Comparison of Multiple Machine Learning Models for the Classification of Cell States Based on Impedance Features
Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based c...
Saved in:
Published in | Journal of physics. Conference series Vol. 2809; no. 1; pp. 12046 - 12052 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2809/1/012046 |
Cover
Abstract | Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based cell classification. Conventional data processing approach for IFC typically exploits the scattered distribution of the measured cells which correlates the impedance features (e.g., the impedance amplitude and phase at different frequencies, the amplitude ratio between high to low frequencies) and exhibits resolved cell clusters in scatter plot. By manually gating on the distributed dots plot, the cell subgroups get mapped to different cell type or cellular states. ML-based data processing for IFC not only reduces the human workload, and more importantly, it also eliminates the human interference to manual gating strategy, and thus potentially leading to more concise and accurate cell classification results. Here, we demonstrate the ML-based classification of different cell states for tumor cells subject to anticancer drug treatment. IFC-measured impedance data of H1650 cells and Hela cells under drug-induced mitosis block state and apoptosis state have been applied for ML-based cell state identification. Three machine learning models, including the random forest (RF), support vector machine (SVM) and K-nearest neighbours (KNN) have been trained for impedance features extracted from cell signals at both 500 kHz and 10 MHz. In comparison, the RF model give rise to the highest classification accuracies among all trained models here. For H1650 cells, 84.01% and 85.96% accuracies have been respectively achieved for G1/S state vs. apoptosis and G2/M vs. apoptosis. For the classification between G2/M vs. apoptosis for the paclitaxel-treated Hela cells, the RF model produces high accuracy of 98.70%. |
---|---|
AbstractList | Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based cell classification. Conventional data processing approach for IFC typically exploits the scattered distribution of the measured cells which correlates the impedance features (e.g., the impedance amplitude and phase at different frequencies, the amplitude ratio between high to low frequencies) and exhibits resolved cell clusters in scatter plot. By manually gating on the distributed dots plot, the cell subgroups get mapped to different cell type or cellular states. ML-based data processing for IFC not only reduces the human workload, and more importantly, it also eliminates the human interference to manual gating strategy, and thus potentially leading to more concise and accurate cell classification results. Here, we demonstrate the ML-based classification of different cell states for tumor cells subject to anticancer drug treatment. IFC-measured impedance data of H1650 cells and Hela cells under drug-induced mitosis block state and apoptosis state have been applied for ML-based cell state identification. Three machine learning models, including the random forest (RF), support vector machine (SVM) and K-nearest neighbours (KNN) have been trained for impedance features extracted from cell signals at both 500 kHz and 10 MHz. In comparison, the RF model give rise to the highest classification accuracies among all trained models here. For H1650 cells, 84.01% and 85.96% accuracies have been respectively achieved for G1/S state vs. apoptosis and G2/M vs. apoptosis. For the classification between G2/M vs. apoptosis for the paclitaxel-treated Hela cells, the RF model produces high accuracy of 98.70%. |
Author | Wei, Jian Tian, Dongze Su, Fei Yang, Xinlong Xing, Xiaoxing |
Author_xml | – sequence: 1 givenname: Dongze surname: Tian fullname: Tian, Dongze organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China – sequence: 2 givenname: Jian surname: Wei fullname: Wei, Jian organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China – sequence: 3 givenname: Xinlong surname: Yang fullname: Yang, Xinlong organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China – sequence: 4 givenname: Fei surname: Su fullname: Su, Fei organization: China-Japan Friendship Hospital , No. 2 Yinghuayuan East Street, Beijing, . China – sequence: 5 givenname: Xiaoxing surname: Xing fullname: Xing, Xiaoxing organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China |
BookMark | eNqFkNFKwzAUhoMouE2fwYB3wmySpml6qcXpZENheh1ie-IyuqYm3YVvb0ZlIgjmJofk-89JvjE6bl0LCF1Qck2JlAnNOZuKrBAJk6RIaEIoI1wcodHh5vhQS3mKxiFsCEnjykeoK922094G12Jn8HLX9LZrAC91tbYt4AVo39r2HS9dDU3AxnncrwGXjQ7BGlvp3g7REpoGr3rdQ8C3OkCN4_l820Gt2wrwDHS_8xDO0InRTYDz732CXmd3L-XDdPF0Py9vFtOK5VxMWRXfalJRCC4p129CxEJmTJiMaklNUQimNQjJs4JUUMf_kZobLTjLUsbrdIIuh76ddx87CL3auJ1v40iVkoJJwQuWRiofqMq7EDwY1Xm71f5TUaL2etVenNpLVHu9iqpBb0xeDUnrup_Wj8_l6jeoutpEOP0D_m_EF9yNip0 |
Cites_doi | 10.1039/D3LC00459G 10.1039/D2LC00304J 10.1063/5.0181287 10.1002/med.21788 10.1007/s00280-015-2903-8 10.1039/D0LC00840K 10.2174/1389557054368781 10.1039/C6AN01596D 10.1021/cr900026u 10.1039/D1LC00076D 10.1016/j.jncc.2024.01.006 10.1039/D1LC00755F |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2809/1/012046 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2809_1_012046 JPCS_2809_1_012046 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2746-2c588f36964814ab666488526f51a81f9962aae684590ced1740d4fa6425324d3 |
IEDL.DBID | 8FG |
ISSN | 1742-6588 |
IngestDate | Sat Jul 26 02:37:45 EDT 2025 Tue Jul 01 02:20:19 EDT 2025 Sun Aug 18 18:20:27 EDT 2024 Tue Aug 20 22:16:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2746-2c588f36964814ab666488526f51a81f9962aae684590ced1740d4fa6425324d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3092864923?pq-origsite=%requestingapplication% |
PQID | 3092864923 |
PQPubID | 4998668 |
PageCount | 7 |
ParticipantIDs | iop_journals_10_1088_1742_6596_2809_1_012046 crossref_primary_10_1088_1742_6596_2809_1_012046 proquest_journals_3092864923 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | J. (JPCS_2809_1_012046bib9) 2022; 22 Wei (JPCS_2809_1_012046bib12) 2024; 18 Sun (JPCS_2809_1_012046bib7) 2021; 41 Yang (JPCS_2809_1_012046bib13) 2023; 23 Han (JPCS_2809_1_012046bib2) 2024; 4 Vuuren (JPCS_2809_1_012046bib5) 2015; 76 Rajput (JPCS_2809_1_012046bib1) 2022 Isoldi (JPCS_2809_1_012046bib3) 2005; 5 Feng (JPCS_2809_1_012046bib10) 2022; 22 Honrado (JPCS_2809_1_012046bib8) 2021; 21 Henslee (JPCS_2809_1_012046bib6) 2016; 141 Wang (JPCS_2809_1_012046bib11) 2021; 21 Skladanowski (JPCS_2809_1_012046bib4) 2009; 109 |
References_xml | – volume: 23 start-page: 4848 year: 2023 ident: JPCS_2809_1_012046bib13 publication-title: Lab on a Chip doi: 10.1039/D3LC00459G – volume: 22 start-page: 3708 year: 2022 ident: JPCS_2809_1_012046bib9 publication-title: Lab on a chip doi: 10.1039/D2LC00304J – volume: 18 year: 2024 ident: JPCS_2809_1_012046bib12 publication-title: Biomicrofluidics doi: 10.1063/5.0181287 – volume: 41 start-page: 2893 year: 2021 ident: JPCS_2809_1_012046bib7 publication-title: Medicinal Research Reviews doi: 10.1002/med.21788 – volume: 76 start-page: 1101 year: 2015 ident: JPCS_2809_1_012046bib5 publication-title: Cancer Chemotherapy and Pharmacology doi: 10.1007/s00280-015-2903-8 – volume: 21 start-page: 22 year: 2021 ident: JPCS_2809_1_012046bib8 publication-title: Lab on a Chip doi: 10.1039/D0LC00840K – start-page: 1 year: 2022 ident: JPCS_2809_1_012046bib1 – volume: 5 start-page: 685 year: 2005 ident: JPCS_2809_1_012046bib3 publication-title: Mini-Reviews in Medicinal Chemistry doi: 10.2174/1389557054368781 – volume: 141 start-page: 6408 year: 2016 ident: JPCS_2809_1_012046bib6 publication-title: The Analyst doi: 10.1039/C6AN01596D – volume: 109 start-page: 2951 year: 2009 ident: JPCS_2809_1_012046bib4 publication-title: Chemical Reviews doi: 10.1021/cr900026u – volume: 21 start-page: 1916 year: 2021 ident: JPCS_2809_1_012046bib11 publication-title: Lab on a chip doi: 10.1039/D1LC00076D – volume: 4 start-page: 47 year: 2024 ident: JPCS_2809_1_012046bib2 publication-title: Journal of the National Cancer Center doi: 10.1016/j.jncc.2024.01.006 – volume: 22 start-page: 240 year: 2022 ident: JPCS_2809_1_012046bib10 publication-title: Lab on a chip doi: 10.1039/D1LC00755F |
SSID | ssj0033337 |
Score | 2.3684065 |
Snippet | Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12046 |
SubjectTerms | Accuracy Amplitudes Apoptosis Classification Data processing Feature extraction Flow cytometry Impedance Machine learning Mitosis Radio frequency Subgroups Support vector machines |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: IOP Publishing dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9OEXzxW5xOCeij3dI2zdJHHY4pTAUd7C2k-fDBsY11e_Gv99K06hQRsU-lXNr0er38jvzuDqHztlQ0szQNZMhVQE0cBxkjJpA6dvuPqSbE5Q7371hvQG-HyfBzLsxkWrr-Jpz6QsFehSUhjrcAQ0cBS1LWijhJW2HL5X9SVkNrrn-ls_Kb-4fKG8dwtH1SpBvEecXx-vlGSytUDWbxzU0Xa093C6lq1p5y8tJczLOmev1S0PF_r7WNNktoii_9iB20Ysa7aL2giKp8D0077y0L8cTifslExP2CjmlwWan1Gbv2aqMcAxrGgC5x0XbTEZIKG3BDO2Y0wh7l4itYRTWG6zeA37UzQexQ6WJm8n006F4_dXpB2a8hUBDbsiBSoF_rGgRSHlKZQWQE7iGJmE1CyUMLoVUkpWGcJilRRsMbE02thBAoAVyn4wO0Op6MzSHCmirJlTLcZinNwkwSy5gFMNfmkqYhryNSfSMx9WU5RLGdzrlwihROkcIpUoTCK7KOLkD1ovxF89_Fz5bEbx86j8sSYqptHTUq0_gQjUkaceYq3x397ZnHaCMCzOT5hQ20Op8tzAlgnnl2Whj1GwHU73A priority: 102 providerName: IOP Publishing |
Title | Comparison of Multiple Machine Learning Models for the Classification of Cell States Based on Impedance Features |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2809/1/012046 https://www.proquest.com/docview/3092864923 |
Volume | 2809 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swELcGaNJeEB9DK2OVJfaIVTtxXOcJ0YryIRWqbWi8WY4_pklVGyj8_7tLHBhCgjxEinN5yPl89zv77B8h34fWySrKklmhHZMhz1mleGDW57j-WHrOce_w9Eqd38jL2-I2TbitUlll5xMbR-2XDufIBzkvM63wOLHj-o4haxSuriYKjTWyISDSoJ3ryVnniXO4hu2GyIxBpNVdfRckfamtVINM83IgBriJFFHwf9Fp7e-yfuWim7gz2SKbCTDSk7aHt8mHsNghH5vCTbfaJfX4iUiQLiOdpvpAOm2KJANN56f-oUh6Nl9RwKgUMB9tyDCxTKjpGfx0HOZz2mJPOoLY5im0XwCq9mgYFLHiI-Tmn8nN5PTX-JwlFgXmIONULHPw5xFp-6QW0laQr8CgLTIVC2G1iJDwZNYGpWVRchc8aIZ7GS0kJgWgLZ_vkfXFchG-EOqls9q5oGNVykpUlkelIkCsobayFLpHeKc9U7eHZZhmkVtrgwo3qHCDCjfCtArvkSPQskkDZ_W--OEL8cvZ-OdLCVP72CMHXac9iz4b0P7br7-STxkgl7bK74CsP9w_hm-APB6qfmNefbIxOr2a_YCni-sZ3K_z3_8A51vSuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WyG4IJ7qQgFLwA1rE8fxOgeE6NJqt-2uKmil3ozjB0Ja7YamFeJP8RuZyYNSIcGpOTqTHD5_8XwTz3gAXo2tk2WUBbepdlyGLOOlSgK3PqP9x8InCdUOzxdqeioPzvKzDfjZ18JQWmW_JjYLtV87-kc-ypJCaEXHib2rvnHqGkW7q30LjZYWh-HHdwzZ6rezDzi_r4XY3zuZTHnXVYA7jMAUFy7XOlIbO6lTaUvU70jiXKiYp1anEQMAYW1QWuZF4oJHyZ54GS0K9RzVh8_wvZuwJamidQBbu3uL44_92p_hNW5LMAVH3677jDIMM7uxQo2ETopROqKyVdLdf_jDza_r6i-n0Hi6_Xtwt5Oo7H3LqfuwEVYP4FaTKurqh1BNfrcuZOvI5l1GIps3aZmBdSe2fmHUZm1ZM1TFDFUma9pvUmJSwwV6dBKWS9aqXbaL3tQzHJ-hjvdERUbq9PI81I_g9EYQfgyD1XoVtoF56ax2LuhYFrJMS5tEpSKKurG2skj1EJIePVO1x3OYZltda0OAGwLcEOAmNS3gQ3iDKJvuU63_b_7ymvnB8eTTdQtT-TiEnX7SrkyvKPvk37dfwO3pyfzIHM0Wh0_hjkDd1OYY7sDg4vwyPEPdc1E-78jG4PNN8_sX-nsKYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MieKLeMXp1IA-Wpu2aZY-6nRs6lRQ0beQ5uLL2Ibb_r8nbacMEbFPpZy06ZeT5DvkXABOW0qz3LEsUJHQAbNJEuSc2kCZxJ8_ZoZSHzvcv-fdF3bzlr7VoPMVCzMaV0v_Od6WiYJLCCuHOBEih44DnmY8jAXNwij08Z-Mh2PjlmA5TXjqc-g_JK_zFTnBq1UGRvqGQsz9vH5_2cIutYQ9-bFUF_tPZwPWK-JILspubkLNDrdgpXDg1JNtGLe_CgqSkSP9yk-Q9AtnSUuqPKrvxBc_G0wIclWC3I8URTG9u1AxQr5p2w4GpOSg5BL3OEPweQ_ZtfEKQjxnnKGNvgMvnevndjeoqikEGi1PHsQa_9z58n1MREzlaLfg5E1j7tJIicih4RMrZblgaUa1NYgMNcwpNFBSZF0m2YX6cDS0e0AM00pobYXLM5ZHuaKOc4dUqyUUyyLRADpHT47LpBmyOOwWQnrApQdcesBlJEvAG3CGKMtqAk3-Fj9ZEL95bD8tSkhUhwY054P2LZrQLBbc56Xb_983j2H18aoj73r3twewFiO5KR0Bm1CffszsIZKTaX5UaN4n4qfTVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Multiple+Machine+Learning+Models+for+the+Classification+of+Cell+States+Based+on+Impedance+Features&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Tian%2C+Dongze&rft.au=Wei%2C+Jian&rft.au=Yang%2C+Xinlong&rft.au=Su%2C+Fei&rft.date=2024-08-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2809&rft.issue=1&rft.spage=12046&rft_id=info:doi/10.1088%2F1742-6596%2F2809%2F1%2F012046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2809_1_012046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |