Liquid Metal Enabled Thermoelectric Effects: Fundamental and Application
The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformati...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 32 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
08.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed.
This review systematically explores liquid metal (LM)‐enabled thermoelectric (TE) effects, highlighting fundamental properties and multifunctional application scenarios. With unique traits such as fluidity, high electrical/thermal conductivity, and self‐healing, LMs impart stretchability and self‐repair capabilities to TE devices. Key challenges and future research opportunities for advancing this emerging field are also discussed. |
---|---|
AbstractList | The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed. The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed. The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation functional devices. However, traditional TE generators (TEGs), predominantly composed of rigid materials, are unable to maintain synchronous deformation under bending, twisting, or stretching, thereby limiting their application potential. Liquid metal (LM), with its exceptional electrical conductivity, flexibility, thermal conductivity, self‐healing properties, and unique TE effects, presents a compelling alternative as a conductive and heat‐transfer material. By integrating LM with TE effects, TEGs can achieve flexibility, stretchability, and self‐healing capabilities, enhance the thermal conductivity of encapsulating materials (ECMs), reduce interfacial contact resistance, and improve overall performance. This article provides a comprehensive review of the cutting‐edge intersection between LM and TE effects, encompassing applications of LM in interconnects (INCs), heat‐conductive materials, and the fabrication of TE legs. Subsequently, the unique TE effects at liquid–liquid interfaces between gallium and commonly used LMs are reviewed. Additionally, the emerging process of fabricating thermoelectric materials (TEMs) using LM‐printed semiconductors is explored. Finally, based on an evaluation of the latest advancements in this field, the challenges and promising directions for future research at the intersection of LM and TE effects are discussed. This review systematically explores liquid metal (LM)‐enabled thermoelectric (TE) effects, highlighting fundamental properties and multifunctional application scenarios. With unique traits such as fluidity, high electrical/thermal conductivity, and self‐healing, LMs impart stretchability and self‐repair capabilities to TE devices. Key challenges and future research opportunities for advancing this emerging field are also discussed. |
Author | Guan, Tangzhen Hua, Chen Liu, Jing Gao, Jianye Tao, Yiyue Ma, Yibing |
Author_xml | – sequence: 1 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jianye orcidid: 0000-0003-4024-4758 surname: Gao fullname: Gao, Jianye email: gaojianye@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 3 givenname: Chen surname: Hua fullname: Hua, Chen organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Yiyue surname: Tao fullname: Tao, Yiyue organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yibing surname: Ma fullname: Ma, Yibing organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Jing orcidid: 0000-0002-0844-5296 surname: Liu fullname: Liu, Jing email: jliu@mail.ipc.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkM1PwkAQxTcGEwG9em7iuTi726_1RhDEBOIFE2-boTuNJe22bNsY_nvaYPDo6b3D772ZvAkb2coSY48cZhxAPKPJypkAEQipQN2wMY945EsQyejq-dcdmzTNAYDHsQzGbL3Jj11uvC21WHhLi_uCjLf7JldWVFDaujz1llnWu-bFW3XWYEl2YNEab17XRZ5im1f2nt1mWDT08KtT9rla7hZrf_Px9r6Yb_xUxIHyRSzC_Z6yhAKUBohLrgIB_f8hIoapwBQiDAKOMjSo4kFMmCigxKBMIjllT5fe2lXHjppWH6rO2f6klkImEkAlvKdmFyp1VdM4ynTt8hLdSXPQw1p6WEtf1-oD6hL4yQs6_UPr-etq-5c9A4SKbzU |
Cites_doi | 10.1002/admi.201701596 10.1016/j.biomaterials.2014.08.048 10.1039/C6EE00456C 10.1021/acsami.2c14815 10.1103/PhysRevB.84.085207 10.1007/s11431-017-9058-8 10.1016/j.nanoen.2021.106260 10.1142/S021798491750172X 10.1016/j.enconman.2021.115003 10.1016/j.cej.2022.135268 10.1016/j.pmatsci.2016.07.002 10.1002/adfm.202412178 10.1016/j.nanoen.2019.02.045 10.1002/smll.202006612 10.1016/j.progpolymsci.2018.06.001 10.1016/j.nanoen.2021.106818 10.1016/j.apenergy.2017.05.181 10.1038/s41528-024-00298-z 10.1016/j.mtphys.2021.100402 10.3390/mi15050592 10.1016/j.mtphys.2017.06.003 10.1016/j.matt.2020.03.016 10.1109/6144.846775 10.1002/adma.202103104 10.1002/smsc.202400284 10.1039/c3cp50993a 10.1016/j.solmat.2020.110925 10.3390/ma7042577 10.1039/D1MA00707F 10.1021/acsami.8b08696 10.1002/adma.202002702 10.26599/JAC.2023.9220676 10.1038/s41560-024-01518-6 10.1063/1.4746397 10.1039/C8NR09503E 10.1201/9781420049718 10.1002/adfm.202112772 10.1149/1.3385154 10.1002/adfm.202310225 10.1088/2399-7532/abd4f0 10.1002/adfm.202306086 10.1016/j.nanoen.2022.107678 10.1038/srep03442 10.1038/s41563-018-0084-7 10.1038/s41467-022-28480-9 10.1021/acsami.9b06455 10.1016/j.biomaterials.2017.09.006 10.1016/j.cis.2010.06.009 10.1016/j.apenergy.2012.05.033 10.1360/092013-1239 10.1016/j.cryogenics.2011.10.007 10.1002/admi.202100069 10.1016/j.enconman.2020.113080 10.1016/j.jnucmat.2013.03.043 10.1080/19475411.2024.2385349 10.1038/s41528-021-00101-3 10.1007/s11630-022-1610-0 10.1016/j.mattod.2021.03.019 10.1016/j.cej.2024.151815 10.1002/adma.200803705 10.1002/adma.201400843 10.1021/acsami.2c23028 10.1038/s41467-024-52841-1 10.1002/adfm.201901370 10.1016/j.renene.2011.06.012 10.1038/s41528-020-00082-9 10.1016/j.mser.2018.09.001 10.1002/aenm.201701797 10.1080/14786430802607119 10.1002/aenm.202204321 10.1021/acsami.9b02104 10.1016/j.pmatsci.2022.100970 10.1016/j.nanoen.2020.104773 10.1016/j.jssc.2019.121022 10.1002/admt.202301171 10.1016/j.enconman.2024.118826 10.1073/pnas.1616377114 10.1002/smll.201303701 10.1002/aenm.202201413 10.1038/s41467-020-19756-z 10.1080/15421400802458522 10.1016/j.enconman.2022.115591 10.1039/D0TC05493C 10.1002/adfm.201702589 10.1063/1.5084791 10.1016/j.applthermaleng.2021.117793 10.1021/acsaem.9b02243 10.1088/0370-1328/72/5/429 10.1016/j.solidstatesciences.2016.12.020 10.1021/acsami.7b04752 10.1002/adma.201900663 10.1016/j.enconman.2017.09.039 10.1021/am500009p 10.1002/anie.202212515 10.3390/mi7120206 10.1038/ncomms10066 10.1039/C4EE01905A 10.1002/adma.202004832 10.1016/j.solener.2022.01.019 10.1016/j.nanoen.2024.110001 10.1002/adfm.202404861 10.1039/D1LC00726B 10.1360/03wb0215 10.1016/j.egyr.2020.07.014 10.1002/adfm.201906098 10.1016/j.applthermaleng.2021.116937 10.1002/adma.201502569 10.1007/s00339-013-8191-4 10.1016/j.nanoen.2024.110388 10.1063/1.4872698 10.1088/1361-6528/abcbc2 10.1126/science.adp2444 10.1016/j.rser.2018.03.052 10.1021/acsami.8b08722 10.1016/S0925-4005(98)00056-2 10.1038/s41467-022-31664-y 10.1016/j.enconman.2016.01.065 10.1016/j.carbon.2020.06.012 10.1002/anie.201506469 10.1016/j.cej.2024.153352 10.1021/acsomega.1c06367 10.1063/5.0155822 10.1039/C8RA00262B 10.1126/science.1159725 10.1039/D1TC05087G 10.1016/j.compscitech.2022.109523 10.1002/adma.202408466 10.1016/j.jmat.2020.10.015 10.1063/1.4827302 10.1016/j.mtphys.2020.100311 10.1080/09506608.2016.1271090 10.1002/adma.202203391 10.1002/adma.202308346 10.1021/acsami.1c15014 10.1016/j.jpowsour.2021.230323 10.1016/j.renene.2018.10.109 10.1021/acsami.1c03328 10.1002/adma.201704386 10.1126/science.aak9997 10.1038/nmat4946 10.1002/adhm.201800318 10.1016/j.mtphys.2021.100468 10.1002/adfm.201907063 10.1007/s00231-010-0658-7 10.1007/s40843-023-2607-3 10.1021/acsami.3c05418 10.1038/s41467-024-51648-4 10.1002/adfm.202308128 10.1109/TCPMT.2012.2185792 10.1073/pnas.2320704121 10.1093/nsr/nwad302 10.1016/j.apenergy.2017.08.092 10.3390/s19020314 10.1063/1.4876909 10.1016/j.jmat.2019.04.004 10.1088/0022-3727/40/15/055 10.1016/j.energy.2019.116019 10.1016/j.pmatsci.2017.09.004 10.1016/j.cej.2024.158783 10.1016/j.ijheatmasstransfer.2020.119366 10.1038/asiamat.2010.138 10.1038/s41467-024-50175-6 10.1016/j.actbio.2019.11.023 10.1080/19475411.2023.2261775 10.1063/1.5101028 10.1002/aenm.202400623 10.1016/j.jeurceramsoc.2020.07.021 10.1063/5.0097346 10.1016/j.energy.2023.127304 10.1002/adfm.200701216 10.1007/s42114-017-0011-4 10.1002/adem.201700781 10.1002/smll.201805307 10.1016/j.mtsust.2024.100673 10.1002/adma.202200857 10.1126/science.adk9589 10.1038/s41467-023-37114-7 10.1007/s10853-023-08593-2 10.1002/aelm.202300300 10.1016/j.jallcom.2023.169260 10.3390/ma15124315 10.1038/ncomms5578 10.1021/acsami.2c09907 10.1002/adma.202407073 10.1016/j.apenergy.2010.02.013 10.1002/admt.202101203 10.1016/j.cej.2021.130816 10.1002/adfm.202309725 10.1016/j.jallcom.2021.163060 10.1002/smll.202405019 10.1021/acsami.1c11275 10.1016/j.enconman.2021.115167 10.1109/TBCAS.2019.2935026 10.1039/C6TC05358K 10.1039/C8NR09101C 10.1038/s41467-023-40588-0 10.1002/adma.201903387 10.1016/j.apenergy.2019.114370 10.1002/aenm.202103779 10.1016/j.mtphys.2017.09.001 10.1016/j.nanoen.2023.108909 10.1016/j.applthermaleng.2015.10.081 10.1080/2374068X.2020.1751514 10.1021/acsami.9b19837 10.1002/admt.202201391 10.1039/C4EE02657H 10.1039/C4TB00660G 10.1016/j.apenergy.2020.115065 10.1038/natrevmats.2016.32 10.1038/nmat4705 10.1016/j.solener.2020.03.009 10.1016/j.jechem.2021.08.062 10.1016/j.nanoen.2020.105419 10.1016/j.cap.2018.09.013 10.1016/j.nanoen.2021.106268 10.1039/c3ta13456c 10.1093/nsr/nwae329 10.1016/j.applthermaleng.2024.123098 10.1080/09506608.2017.1296605 10.1039/D1TC03495B 10.1126/sciadv.abe0586 10.1007/s00339-012-6887-5 10.1016/j.ijheatmasstransfer.2022.123444 10.1002/aenm.202100920 10.1002/advs.202001362 10.1002/admt.202200534 10.1016/j.compscitech.2023.110311 10.1007/s11708-007-0057-3 10.1016/j.rser.2023.113723 10.1016/j.rser.2016.10.042 10.1016/j.nanoen.2020.104854 10.1021/acsami.0c22206 10.1002/adfm.202204257 10.1016/j.coco.2023.101509 10.1002/aelm.201800769 10.1002/adma.201805536 10.1021/acsami.1c13223 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202423909 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202423909 ADFM202423909 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2023M731888 – fundername: National Natural Science Foundation of China funderid: 51890893 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2749-2725bbef8e4a3d0e13194200025aaa5c2ac06a441a35da97a35dd5890e8da3863 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Aug 11 15:41:09 EDT 2025 Wed Aug 13 23:47:50 EDT 2025 Wed Aug 13 09:41:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2749-2725bbef8e4a3d0e13194200025aaa5c2ac06a441a35da97a35dd5890e8da3863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0844-5296 0000-0003-4024-4758 |
PQID | 3238300981 |
PQPubID | 2045204 |
PageCount | 32 |
ParticipantIDs | proquest_journals_3238300981 crossref_primary_10_1002_adfm_202423909 wiley_primary_10_1002_adfm_202423909_ADFM202423909 |
PublicationCentury | 2000 |
PublicationDate | August 8, 2025 |
PublicationDateYYYYMMDD | 2025-08-08 |
PublicationDate_xml | – month: 08 year: 2025 text: August 8, 2025 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 89 2019; 11 2019; 13 2019; 15 2020; 281 2019; 19 2020; 12 2020; 168 2024; 34 2020; 11 2024; 36 2017; 72 2021; 79 2000; 14 2019; 29 2024; 25 2010; 2 2017; 62 2022; 199 2021; 49 2017; 60 2019; 31 2020; 262 2022; 93 2004; 49 2020; 40 2017; 65 2021; 426 2013; 103 2024; 10 2024; 11 2020; 32 2024; 14 2024; 15 2016; 15 2019; 188 2016; 7 2016; 1 2020; 272 2022; 7 2020; 150 2018; 91 2018; 93 2008; 497 2017; 146 2016; 9 2023; 35 2023; 33 2023; 38 2019; 59 2016; 101 2024; 383 2024; 386 2018; 83 2017; 114 2017; 357 2022; 896 2020; 7 2020; 6 2017; 31 2013; 15 2014; 5 2020; 4 2020; 3 2020; 2 2014; 2 2013; 438 2010; 159 2010; 157 2016; 114 2014; 7 2014; 6 2021; 9 2023; 10 2021; 8 2021; 7 2023; 13 2021; 5 2015; 6 2023; 14 2021; 4 2021; 88 2021; 2 2023; 12 2021; 222 2020; 220 2023; 15 2017; 27 2018; 63 1958; 72 2020; 102 2008; 321 2015; 8 2022; 437 2010; 87 2020; 74 2020; 73 2017; 16 2018 2024; 42 2007; 40 2013; 3 2013; 1 2023; 187 2014; 26 2024 2020; 201 2012; 99 2018; 7 2023; 62 2018; 8 2018; 5 2023; 66 2018; 1 2024; 8 2024; 9 2022; 34 2018; 30 2022; 31 2024; 4 2022; 32 2007; 1 2014; 10 2017; 205 2022; 201 2022; 233 2019; 7 2023; 58 2012; 101 2019; 5 2024; 247 2024; 129 2011; 84 2015; 54 2024; 121 2018; 20 2012; 107 2018; 18 2018; 17 2010; 46 2023; 274 2022; 12 2022; 13 2022; 14 2024; 495 2014; 35 2024; 132 2022; 15 2022; 10 2018; 10 2022; 226 2022; 102 2025; 504 2024; 490 2017; 5 1998; 48 2022; 253 2021; 21 2017; 1 2017; 2 2022; 251 2022; 130 2023; 8 2023; 9 2019; 126 2022; 67 2023; 945 2025; 35 2017; 9 2022; 259 2012; 52 2021; 32 2021; 33 2024; 316 2023; 134 2014; 1591 2021; 192 2016; 83 2014; 116 2014 2017; 44 202 2021; 507 2009; 21 2000; 23 2008; 18 2023; 244 2011; 36 2014; 115 2021; 13 2021; 16 2015; 27 2021; 11 2021; 18 2018; 156 2021; 17 2023; 117 2019; 138 2019; 134 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_60_1 e_1_2_7_83_1 Xilong Z. (e_1_2_7_98_1) 2024; 4 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 Liu S. (e_1_2_7_19_1) 2024 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_238_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_2 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 Fu Q. Q. (e_1_2_7_108_1) 2024 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Hu Y. (e_1_2_7_23_1) 2024; 10 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_157_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 Zhang X. (e_1_2_7_225_1) 2024; 42 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 Fujita S. (e_1_2_7_213_1) 2000; 14 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 Wang Y. (e_1_2_7_21_1) 2023; 134 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_236_1 e_1_2_7_138_1 |
References_xml | – volume: 15 start-page: 469 year: 2024 publication-title: Int. J. Smart Nano Mater. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2024 publication-title: Adv. Energy Mater. – volume: 16 year: 2021 publication-title: Mater. Today Phys. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 1328 year: 2004 publication-title: Chin. Sci. Bull. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 2 start-page: 1446 year: 2020 publication-title: Matter – volume: 10 year: 2023 publication-title: Appl. Phys. Rev. – volume: 896 year: 2022 publication-title: J. Alloys Compd. – volume: 10 year: 2024 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 2231 year: 2000 publication-title: Int. J. Mod. Phys. B – volume: 83 start-page: 97 year: 2018 publication-title: Prog. Polym. Sci. – volume: 7 start-page: 2577 year: 2014 publication-title: Materials – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 159 start-page: 198 year: 2010 publication-title: Adv. Colloid Interface Sci. – volume: 187 year: 2023 publication-title: Renew. Sust. Energ. Rev. – volume: 11 year: 2024 publication-title: Natl. Sci. Rev. – volume: 18 start-page: 1540 year: 2018 publication-title: Curr. Appl. Phys. – volume: 13 start-page: 1078 year: 2022 publication-title: Nat. Commun. – volume: 132 year: 2024 publication-title: Nano Energy – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 93 year: 2022 publication-title: Nano Energy – volume: 168 start-page: 65 year: 2020 publication-title: Carbon – volume: 102 start-page: 403 year: 2020 publication-title: Acta Biomater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 14 start-page: 4855 year: 2023 publication-title: Nat. Commun. – volume: 16 start-page: 892 year: 2017 publication-title: Nat. Mater. – volume: 5 start-page: 5 year: 2021 publication-title: npj Flexible Electron. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 4280 year: 2009 publication-title: Adv. Mater. – volume: 15 start-page: 4315 year: 2022 publication-title: Materials – volume: 253 year: 2022 publication-title: Energy Convers. Manage. – volume: 91 start-page: 376 year: 2018 publication-title: Renew. Sust. Energ. Rev. – volume: 226 year: 2022 publication-title: Compos. Sci. Technol. – volume: 9 year: 2024 publication-title: Adv. Mater. Technol. – volume: 89 start-page: 143 year: 2009 publication-title: Philos. Mag. – volume: 35 year: 2023 publication-title: Phys. Fluids – volume: 87 start-page: 3131 year: 2010 publication-title: Appl. Energy – volume: 7 start-page: 206 year: 2016 publication-title: Micromachines – volume: 259 year: 2022 publication-title: Energy Convers. Manage. – volume: 25 year: 2024 publication-title: Mater. Today Sustainability – volume: 14 start-page: 1366 year: 2023 publication-title: Nat. Commun. – volume: 233 start-page: 213 year: 2022 publication-title: Sol. Energy – volume: 59 start-page: 311 year: 2019 publication-title: Nano Energy – volume: 1591 start-page: 628 year: 2014 publication-title: AIP Conf. Proc. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 1 start-page: 384 year: 2007 publication-title: Front. Energy Power Eng. China – volume: 15 start-page: 6757 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 116 start-page: 1091 year: 2014 publication-title: Appl. Phys. A – volume: 44 202 start-page: 407 736 year: 2014 2017 publication-title: Sci. Sin. Tech. Appl. Energy – volume: 35 start-page: 9789 year: 2014 publication-title: Biomaterials – volume: 192 year: 2021 publication-title: Appl. Therm. Eng. – volume: 157 start-page: H666 year: 2010 publication-title: J. Electrochem. Soc. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 152 year: 2010 publication-title: NPG Asia Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 126 year: 2019 publication-title: J. Appl. Phys. – volume: 9 start-page: 2904 year: 2021 publication-title: J. Mater. Chem. C – volume: 19 start-page: 314 year: 2019 publication-title: Sensors – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 114 start-page: 2143 year: 2017 publication-title: Proc. Natl. Acad. Sci. – volume: 244 year: 2023 publication-title: Compos. Sci. Technol. – volume: 15 start-page: 7679 year: 2024 publication-title: Nat. Commun. – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 199 year: 2022 publication-title: Int. J. Heat Mass Transfer – volume: 146 start-page: 156 year: 2017 publication-title: Biomaterials – volume: 13 start-page: 3900 year: 2022 publication-title: Nat. Commun. – volume: 14 start-page: 510 year: 2023 publication-title: Int. J. Smart Nano Mater. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2099 year: 2016 publication-title: Energy Environ. Sci. – volume: 52 start-page: 58 year: 2012 publication-title: Cryogenics – volume: 357 year: 2017 publication-title: Science – volume: 15 year: 2019 publication-title: Small – volume: 2 start-page: 6246 year: 2021 publication-title: Mater. Adv. – volume: 15 start-page: 5915 year: 2024 publication-title: Nat. Commun. – volume: 9 start-page: 803 year: 2024 publication-title: Nat. Energy – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: APL Mater. – volume: 23 start-page: 360 year: 2000 publication-title: IEEE Trans. Compon. Packag. Technol. – volume: 27 start-page: 7168 year: 2015 publication-title: Adv. Mater. – volume: 60 start-page: 1347 year: 2017 publication-title: Sci. China Technol. Sci. – volume: 66 start-page: 4001 year: 2023 publication-title: Sci. China Mater. – volume: 504 year: 2025 publication-title: Chem. Eng. J. – volume: 11 start-page: 5441 year: 2019 publication-title: Nanoscale – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – year: 2024 publication-title: Adv. Mater. Technol. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 281 year: 2020 publication-title: J. Solid State Chem. – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 274 year: 2023 publication-title: Energy – volume: 129 year: 2024 publication-title: Nano Energy – volume: 72 start-page: 898 year: 1958 publication-title: Proc. Phys. Soc. – volume: 31 year: 2017 publication-title: Mod. Phys. Lett. B – volume: 21 year: 2021 publication-title: Mater. Today Phys. – volume: 3 start-page: 3442 year: 2013 publication-title: Sci. Rep. – volume: 11 start-page: 5222 year: 2019 publication-title: Nanoscale – volume: 945 year: 2023 publication-title: J. Alloys Compd. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 4 start-page: 23 year: 2024 publication-title: Soft Science – volume: 46 start-page: 1327 year: 2010 publication-title: Heat Mass Transfer – volume: 18 start-page: 1097 year: 2008 publication-title: Adv. Funct. Mater. – volume: 138 year: 2019 publication-title: Mater. Sci. Eng.: R: Rep. – volume: 156 start-page: 746 year: 2018 publication-title: Energy Convers. Manage. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 618 year: 2018 publication-title: Nat. Mater. – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 188 year: 2019 publication-title: Energy – volume: 201 start-page: 227 year: 2020 publication-title: Sol. Energy – volume: 8 year: 2023 publication-title: Adv. Mater. Technol. – volume: 40 start-page: 4722 year: 2007 publication-title: J. Phys. D: Appl. Phys. – volume: 42 year: 2024 publication-title: J. Vac. Sci. Technol., A – volume: 79 year: 2021 publication-title: Nano Energy – volume: 114 start-page: 50 year: 2016 publication-title: Energy Convers. Manage. – volume: 15 start-page: 995 year: 2016 publication-title: Nat. Mater. – volume: 17 year: 2021 publication-title: Small – year: 2024 publication-title: Small Sci. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 15 start-page: 592 year: 2024 publication-title: Micromachines – volume: 11 year: 2024 publication-title: Small – volume: 3 start-page: 229 year: 2013 publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – volume: 10 start-page: 2182 year: 2014 publication-title: Small – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 63 start-page: 1 year: 2018 publication-title: Int. Mater. Rev. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 7 year: 2022 publication-title: ACS Omega – volume: 134 start-page: 25 year: 2019 publication-title: Renew. Energy – volume: 11 start-page: 5948 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 5739 year: 2014 publication-title: J. Mater. Chem. B – volume: 130 year: 2022 publication-title: Prog. Mater. Sci. – volume: 4 year: 2021 publication-title: Multifunct. Mater. – volume: 48 start-page: 277 year: 1998 publication-title: Sens. Actuators, B – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 start-page: 2556 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 612 year: 2021 publication-title: J. Materiomics – volume: 497 year: 2008 publication-title: Mol. Cryst. Liq. Cryst. – volume: 1 start-page: 74 year: 2017 publication-title: Mater. Today Phys. – volume: 15 start-page: 8516 year: 2024 publication-title: Nat. Commun. – volume: 72 start-page: 1295 year: 2017 publication-title: Renew. Sust. Energ. Rev. – volume: 121 year: 2024 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 62 start-page: 415 year: 2017 publication-title: Int. Mater. Rev. – volume: 386 year: 2024 publication-title: Science – volume: 4 start-page: 19 year: 2020 publication-title: npj Flexible Electron. – volume: 49 start-page: 201 year: 2021 publication-title: Mater. Today – volume: 58 start-page: 9251 year: 2023 publication-title: J. Mater. Sci. – volume: 437 year: 2022 publication-title: Chem. Eng. J. – volume: 2 start-page: 62 year: 2017 publication-title: Mater. Today Phys. – volume: 201 year: 2022 publication-title: Appl. Therm. Eng. – volume: 8 start-page: 12 year: 2024 publication-title: npj Flexible Electron. – volume: 507 year: 2021 publication-title: J. Power Sources – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 26 start-page: 6036 year: 2014 publication-title: Adv. Mater. – volume: 5 start-page: 1586 year: 2017 publication-title: J. Mater. Chem. C – year: 2018 – volume: 101 start-page: 490 year: 2016 publication-title: Appl. Therm. Eng. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 4578 year: 2014 publication-title: Nat. Commun. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 1 start-page: 114 year: 2018 publication-title: Adv. Compos. Hybrid Mater. – volume: 38 year: 2023 publication-title: Compos. Commun. – volume: 5 start-page: 321 year: 2019 publication-title: J. Materiomics – volume: 6 start-page: 6481 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 10 start-page: 1039 year: 2022 publication-title: J. Mater. Chem. C – volume: 67 start-page: 508 year: 2022 publication-title: J. Energy Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 321 start-page: 554 year: 2008 publication-title: Science – volume: 251 year: 2022 publication-title: Energy Convers. Manage. – volume: 102 year: 2022 publication-title: Nano Energy – volume: 40 start-page: 5549 year: 2020 publication-title: J. Eur. Ceram. Soc. – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 21 start-page: 4566 year: 2021 publication-title: Lab Chip – volume: 31 start-page: 1106 year: 2022 publication-title: J. Therm. Sci. – volume: 107 start-page: 701 year: 2012 publication-title: Appl. Phys. A – volume: 6 start-page: 1942 year: 2020 publication-title: Energy Rep. – volume: 222 year: 2021 publication-title: Sol. Energy Mater. Sol. Cells – volume: 316 year: 2024 publication-title: Energy Convers. Manage. – volume: 7 start-page: 3801 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 8 start-page: 55 year: 2015 publication-title: Energy Environ. Sci. – volume: 495 year: 2024 publication-title: Chem. Eng. J. – volume: 13 start-page: 1545 year: 2019 publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 490 year: 2024 publication-title: Chem. Eng. J. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 35 year: 2025 publication-title: Adv. Funct. Mater. – volume: 247 year: 2024 publication-title: Appl. Therm. Eng. – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 65 start-page: 29 year: 2017 publication-title: Solid State Sci. – volume: 134 year: 2023 publication-title: J. Appl. Phys. – volume: 150 year: 2020 publication-title: Int. J. Heat Mass Transfer – volume: 115 year: 2014 publication-title: J. Appl. Phys. – volume: 83 start-page: 330 year: 2016 publication-title: Prog. Mater. Sci. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 383 start-page: 1204 year: 2024 publication-title: Science – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 272 year: 2020 publication-title: Appl. Energy – volume: 262 year: 2020 publication-title: Appl. Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 205 start-page: 868 year: 2017 publication-title: Appl. Energy – volume: 88 year: 2021 publication-title: Nano Energy – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1 year: 2021 publication-title: Adv. Mater. Process. Technol. – volume: 93 start-page: 270 year: 2018 publication-title: Prog. Mater. Sci. – volume: 36 start-page: 3530 year: 2011 publication-title: Renew. Energy – volume: 220 year: 2020 publication-title: Energy Convers. Manage. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 379 year: 2012 publication-title: Appl. Energy – volume: 117 year: 2023 publication-title: Nano Energy – volume: 12 start-page: 228 year: 2023 publication-title: J. Adv. Ceram. – volume: 438 start-page: 224 year: 2013 publication-title: J. Nucl. Mater. – ident: e_1_2_7_113_1 doi: 10.1002/admi.201701596 – ident: e_1_2_7_120_1 doi: 10.1016/j.biomaterials.2014.08.048 – ident: e_1_2_7_11_1 doi: 10.1039/C6EE00456C – ident: e_1_2_7_165_1 doi: 10.1021/acsami.2c14815 – ident: e_1_2_7_100_1 doi: 10.1103/PhysRevB.84.085207 – ident: e_1_2_7_17_1 doi: 10.1007/s11431-017-9058-8 – ident: e_1_2_7_134_1 doi: 10.1016/j.nanoen.2021.106260 – ident: e_1_2_7_215_1 doi: 10.1142/S021798491750172X – ident: e_1_2_7_133_1 doi: 10.1016/j.enconman.2021.115003 – ident: e_1_2_7_13_1 doi: 10.1016/j.cej.2022.135268 – ident: e_1_2_7_95_1 doi: 10.1016/j.pmatsci.2016.07.002 – ident: e_1_2_7_162_1 doi: 10.1002/adfm.202412178 – ident: e_1_2_7_29_1 doi: 10.1016/j.nanoen.2019.02.045 – ident: e_1_2_7_76_1 doi: 10.1002/smll.202006612 – ident: e_1_2_7_106_1 doi: 10.1016/j.progpolymsci.2018.06.001 – year: 2024 ident: e_1_2_7_19_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_131_1 doi: 10.1016/j.nanoen.2021.106818 – ident: e_1_2_7_54_2 doi: 10.1016/j.apenergy.2017.05.181 – ident: e_1_2_7_143_1 doi: 10.1038/s41528-024-00298-z – ident: e_1_2_7_46_1 doi: 10.1016/j.mtphys.2021.100402 – ident: e_1_2_7_194_1 doi: 10.3390/mi15050592 – ident: e_1_2_7_38_1 doi: 10.1016/j.mtphys.2017.06.003 – ident: e_1_2_7_117_1 doi: 10.1016/j.matt.2020.03.016 – ident: e_1_2_7_97_1 doi: 10.1109/6144.846775 – ident: e_1_2_7_187_1 doi: 10.1002/adma.202103104 – ident: e_1_2_7_33_1 doi: 10.1002/smsc.202400284 – ident: e_1_2_7_49_1 doi: 10.1039/c3cp50993a – ident: e_1_2_7_183_1 doi: 10.1016/j.solmat.2020.110925 – ident: e_1_2_7_30_1 doi: 10.3390/ma7042577 – ident: e_1_2_7_36_1 doi: 10.1039/D1MA00707F – ident: e_1_2_7_230_1 doi: 10.1021/acsami.8b08696 – ident: e_1_2_7_199_1 doi: 10.1002/adma.202002702 – ident: e_1_2_7_226_1 doi: 10.26599/JAC.2023.9220676 – ident: e_1_2_7_1_1 doi: 10.1038/s41560-024-01518-6 – ident: e_1_2_7_56_1 doi: 10.1063/1.4746397 – ident: e_1_2_7_112_1 doi: 10.1039/C8NR09503E – ident: e_1_2_7_190_1 doi: 10.1201/9781420049718 – ident: e_1_2_7_214_1 doi: 10.1002/adfm.202112772 – ident: e_1_2_7_50_1 doi: 10.1149/1.3385154 – ident: e_1_2_7_161_1 doi: 10.1002/adfm.202310225 – ident: e_1_2_7_82_1 doi: 10.1088/2399-7532/abd4f0 – ident: e_1_2_7_149_1 doi: 10.1002/adfm.202306086 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2022.107678 – ident: e_1_2_7_118_1 doi: 10.1038/srep03442 – ident: e_1_2_7_152_1 doi: 10.1038/s41563-018-0084-7 – ident: e_1_2_7_218_1 doi: 10.1038/s41467-022-28480-9 – ident: e_1_2_7_219_1 doi: 10.1021/acsami.9b06455 – ident: e_1_2_7_122_1 doi: 10.1016/j.biomaterials.2017.09.006 – ident: e_1_2_7_171_1 doi: 10.1016/j.cis.2010.06.009 – ident: e_1_2_7_3_1 doi: 10.1016/j.apenergy.2012.05.033 – ident: e_1_2_7_54_1 doi: 10.1360/092013-1239 – volume: 10 year: 2024 ident: e_1_2_7_23_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_179_1 doi: 10.1016/j.cryogenics.2011.10.007 – ident: e_1_2_7_115_1 doi: 10.1002/admi.202100069 – ident: e_1_2_7_69_1 doi: 10.1016/j.enconman.2020.113080 – volume: 14 start-page: 2231 year: 2000 ident: e_1_2_7_213_1 publication-title: Int. J. Mod. Phys. B – ident: e_1_2_7_212_1 doi: 10.1016/j.jnucmat.2013.03.043 – ident: e_1_2_7_93_1 doi: 10.1080/19475411.2024.2385349 – volume: 4 start-page: 23 year: 2024 ident: e_1_2_7_98_1 publication-title: Soft Science – ident: e_1_2_7_109_1 doi: 10.1038/s41528-021-00101-3 – ident: e_1_2_7_92_1 doi: 10.1007/s11630-022-1610-0 – ident: e_1_2_7_126_1 doi: 10.1016/j.mattod.2021.03.019 – ident: e_1_2_7_240_1 doi: 10.1016/j.cej.2024.151815 – ident: e_1_2_7_142_1 doi: 10.1002/adma.200803705 – ident: e_1_2_7_58_1 doi: 10.1002/adma.201400843 – year: 2024 ident: e_1_2_7_108_1 publication-title: Adv. Mater. Technol. – ident: e_1_2_7_170_1 doi: 10.1021/acsami.2c23028 – ident: e_1_2_7_197_1 doi: 10.1038/s41467-024-52841-1 – ident: e_1_2_7_174_1 doi: 10.1002/adfm.201901370 – ident: e_1_2_7_52_1 doi: 10.1016/j.renene.2011.06.012 – ident: e_1_2_7_228_1 doi: 10.1038/s41528-020-00082-9 – ident: e_1_2_7_198_1 doi: 10.1016/j.mser.2018.09.001 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201701797 – ident: e_1_2_7_96_1 doi: 10.1080/14786430802607119 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.202204321 – ident: e_1_2_7_204_1 doi: 10.1021/acsami.9b02104 – ident: e_1_2_7_222_1 doi: 10.1016/j.pmatsci.2022.100970 – ident: e_1_2_7_71_1 doi: 10.1016/j.nanoen.2020.104773 – ident: e_1_2_7_227_1 doi: 10.1016/j.jssc.2019.121022 – ident: e_1_2_7_238_1 doi: 10.1002/admt.202301171 – ident: e_1_2_7_195_1 doi: 10.1016/j.enconman.2024.118826 – volume: 134 year: 2023 ident: e_1_2_7_21_1 publication-title: J. Appl. Phys. – ident: e_1_2_7_78_1 doi: 10.1073/pnas.1616377114 – ident: e_1_2_7_43_1 doi: 10.1002/smll.201303701 – ident: e_1_2_7_84_1 doi: 10.1002/aenm.202201413 – ident: e_1_2_7_128_1 doi: 10.1038/s41467-020-19756-z – ident: e_1_2_7_177_1 doi: 10.1080/15421400802458522 – ident: e_1_2_7_186_1 doi: 10.1016/j.enconman.2022.115591 – ident: e_1_2_7_188_1 doi: 10.1039/D0TC05493C – ident: e_1_2_7_158_1 doi: 10.1002/adfm.201702589 – ident: e_1_2_7_234_1 doi: 10.1063/1.5084791 – ident: e_1_2_7_236_1 doi: 10.1016/j.applthermaleng.2021.117793 – ident: e_1_2_7_206_1 doi: 10.1021/acsaem.9b02243 – ident: e_1_2_7_88_1 doi: 10.1088/0370-1328/72/5/429 – ident: e_1_2_7_207_1 doi: 10.1016/j.solidstatesciences.2016.12.020 – ident: e_1_2_7_147_1 doi: 10.1021/acsami.7b04752 – ident: e_1_2_7_151_1 doi: 10.1002/adma.201900663 – ident: e_1_2_7_7_1 doi: 10.1016/j.enconman.2017.09.039 – ident: e_1_2_7_87_1 doi: 10.1021/am500009p – ident: e_1_2_7_40_1 doi: 10.1002/anie.202212515 – ident: e_1_2_7_57_1 doi: 10.3390/mi7120206 – ident: e_1_2_7_121_1 doi: 10.1038/ncomms10066 – ident: e_1_2_7_44_1 doi: 10.1039/C4EE01905A – ident: e_1_2_7_83_1 doi: 10.1002/adma.202004832 – ident: e_1_2_7_203_1 doi: 10.1016/j.solener.2022.01.019 – ident: e_1_2_7_178_1 doi: 10.1016/j.nanoen.2024.110001 – ident: e_1_2_7_73_1 doi: 10.1002/adfm.202404861 – ident: e_1_2_7_59_1 doi: 10.1039/D1LC00726B – ident: e_1_2_7_224_1 doi: 10.1360/03wb0215 – ident: e_1_2_7_176_1 doi: 10.1016/j.egyr.2020.07.014 – ident: e_1_2_7_55_1 doi: 10.1002/adfm.201906098 – ident: e_1_2_7_79_1 doi: 10.1016/j.applthermaleng.2021.116937 – ident: e_1_2_7_220_1 doi: 10.1002/adma.201502569 – ident: e_1_2_7_156_1 doi: 10.1007/s00339-013-8191-4 – ident: e_1_2_7_196_1 doi: 10.1016/j.nanoen.2024.110388 – ident: e_1_2_7_141_1 doi: 10.1063/1.4872698 – ident: e_1_2_7_104_1 doi: 10.1088/1361-6528/abcbc2 – ident: e_1_2_7_20_1 doi: 10.1126/science.adp2444 – ident: e_1_2_7_10_1 doi: 10.1016/j.rser.2018.03.052 – ident: e_1_2_7_163_1 doi: 10.1021/acsami.8b08722 – ident: e_1_2_7_221_1 doi: 10.1016/S0925-4005(98)00056-2 – ident: e_1_2_7_216_1 doi: 10.1038/s41467-022-31664-y – ident: e_1_2_7_63_1 doi: 10.1016/j.enconman.2016.01.065 – ident: e_1_2_7_66_1 doi: 10.1016/j.carbon.2020.06.012 – ident: e_1_2_7_191_1 doi: 10.1002/anie.201506469 – ident: e_1_2_7_105_1 doi: 10.1016/j.cej.2024.153352 – ident: e_1_2_7_233_1 doi: 10.1021/acsomega.1c06367 – ident: e_1_2_7_241_1 doi: 10.1063/5.0155822 – ident: e_1_2_7_243_1 doi: 10.1039/C8RA00262B – ident: e_1_2_7_211_1 doi: 10.1126/science.1159725 – ident: e_1_2_7_166_1 doi: 10.1039/D1TC05087G – ident: e_1_2_7_189_1 doi: 10.1016/j.compscitech.2022.109523 – ident: e_1_2_7_209_1 doi: 10.1002/adma.202408466 – ident: e_1_2_7_229_1 doi: 10.1016/j.jmat.2020.10.015 – ident: e_1_2_7_119_1 doi: 10.1063/1.4827302 – ident: e_1_2_7_91_1 doi: 10.1016/j.mtphys.2020.100311 – ident: e_1_2_7_80_1 doi: 10.1080/09506608.2016.1271090 – ident: e_1_2_7_102_1 doi: 10.1002/adma.202203391 – ident: e_1_2_7_184_1 doi: 10.1002/adma.202308346 – ident: e_1_2_7_107_1 doi: 10.1021/acsami.1c15014 – ident: e_1_2_7_136_1 doi: 10.1016/j.jpowsour.2021.230323 – ident: e_1_2_7_64_1 doi: 10.1016/j.renene.2018.10.109 – ident: e_1_2_7_150_1 doi: 10.1021/acsami.1c03328 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201704386 – ident: e_1_2_7_9_1 doi: 10.1126/science.aak9997 – ident: e_1_2_7_67_1 doi: 10.1038/nmat4946 – ident: e_1_2_7_123_1 doi: 10.1002/adhm.201800318 – ident: e_1_2_7_35_1 doi: 10.1016/j.mtphys.2021.100468 – ident: e_1_2_7_124_1 doi: 10.1002/adfm.201907063 – ident: e_1_2_7_185_1 doi: 10.1007/s00231-010-0658-7 – ident: e_1_2_7_175_1 doi: 10.1007/s40843-023-2607-3 – ident: e_1_2_7_237_1 doi: 10.1021/acsami.3c05418 – ident: e_1_2_7_145_1 doi: 10.1038/s41467-024-51648-4 – ident: e_1_2_7_164_1 doi: 10.1002/adfm.202308128 – ident: e_1_2_7_159_1 doi: 10.1109/TCPMT.2012.2185792 – ident: e_1_2_7_62_1 doi: 10.1073/pnas.2320704121 – ident: e_1_2_7_127_1 doi: 10.1093/nsr/nwad302 – ident: e_1_2_7_180_1 doi: 10.1016/j.apenergy.2017.08.092 – ident: e_1_2_7_61_1 doi: 10.3390/s19020314 – ident: e_1_2_7_90_1 doi: 10.1063/1.4876909 – ident: e_1_2_7_65_1 doi: 10.1016/j.jmat.2019.04.004 – ident: e_1_2_7_182_1 doi: 10.1088/0022-3727/40/15/055 – ident: e_1_2_7_94_1 doi: 10.1016/j.energy.2019.116019 – ident: e_1_2_7_45_1 doi: 10.1016/j.pmatsci.2017.09.004 – ident: e_1_2_7_144_1 doi: 10.1016/j.cej.2024.158783 – ident: e_1_2_7_77_1 doi: 10.1016/j.ijheatmasstransfer.2020.119366 – ident: e_1_2_7_16_1 doi: 10.1038/asiamat.2010.138 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-024-50175-6 – ident: e_1_2_7_125_1 doi: 10.1016/j.actbio.2019.11.023 – ident: e_1_2_7_138_1 doi: 10.1080/19475411.2023.2261775 – ident: e_1_2_7_89_1 doi: 10.1063/1.5101028 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.202400623 – ident: e_1_2_7_232_1 doi: 10.1016/j.jeurceramsoc.2020.07.021 – ident: e_1_2_7_85_1 doi: 10.1063/5.0097346 – ident: e_1_2_7_2_1 doi: 10.1016/j.energy.2023.127304 – ident: e_1_2_7_101_1 doi: 10.1002/adfm.200701216 – ident: e_1_2_7_41_1 doi: 10.1007/s42114-017-0011-4 – ident: e_1_2_7_210_1 doi: 10.1002/adem.201700781 – volume: 42 year: 2024 ident: e_1_2_7_225_1 publication-title: J. Vac. Sci. Technol., A – ident: e_1_2_7_205_1 doi: 10.1002/smll.201805307 – ident: e_1_2_7_223_1 doi: 10.1016/j.mtsust.2024.100673 – ident: e_1_2_7_242_1 doi: 10.1002/adma.202200857 – ident: e_1_2_7_18_1 doi: 10.1126/science.adk9589 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-023-37114-7 – ident: e_1_2_7_53_1 doi: 10.1007/s10853-023-08593-2 – ident: e_1_2_7_172_1 doi: 10.1002/aelm.202300300 – ident: e_1_2_7_173_1 doi: 10.1016/j.jallcom.2023.169260 – ident: e_1_2_7_235_1 doi: 10.3390/ma15124315 – ident: e_1_2_7_75_1 doi: 10.1038/ncomms5578 – ident: e_1_2_7_231_1 doi: 10.1021/acsami.2c09907 – ident: e_1_2_7_81_1 doi: 10.1002/adma.202407073 – ident: e_1_2_7_5_1 doi: 10.1016/j.apenergy.2010.02.013 – ident: e_1_2_7_70_1 doi: 10.1002/admt.202101203 – ident: e_1_2_7_132_1 doi: 10.1016/j.cej.2021.130816 – ident: e_1_2_7_111_1 doi: 10.1002/adfm.202309725 – ident: e_1_2_7_86_1 doi: 10.1016/j.jallcom.2021.163060 – ident: e_1_2_7_12_1 doi: 10.1002/smll.202405019 – ident: e_1_2_7_116_1 doi: 10.1021/acsami.1c11275 – ident: e_1_2_7_129_1 doi: 10.1016/j.enconman.2021.115167 – ident: e_1_2_7_157_1 doi: 10.1109/TBCAS.2019.2935026 – ident: e_1_2_7_103_1 doi: 10.1039/C6TC05358K – ident: e_1_2_7_154_1 doi: 10.1039/C8NR09101C – ident: e_1_2_7_217_1 doi: 10.1038/s41467-023-40588-0 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201903387 – ident: e_1_2_7_193_1 doi: 10.1016/j.apenergy.2019.114370 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202103779 – ident: e_1_2_7_31_1 doi: 10.1016/j.mtphys.2017.09.001 – ident: e_1_2_7_208_1 doi: 10.1016/j.nanoen.2023.108909 – ident: e_1_2_7_6_1 doi: 10.1016/j.applthermaleng.2015.10.081 – ident: e_1_2_7_140_1 doi: 10.1080/2374068X.2020.1751514 – ident: e_1_2_7_110_1 doi: 10.1021/acsami.9b19837 – ident: e_1_2_7_60_1 doi: 10.1002/admt.202201391 – ident: e_1_2_7_139_1 doi: 10.1039/C4EE02657H – ident: e_1_2_7_155_1 doi: 10.1039/C4TB00660G – ident: e_1_2_7_14_1 doi: 10.1016/j.apenergy.2020.115065 – ident: e_1_2_7_39_1 doi: 10.1038/natrevmats.2016.32 – ident: e_1_2_7_192_1 doi: 10.1038/nmat4705 – ident: e_1_2_7_200_1 doi: 10.1016/j.solener.2020.03.009 – ident: e_1_2_7_201_1 doi: 10.1016/j.jechem.2021.08.062 – ident: e_1_2_7_74_1 doi: 10.1016/j.nanoen.2020.105419 – ident: e_1_2_7_34_1 doi: 10.1016/j.cap.2018.09.013 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2021.106268 – ident: e_1_2_7_51_1 doi: 10.1039/c3ta13456c – ident: e_1_2_7_32_1 doi: 10.1093/nsr/nwae329 – ident: e_1_2_7_239_1 doi: 10.1016/j.applthermaleng.2024.123098 – ident: e_1_2_7_137_1 doi: 10.1080/09506608.2017.1296605 – ident: e_1_2_7_135_1 doi: 10.1039/D1TC03495B – ident: e_1_2_7_148_1 doi: 10.1126/sciadv.abe0586 – ident: e_1_2_7_99_1 doi: 10.1007/s00339-012-6887-5 – ident: e_1_2_7_114_1 doi: 10.1016/j.ijheatmasstransfer.2022.123444 – ident: e_1_2_7_146_1 doi: 10.1002/aenm.202100920 – ident: e_1_2_7_130_1 doi: 10.1002/advs.202001362 – ident: e_1_2_7_168_1 doi: 10.1002/admt.202200534 – ident: e_1_2_7_167_1 doi: 10.1016/j.compscitech.2023.110311 – ident: e_1_2_7_181_1 doi: 10.1007/s11708-007-0057-3 – ident: e_1_2_7_4_1 doi: 10.1016/j.rser.2023.113723 – ident: e_1_2_7_8_1 doi: 10.1016/j.rser.2016.10.042 – ident: e_1_2_7_72_1 doi: 10.1016/j.nanoen.2020.104854 – ident: e_1_2_7_169_1 doi: 10.1021/acsami.0c22206 – ident: e_1_2_7_160_1 doi: 10.1002/adfm.202204257 – ident: e_1_2_7_68_1 doi: 10.1016/j.coco.2023.101509 – ident: e_1_2_7_48_1 doi: 10.1002/aelm.201800769 – ident: e_1_2_7_153_1 doi: 10.1002/adma.201805536 – ident: e_1_2_7_202_1 doi: 10.1021/acsami.1c13223 |
SSID | ssj0017734 |
Score | 2.49298 |
SecondaryResourceType | review_article |
Snippet | The thermoelectric (TE) effect, capable of directly converting heat into electrical energy, has catalyzed the development of numerous next‐generation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Contact resistance Electric contacts Electrical resistivity Flexibility Gallium Healing Heat conductivity Heat transfer interconnects Liquid metals printed thermoelectric materials Semiconductors Stretchability Thermal conductivity thermoelectric effect Thermoelectric materials |
Title | Liquid Metal Enabled Thermoelectric Effects: Fundamental and Application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202423909 https://www.proquest.com/docview/3238300981 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4SpvdZLOJt6INRawHsdBbmM1uoIit9nHx17uTbdLWi6CnEMiGZB6Zb7Iz3xByw0PpGwbgJXEUeKGNaZ5CJkwVMWaEkn5sMFEcPEf9Yfg4EqONLn7HD1H_cEPPKL_X6OCg5p01aSjoAjvJEQ8kZQcfFmwhKnqp-aOYlG5bOWJY4MVGFWujzzvby7ej0hpqbgLWMuKkBwSqZ3WFJm_t5UK1868fNI7_eZlDsr-Co7Tr7OeI7JjJMdnbICk8If2n8edyrOnAWJxOe2WvlabWvGbvUzdEZ5xTR4I8v6Mpdpa4gQEUJpp21xvkp2SY9l7v-95q_oKX21w18bjkQilTxCaEQFuVWncNsbWHCwAQOYfcj8DiKQiEhkTiQYs48U2sIbC6PyONyXRizgnVUhRBxMAmTEVowljZyxTnYHKpmBZRk9xW8s8-HM1G5giVeYayyWrZNEmrUk-2crd5FljgESA1KmsSXsr5l7tk3Yd0UJ9d_GXRJdnlOAsYy0fiFmksZktzZQHKQl2XRvgNy9nbTQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB58HNSDb7E-c1A8rW6ym30IHoptabX1IBV6W5NNCkWsj7aI_iv_ir_IzKbbWi-C4MHTsrAbksxM8k0y8w3AAfNDV1MhnDgKPMc3e5ojkQlTBpRqLkM30ugoNq6C6o1_0eKtKXjPc2EsP8TowA0tI1uv0cDxQPpkzBoqVBtTyREQxG48jKu81K8vxmvrndVKRsSHjFXKzfOqMyws4KTGCYsdFjIupW5H2heeMn01euhjzgrjQgieMpG6gTBAQXhciTjEh-JR7OpICc8MyrQ7DbNYRhzp-kvXI8YqGob2IjugGFJGWzlPpMtOJvs7uQ-Owe1XiJztcZUl-Mhnx4a23B0P-vI4fftGHPmvpm8ZFoeImxStiazAlO6uwsIXHsY1qNY7T4OOIg1tXBFSztLJFDEW9Hz_YOsEdVJieZ57p6SCyTO2JgIRXUWK4xiAdbj5k6FswEz3oas3gaiQt72ACuMTtn3tR9J8JhkTOg0lVTwowFEu8OTRMokkljOaJSiLZCSLAuzk-pAMV5Re4hls5SH7Ky0AywT7QytJsVRpjN62fvPTPsxVm416Uq9dXW7DPMPSxxgtE-3ATP95oHcNHuvLvcwCCNz-tc58AlHGOD8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB7WFUQPvsXVVXNQPFWbtOlD8LC4W9bHLiIKe6tJk8IirroPRH-Vf8V_ZNJs9-FFEDx4KoU2JJmZzDftzDcA-8T1bYkZs8LAcyxX-TSLayZM7mEsKfftQOpAsdH06nfuRYu2CvCR18IYfojRBzdtGdl5rQ38WaTHY9JQJlJdSa7xQGiHw7TKS_n2qoK23ul5VUn4gJCodntWt4Z9BaxExWChRXxCOZdpIF3mCDVVpYauLlkhlDFGE8IS22MKJzCHChb6-iJoENoyEMxRa1LjzsCs69mhbhZRvRkRVmHfN_-xPawzynArp4m0yfH0fKfd4BjbTiLkzMVFS_CZb47JbHk4GvT5UfL-jTfyP-3eMiwO8TaqGANZgYLsrMLCBAvjGtSv2i-DtkANqQIRVMuKyQRS9tN9fDJdgtoJMizPvRMU6dIZ0xEBsY5AlXEGwDrc_clSNqDYeerITUDCp6njYaYiwtSVbsDVY5wQJhOfY0G9Ehzm8o6fDY9IbBijSaxlEY9kUYJyrg7x8DzpxY5CVo7mfsUlIJlcfxglrlSjxuhu6zcv7cHcdTWKr86bl9swT3TfY50qE5Sh2O8O5I4CY32-m-k_gvu_VpkvRC427g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Metal+Enabled+Thermoelectric+Effects%3A+Fundamental+and+Application&rft.jtitle=Advanced+functional+materials&rft.au=Guan%2C+Tangzhen&rft.au=Gao%2C+Jianye&rft.au=Hua%2C+Chen&rft.au=Tao%2C+Yiyue&rft.date=2025-08-08&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202423909&rft.externalDBID=10.1002%252Fadfm.202423909&rft.externalDocID=ADFM202423909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |