.2013.03.043
– ident: e_1_2_7_93_1
  doi: 10.1080/19475411.2024.2385349
– volume: 4
  start-page: 23
  year: 2024
  ident: e_1_2_7_98_1
  publication-title: Soft Science
– ident: e_1_2_7_109_1
  doi: 10.1038/s41528-021-00101-3
– ident: e_1_2_7_92_1
  doi: 10.1007/s11630-022-1610-0
– ident: e_1_2_7_126_1
  doi: 10.1016/j.mattod.2021.03.019
– ident: e_1_2_7_240_1
  doi: 10.1016/j.cej.2024.151815
– ident: e_1_2_7_142_1
  doi: 10.1002/adma.200803705
– ident: e_1_2_7_58_1
  doi: 10.1002/adma.201400843
– year: 2024
  ident: e_1_2_7_108_1
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_7_170_1
  doi: 10.1021/acsami.2c23028
– ident: e_1_2_7_197_1
  doi: 10.1038/s41467-024-52841-1
– ident: e_1_2_7_174_1
  doi: 10.1002/adfm.201901370
– ident: e_1_2_7_52_1
  doi: 10.1016/j.renene.2011.06.012
– ident: e_1_2_7_228_1
  doi: 10.1038/s41528-020-00082-9
– ident: e_1_2_7_198_1
  doi: 10.1016/j.mser.2018.09.001
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201701797
– ident: e_1_2_7_96_1
  doi: 10.1080/14786430802607119
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.202204321
– ident: e_1_2_7_204_1
  doi: 10.1021/acsami.9b02104
– ident: e_1_2_7_222_1
  doi: 10.1016/j.pmatsci.2022.100970
– ident: e_1_2_7_71_1
  doi: 10.1016/j.nanoen.2020.104773
– ident: e_1_2_7_227_1
  doi: 10.1016/j.jssc.2019.121022
– ident: e_1_2_7_238_1
  doi: 10.1002/admt.202301171
– ident: e_1_2_7_195_1
  doi: 10.1016/j.enconman.2024.118826
– volume: 134
  year: 2023
  ident: e_1_2_7_21_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_7_78_1
  doi: 10.1073/pnas.1616377114
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201303701
– ident: e_1_2_7_84_1
  doi: 10.1002/aenm.202201413
– ident: e_1_2_7_128_1
  doi: 10.1038/s41467-020-19756-z
– ident: e_1_2_7_177_1
  doi: 10.1080/15421400802458522
– ident: e_1_2_7_186_1
  doi: 10.1016/j.enconman.2022.115591
– ident: e_1_2_7_188_1
  doi: 10.1039/D0TC05493C
– ident: e_1_2_7_158_1
  doi: 10.1002/adfm.201702589
– ident: e_1_2_7_234_1
  doi: 10.1063/1.5084791
– ident: e_1_2_7_236_1
  doi: 10.1016/j.applthermaleng.2021.117793
– ident: e_1_2_7_206_1
  doi: 10.1021/acsaem.9b02243
– ident: e_1_2_7_88_1
  doi: 10.1088/0370-1328/72/5/429
– ident: e_1_2_7_207_1
  doi: 10.1016/j.solidstatesciences.2016.12.020
– ident: e_1_2_7_147_1
  doi: 10.1021/acsami.7b04752
– ident: e_1_2_7_151_1
  doi: 10.1002/adma.201900663
– ident: e_1_2_7_7_1
  doi: 10.1016/j.enconman.2017.09.039
– ident: e_1_2_7_87_1
  doi: 10.1021/am500009p
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.202212515
– ident: e_1_2_7_57_1
  doi: 10.3390/mi7120206
– ident: e_1_2_7_121_1
  doi: 10.1038/ncomms10066
– ident: e_1_2_7_44_1
  doi: 10.1039/C4EE01905A
– ident: e_1_2_7_83_1
  doi: 10.1002/adma.202004832
– ident: e_1_2_7_203_1
  doi: 10.1016/j.solener.2022.01.019
– ident: e_1_2_7_178_1
  doi: 10.1016/j.nanoen.2024.110001
– ident: e_1_2_7_73_1
  doi: 10.1002/adfm.202404861
– ident: e_1_2_7_59_1
  doi: 10.1039/D1LC00726B
– ident: e_1_2_7_224_1
  doi: 10.1360/03wb0215
– ident: e_1_2_7_176_1
  doi: 10.1016/j.egyr.2020.07.014
– ident: e_1_2_7_55_1
  doi: 10.1002/adfm.201906098
– ident: e_1_2_7_79_1
  doi: 10.1016/j.applthermaleng.2021.116937
– ident: e_1_2_7_220_1
  doi: 10.1002/adma.201502569
– ident: e_1_2_7_156_1
  doi: 10.1007/s00339-013-8191-4
– ident: e_1_2_7_196_1
  doi: 10.1016/j.nanoen.2024.110388
– ident: e_1_2_7_141_1
  doi: 10.1063/1.4872698
– ident: e_1_2_7_104_1
  doi: 10.1088/1361-6528/abcbc2
– ident: e_1_2_7_20_1
  doi: 10.1126/science.adp2444
– ident: e_1_2_7_10_1
  doi: 10.1016/j.rser.2018.03.052
– ident: e_1_2_7_163_1
  doi: 10.1021/acsami.8b08722
– ident: e_1_2_7_221_1
  doi: 10.1016/S0925-4005(98)00056-2
– ident: e_1_2_7_216_1
  doi: 10.1038/s41467-022-31664-y
– ident: e_1_2_7_63_1
  doi: 10.1016/j.enconman.2016.01.065
– ident: e_1_2_7_66_1
  doi: 10.1016/j.carbon.2020.06.012
– ident: e_1_2_7_191_1
  doi: 10.1002/anie.201506469
– ident: e_1_2_7_105_1
  doi: 10.1016/j.cej.2024.153352
– ident: e_1_2_7_233_1
  doi: 10.1021/acsomega.1c06367
– ident: e_1_2_7_241_1
  doi: 10.1063/5.0155822
– ident: e_1_2_7_243_1
  doi: 10.1039/C8RA00262B
– ident: e_1_2_7_211_1
  doi: 10.1126/science.1159725
– ident: e_1_2_7_166_1
  doi: 10.1039/D1TC05087G
– ident: e_1_2_7_189_1
  doi: 10.1016/j.compscitech.2022.109523
– ident: e_1_2_7_209_1
  doi: 10.1002/adma.202408466
– ident: e_1_2_7_229_1
  doi: 10.1016/j.jmat.2020.10.015
– ident: e_1_2_7_119_1
  doi: 10.1063/1.4827302
– ident: e_1_2_7_91_1
  doi: 10.1016/j.mtphys.2020.100311
– ident: e_1_2_7_80_1
  doi: 10.1080/09506608.2016.1271090
– ident: e_1_2_7_102_1
  doi: 10.1002/adma.202203391
– ident: e_1_2_7_184_1
  doi: 10.1002/adma.202308346
– ident: e_1_2_7_107_1
  doi: 10.1021/acsami.1c15014
– ident: e_1_2_7_136_1
  doi: 10.1016/j.jpowsour.2021.230323
– ident: e_1_2_7_64_1
  doi: 10.1016/j.renene.2018.10.109
– ident: e_1_2_7_150_1
  doi: 10.1021/acsami.1c03328
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201704386
– ident: e_1_2_7_9_1
  doi: 10.1126/science.aak9997
– ident: e_1_2_7_67_1
  doi: 10.1038/nmat4946
– ident: e_1_2_7_123_1
  doi: 10.1002/adhm.201800318
– ident: e_1_2_7_35_1
  doi: 10.1016/j.mtphys.2021.100468
– ident: e_1_2_7_124_1
  doi: 10.1002/adfm.201907063
– ident: e_1_2_7_185_1
  doi: 10.1007/s00231-010-0658-7
– ident: e_1_2_7_175_1
  doi: 10.1007/s40843-023-2607-3
– ident: e_1_2_7_237_1
  doi: 10.1021/acsami.3c05418
– ident: e_1_2_7_145_1
  doi: 10.1038/s41467-024-51648-4
– ident: e_1_2_7_164_1
  doi: 10.1002/adfm.202308128
– ident: e_1_2_7_159_1
  doi: 10.1109/TCPMT.2012.2185792
– ident: e_1_2_7_62_1
  doi: 10.1073/pnas.2320704121
– ident: e_1_2_7_127_1
  doi: 10.1093/nsr/nwad302
– ident: e_1_2_7_180_1
  doi: 10.1016/j.apenergy.2017.08.092
– ident: e_1_2_7_61_1
  doi: 10.3390/s19020314
– ident: e_1_2_7_90_1
  doi: 10.1063/1.4876909
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jmat.2019.04.004
– ident: e_1_2_7_182_1
  doi: 10.1088/0022-3727/40/15/055
– ident: e_1_2_7_94_1
  doi: 10.1016/j.energy.2019.116019
– ident: e_1_2_7_45_1
  doi: 10.1016/j.pmatsci.2017.09.004
– ident: e_1_2_7_144_1
  doi: 10.1016/j.cej.2024.158783
– ident: e_1_2_7_77_1
  doi: 10.1016/j.ijheatmasstransfer.2020.119366
– ident: e_1_2_7_16_1
  doi: 10.1038/asiamat.2010.138
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-024-50175-6
– ident: e_1_2_7_125_1
  doi: 10.1016/j.actbio.2019.11.023
– ident: e_1_2_7_138_1
  doi: 10.1080/19475411.2023.2261775
– ident: e_1_2_7_89_1
  doi: 10.1063/1.5101028
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.202400623
– ident: e_1_2_7_232_1
  doi: 10.1016/j.jeurceramsoc.2020.07.021
– ident: e_1_2_7_85_1
  doi: 10.1063/5.0097346
– ident: e_1_2_7_2_1
  doi: 10.1016/j.energy.2023.127304
– ident: e_1_2_7_101_1
  doi: 10.1002/adfm.200701216
– ident: e_1_2_7_41_1
  doi: 10.1007/s42114-017-0011-4
– ident: e_1_2_7_210_1
  doi: 10.1002/adem.201700781
– volume: 42
  year: 2024
  ident: e_1_2_7_225_1
  publication-title: J. Vac. Sci. Technol., A
– ident: e_1_2_7_205_1
  doi: 10.1002/smll.201805307
– ident: e_1_2_7_223_1
  doi: 10.1016/j.mtsust.2024.100673
– ident: e_1_2_7_242_1
  doi: 10.1002/adma.202200857
– ident: e_1_2_7_18_1
  doi: 10.1126/science.adk9589
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-023-37114-7
– ident: e_1_2_7_53_1
  doi: 10.1007/s10853-023-08593-2
– ident: e_1_2_7_172_1
  doi: 10.1002/aelm.202300300
– ident: e_1_2_7_173_1
  doi: 10.1016/j.jallcom.2023.169260
– ident: e_1_2_7_235_1
  doi: 10.3390/ma15124315
– ident: e_1_2_7_75_1
  doi: 10.1038/ncomms5578
– ident: e_1_2_7_231_1
  doi: 10.1021/acsami.2c09907
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.202407073
– ident: e_1_2_7_5_1
  doi: 10.1016/j.apenergy.2010.02.013
– ident: e_1_2_7_70_1
  doi: 10.1002/admt.202101203
– ident: e_1_2_7_132_1
  doi: 10.1016/j.cej.2021.130816
– ident: e_1_2_7_111_1
  doi: 10.1002/adfm.202309725
– ident: e_1_2_7_86_1
  doi: 10.1016/j.jallcom.2021.163060
– ident: e_1_2_7_12_1
  doi: 10.1002/smll.202405019
– ident: e_1_2_7_116_1
  doi: 10.1021/acsami.1c11275
– ident: e_1_2_7_129_1
  doi: 10.1016/j.enconman.2021.115167
– ident: e_1_2_7_157_1
  doi: 10.1109/TBCAS.2019.2935026
– ident: e_1_2_7_103_1
  doi: 10.1039/C6TC05358K
– ident: e_1_2_7_154_1
  doi: 10.1039/C8NR09101C
– ident: e_1_2_7_217_1
  doi: 10.1038/s41467-023-40588-0
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201903387
– ident: e_1_2_7_193_1
  doi: 10.1016/j.apenergy.2019.114370
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202103779
– ident: e_1_2_7_31_1
  doi: 10.1016/j.mtphys.2017.09.001
– ident: e_1_2_7_208_1
  doi: 10.1016/j.nanoen.2023.108909
– ident: e_1_2_7_6_1
  doi: 10.1016/j.applthermaleng.2015.10.081
– ident: e_1_2_7_140_1
  doi: 10.1080/2374068X.2020.1751514
– ident: e_1_2_7_110_1
  doi: 10.1021/acsami.9b19837
– ident: e_1_2_7_60_1
  doi: 10.1002/admt.202201391
– ident: e_1_2_7_139_1
  doi: 10.1039/C4EE02657H
– ident: e_1_2_7_155_1
  doi: 10.1039/C4TB00660G
– ident: e_1_2_7_14_1
  doi: 10.1016/j.apenergy.2020.115065
– ident: e_1_2_7_39_1
  doi: 10.1038/natrevmats.2016.32
– ident: e_1_2_7_192_1
  doi: 10.1038/nmat4705
– ident: e_1_2_7_200_1
  doi: 10.1016/j.solener.2020.03.009
– ident: e_1_2_7_201_1
  doi: 10.1016/j.jechem.2021.08.062
– ident: e_1_2_7_74_1
  doi: 10.1016/j.nanoen.2020.105419
– ident: e_1_2_7_34_1
  doi: 10.1016/j.cap.2018.09.013
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2021.106268
– ident: e_1_2_7_51_1
  doi: 10.1039/c3ta13456c
– ident: e_1_2_7_32_1
  doi: 10.1093/nsr/nwae329
– ident: e_1_2_7_239_1
  doi: 10.1016/j.applthermaleng.2024.123098
– ident: e_1_2_7_137_1
  doi: 10.1080/09506608.2017.1296605
– ident: e_1_2_7_135_1
  doi: 10.1039/D1TC03495B
– ident: e_1_2_7_148_1
  doi: 10.1126/sciadv.abe0586
– ident: e_1_2_7_99_1
  doi: 10.1007/s00339-012-6887-5
– ident: e_1_2_7_114_1
  doi: 10.1016/j.ijheatmasstransfer.2022.123444
– ident: e_1_2_7_146_1
  doi: 10.1002/aenm.202100920
– ident: e_1_2_7_130_1
  doi: 10.1002/advs.202001362
– ident: e_1_2_7_168_1
  doi: 10.1002/admt.202200534
– ident: e_1_2_7_167_1
  doi: 10.1016/j.compscitech.2023.110311
– ident: e_1_2_7_181_1
  doi: 10.1007/s11708-007-0057-3
– ident: e_1_2_7_4_1
  doi: 10.1016/j.rser.2023.113723
– ident: e_1_2_7_8_1
  doi: 10.1016/j.rser.2016.10.042
– ident: e_1_2_7_72_1
  doi: 10.1016/j.nanoen.2020.104854
– ident: e_1_2_7_169_1
  doi: 10.1021/acsami.0c22206
– ident: e_1_2_7_160_1
  doi: 10.1002/adfm.202204257
– ident: e_1_2_7_68_1
  doi: 10.1016/j.coco.2023.101509
– ident: e_1_2_7_48_1
  doi: 10.1002/aelm.201800769
– ident: e_1_2_7_153_1
  doi: 10.1002/adma.201805536
– ident: e_1_2_7_202_1
  doi: 10.1021/acsami.1c13223
SSID ssj0017734
Score 2.49298
SecondaryResourceType review_article
Snippet The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Contact resistance
Electric contacts
Electrical resistivity
Flexibility
Gallium
Healing
Heat conductivity
Heat transfer
interconnects
Liquid metals
printed thermoelectric materials
Semiconductors
Stretchability
Thermal conductivity
thermoelectric effect
Thermoelectric materials
Title Liquid Metal Enabled Thermoelectric Effects: Fundamental and Application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202423909
https://www.proquest.com/docview/3238300981
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4SpvdZLOJt6INRawHsdBbmM1uoIit9nHx17uTbdLWi6CnEMiGZB6Zb7Iz3xByw0PpGwbgJXEUeKGNaZ5CJkwVMWaEkn5sMFEcPEf9Yfg4EqONLn7HD1H_cEPPKL_X6OCg5p01aSjoAjvJEQ8kZQcfFmwhKnqp-aOYlG5bOWJY4MVGFWujzzvby7ej0hpqbgLWMuKkBwSqZ3WFJm_t5UK1868fNI7_eZlDsr-Co7Tr7OeI7JjJMdnbICk8If2n8edyrOnAWJxOe2WvlabWvGbvUzdEZ5xTR4I8v6Mpdpa4gQEUJpp21xvkp2SY9l7v-95q_oKX21w18bjkQilTxCaEQFuVWncNsbWHCwAQOYfcj8DiKQiEhkTiQYs48U2sIbC6PyONyXRizgnVUhRBxMAmTEVowljZyxTnYHKpmBZRk9xW8s8-HM1G5giVeYayyWrZNEmrUk-2crd5FljgESA1KmsSXsr5l7tk3Yd0UJ9d_GXRJdnlOAsYy0fiFmksZktzZQHKQl2XRvgNy9nbTQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB58HNSDb7E-c1A8rW6ym30IHoptabX1IBV6W5NNCkWsj7aI_iv_ir_IzKbbWi-C4MHTsrAbksxM8k0y8w3AAfNDV1MhnDgKPMc3e5ojkQlTBpRqLkM30ugoNq6C6o1_0eKtKXjPc2EsP8TowA0tI1uv0cDxQPpkzBoqVBtTyREQxG48jKu81K8vxmvrndVKRsSHjFXKzfOqMyws4KTGCYsdFjIupW5H2heeMn01euhjzgrjQgieMpG6gTBAQXhciTjEh-JR7OpICc8MyrQ7DbNYRhzp-kvXI8YqGob2IjugGFJGWzlPpMtOJvs7uQ-Owe1XiJztcZUl-Mhnx4a23B0P-vI4fftGHPmvpm8ZFoeImxStiazAlO6uwsIXHsY1qNY7T4OOIg1tXBFSztLJFDEW9Hz_YOsEdVJieZ57p6SCyTO2JgIRXUWK4xiAdbj5k6FswEz3oas3gaiQt72ACuMTtn3tR9J8JhkTOg0lVTwowFEu8OTRMokkljOaJSiLZCSLAuzk-pAMV5Re4hls5SH7Ky0AywT7QytJsVRpjN62fvPTPsxVm416Uq9dXW7DPMPSxxgtE-3ATP95oHcNHuvLvcwCCNz-tc58AlHGOD8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB7WFUQPvsXVVXNQPFWbtOlD8LC4W9bHLiIKe6tJk8IirroPRH-Vf8V_ZNJs9-FFEDx4KoU2JJmZzDftzDcA-8T1bYkZs8LAcyxX-TSLayZM7mEsKfftQOpAsdH06nfuRYu2CvCR18IYfojRBzdtGdl5rQ38WaTHY9JQJlJdSa7xQGiHw7TKS_n2qoK23ul5VUn4gJCodntWt4Z9BaxExWChRXxCOZdpIF3mCDVVpYauLlkhlDFGE8IS22MKJzCHChb6-iJoENoyEMxRa1LjzsCs69mhbhZRvRkRVmHfN_-xPawzynArp4m0yfH0fKfd4BjbTiLkzMVFS_CZb47JbHk4GvT5UfL-jTfyP-3eMiwO8TaqGANZgYLsrMLCBAvjGtSv2i-DtkANqQIRVMuKyQRS9tN9fDJdgtoJMizPvRMU6dIZ0xEBsY5AlXEGwDrc_clSNqDYeerITUDCp6njYaYiwtSVbsDVY5wQJhOfY0G9Ehzm8o6fDY9IbBijSaxlEY9kUYJyrg7x8DzpxY5CVo7mfsUlIJlcfxglrlSjxuhu6zcv7cHcdTWKr86bl9swT3TfY50qE5Sh2O8O5I4CY32-m-k_gvu_VpkvRC427g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Metal+Enabled+Thermoelectric+Effects%3A+Fundamental+and+Application&rft.jtitle=Advanced+functional+materials&rft.au=Guan%2C+Tangzhen&rft.au=Gao%2C+Jianye&rft.au=Hua%2C+Chen&rft.au=Tao%2C+Yiyue&rft.date=2025-08-08&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202423909&rft.externalDBID=10.1002%252Fadfm.202423909&rft.externalDocID=ADFM202423909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon