Comparison of Multiple Machine Learning Models for the Classification of Cell States Based on Impedance Features

Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based c...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2809; no. 1; pp. 12046 - 12052
Main Authors Tian, Dongze, Wei, Jian, Yang, Xinlong, Su, Fei, Xing, Xiaoxing
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.08.2024
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2809/1/012046

Cover

Abstract Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based cell classification. Conventional data processing approach for IFC typically exploits the scattered distribution of the measured cells which correlates the impedance features (e.g., the impedance amplitude and phase at different frequencies, the amplitude ratio between high to low frequencies) and exhibits resolved cell clusters in scatter plot. By manually gating on the distributed dots plot, the cell subgroups get mapped to different cell type or cellular states. ML-based data processing for IFC not only reduces the human workload, and more importantly, it also eliminates the human interference to manual gating strategy, and thus potentially leading to more concise and accurate cell classification results. Here, we demonstrate the ML-based classification of different cell states for tumor cells subject to anticancer drug treatment. IFC-measured impedance data of H1650 cells and Hela cells under drug-induced mitosis block state and apoptosis state have been applied for ML-based cell state identification. Three machine learning models, including the random forest (RF), support vector machine (SVM) and K-nearest neighbours (KNN) have been trained for impedance features extracted from cell signals at both 500 kHz and 10 MHz. In comparison, the RF model give rise to the highest classification accuracies among all trained models here. For H1650 cells, 84.01% and 85.96% accuracies have been respectively achieved for G1/S state vs. apoptosis and G2/M vs. apoptosis. For the classification between G2/M vs. apoptosis for the paclitaxel-treated Hela cells, the RF model produces high accuracy of 98.70%.
AbstractList Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in several minutes under multiple frequencies, which give rise to impedance features with rich information ideal for machine learning (ML)-based cell classification. Conventional data processing approach for IFC typically exploits the scattered distribution of the measured cells which correlates the impedance features (e.g., the impedance amplitude and phase at different frequencies, the amplitude ratio between high to low frequencies) and exhibits resolved cell clusters in scatter plot. By manually gating on the distributed dots plot, the cell subgroups get mapped to different cell type or cellular states. ML-based data processing for IFC not only reduces the human workload, and more importantly, it also eliminates the human interference to manual gating strategy, and thus potentially leading to more concise and accurate cell classification results. Here, we demonstrate the ML-based classification of different cell states for tumor cells subject to anticancer drug treatment. IFC-measured impedance data of H1650 cells and Hela cells under drug-induced mitosis block state and apoptosis state have been applied for ML-based cell state identification. Three machine learning models, including the random forest (RF), support vector machine (SVM) and K-nearest neighbours (KNN) have been trained for impedance features extracted from cell signals at both 500 kHz and 10 MHz. In comparison, the RF model give rise to the highest classification accuracies among all trained models here. For H1650 cells, 84.01% and 85.96% accuracies have been respectively achieved for G1/S state vs. apoptosis and G2/M vs. apoptosis. For the classification between G2/M vs. apoptosis for the paclitaxel-treated Hela cells, the RF model produces high accuracy of 98.70%.
Author Wei, Jian
Tian, Dongze
Su, Fei
Yang, Xinlong
Xing, Xiaoxing
Author_xml – sequence: 1
  givenname: Dongze
  surname: Tian
  fullname: Tian, Dongze
  organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China
– sequence: 2
  givenname: Jian
  surname: Wei
  fullname: Wei, Jian
  organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China
– sequence: 3
  givenname: Xinlong
  surname: Yang
  fullname: Yang, Xinlong
  organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China
– sequence: 4
  givenname: Fei
  surname: Su
  fullname: Su, Fei
  organization: China-Japan Friendship Hospital , No. 2 Yinghuayuan East Street, Beijing, . China
– sequence: 5
  givenname: Xiaoxing
  surname: Xing
  fullname: Xing, Xiaoxing
  organization: Beijing University of Chemical Technology College of Information Science and Technology, No. 15, North 3rd Ring Road, Beijing, . China
BookMark eNqFkNFKwzAUhoMouE2fwYB3wmySpml6qcXpZENheh1ie-IyuqYm3YVvb0ZlIgjmJofk-89JvjE6bl0LCF1Qck2JlAnNOZuKrBAJk6RIaEIoI1wcodHh5vhQS3mKxiFsCEnjykeoK922094G12Jn8HLX9LZrAC91tbYt4AVo39r2HS9dDU3AxnncrwGXjQ7BGlvp3g7REpoGr3rdQ8C3OkCN4_l820Gt2wrwDHS_8xDO0InRTYDz732CXmd3L-XDdPF0Py9vFtOK5VxMWRXfalJRCC4p129CxEJmTJiMaklNUQimNQjJs4JUUMf_kZobLTjLUsbrdIIuh76ddx87CL3auJ1v40iVkoJJwQuWRiofqMq7EDwY1Xm71f5TUaL2etVenNpLVHu9iqpBb0xeDUnrup_Wj8_l6jeoutpEOP0D_m_EF9yNip0
Cites_doi 10.1039/D3LC00459G
10.1039/D2LC00304J
10.1063/5.0181287
10.1002/med.21788
10.1007/s00280-015-2903-8
10.1039/D0LC00840K
10.2174/1389557054368781
10.1039/C6AN01596D
10.1021/cr900026u
10.1039/D1LC00076D
10.1016/j.jncc.2024.01.006
10.1039/D1LC00755F
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2809/1/012046
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2809_1_012046
JPCS_2809_1_012046
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2746-2c588f36964814ab666488526f51a81f9962aae684590ced1740d4fa6425324d3
IEDL.DBID 8FG
ISSN 1742-6588
IngestDate Sat Jul 26 02:37:45 EDT 2025
Tue Jul 01 02:20:19 EDT 2025
Sun Aug 18 18:20:27 EDT 2024
Tue Aug 20 22:16:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2746-2c588f36964814ab666488526f51a81f9962aae684590ced1740d4fa6425324d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3092864923?pq-origsite=%requestingapplication%
PQID 3092864923
PQPubID 4998668
PageCount 7
ParticipantIDs iop_journals_10_1088_1742_6596_2809_1_012046
crossref_primary_10_1088_1742_6596_2809_1_012046
proquest_journals_3092864923
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240801
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References J. (JPCS_2809_1_012046bib9) 2022; 22
Wei (JPCS_2809_1_012046bib12) 2024; 18
Sun (JPCS_2809_1_012046bib7) 2021; 41
Yang (JPCS_2809_1_012046bib13) 2023; 23
Han (JPCS_2809_1_012046bib2) 2024; 4
Vuuren (JPCS_2809_1_012046bib5) 2015; 76
Rajput (JPCS_2809_1_012046bib1) 2022
Isoldi (JPCS_2809_1_012046bib3) 2005; 5
Feng (JPCS_2809_1_012046bib10) 2022; 22
Honrado (JPCS_2809_1_012046bib8) 2021; 21
Henslee (JPCS_2809_1_012046bib6) 2016; 141
Wang (JPCS_2809_1_012046bib11) 2021; 21
Skladanowski (JPCS_2809_1_012046bib4) 2009; 109
References_xml – volume: 23
  start-page: 4848
  year: 2023
  ident: JPCS_2809_1_012046bib13
  publication-title: Lab on a Chip
  doi: 10.1039/D3LC00459G
– volume: 22
  start-page: 3708
  year: 2022
  ident: JPCS_2809_1_012046bib9
  publication-title: Lab on a chip
  doi: 10.1039/D2LC00304J
– volume: 18
  year: 2024
  ident: JPCS_2809_1_012046bib12
  publication-title: Biomicrofluidics
  doi: 10.1063/5.0181287
– volume: 41
  start-page: 2893
  year: 2021
  ident: JPCS_2809_1_012046bib7
  publication-title: Medicinal Research Reviews
  doi: 10.1002/med.21788
– volume: 76
  start-page: 1101
  year: 2015
  ident: JPCS_2809_1_012046bib5
  publication-title: Cancer Chemotherapy and Pharmacology
  doi: 10.1007/s00280-015-2903-8
– volume: 21
  start-page: 22
  year: 2021
  ident: JPCS_2809_1_012046bib8
  publication-title: Lab on a Chip
  doi: 10.1039/D0LC00840K
– start-page: 1
  year: 2022
  ident: JPCS_2809_1_012046bib1
– volume: 5
  start-page: 685
  year: 2005
  ident: JPCS_2809_1_012046bib3
  publication-title: Mini-Reviews in Medicinal Chemistry
  doi: 10.2174/1389557054368781
– volume: 141
  start-page: 6408
  year: 2016
  ident: JPCS_2809_1_012046bib6
  publication-title: The Analyst
  doi: 10.1039/C6AN01596D
– volume: 109
  start-page: 2951
  year: 2009
  ident: JPCS_2809_1_012046bib4
  publication-title: Chemical Reviews
  doi: 10.1021/cr900026u
– volume: 21
  start-page: 1916
  year: 2021
  ident: JPCS_2809_1_012046bib11
  publication-title: Lab on a chip
  doi: 10.1039/D1LC00076D
– volume: 4
  start-page: 47
  year: 2024
  ident: JPCS_2809_1_012046bib2
  publication-title: Journal of the National Cancer Center
  doi: 10.1016/j.jncc.2024.01.006
– volume: 22
  start-page: 240
  year: 2022
  ident: JPCS_2809_1_012046bib10
  publication-title: Lab on a chip
  doi: 10.1039/D1LC00755F
SSID ssj0033337
Score 2.3684065
Snippet Microfluidic impedance flow cytometry (IFC) enables high-throughput single-cell analysis in label-free manner. Tens of thousands of cells can be measured in...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12046
SubjectTerms Accuracy
Amplitudes
Apoptosis
Classification
Data processing
Feature extraction
Flow cytometry
Impedance
Machine learning
Mitosis
Radio frequency
Subgroups
Support vector machines
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: IOP Publishing
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9OEXzxW5xOCeij3dI2zdJHHY4pTAUd7C2k-fDBsY11e_Gv99K06hQRsU-lXNr0er38jvzuDqHztlQ0szQNZMhVQE0cBxkjJpA6dvuPqSbE5Q7371hvQG-HyfBzLsxkWrr-Jpz6QsFehSUhjrcAQ0cBS1LWijhJW2HL5X9SVkNrrn-ls_Kb-4fKG8dwtH1SpBvEecXx-vlGSytUDWbxzU0Xa093C6lq1p5y8tJczLOmev1S0PF_r7WNNktoii_9iB20Ysa7aL2giKp8D0077y0L8cTifslExP2CjmlwWan1Gbv2aqMcAxrGgC5x0XbTEZIKG3BDO2Y0wh7l4itYRTWG6zeA37UzQexQ6WJm8n006F4_dXpB2a8hUBDbsiBSoF_rGgRSHlKZQWQE7iGJmE1CyUMLoVUkpWGcJilRRsMbE02thBAoAVyn4wO0Op6MzSHCmirJlTLcZinNwkwSy5gFMNfmkqYhryNSfSMx9WU5RLGdzrlwihROkcIpUoTCK7KOLkD1ovxF89_Fz5bEbx86j8sSYqptHTUq0_gQjUkaceYq3x397ZnHaCMCzOT5hQ20Op8tzAlgnnl2Whj1GwHU73A
  priority: 102
  providerName: IOP Publishing
Title Comparison of Multiple Machine Learning Models for the Classification of Cell States Based on Impedance Features
URI https://iopscience.iop.org/article/10.1088/1742-6596/2809/1/012046
https://www.proquest.com/docview/3092864923
Volume 2809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swELcGaNJeEB9DK2OVJfaIVTtxXOcJ0YryIRWqbWi8WY4_pklVGyj8_7tLHBhCgjxEinN5yPl89zv77B8h34fWySrKklmhHZMhz1mleGDW57j-WHrOce_w9Eqd38jL2-I2TbitUlll5xMbR-2XDufIBzkvM63wOLHj-o4haxSuriYKjTWyISDSoJ3ryVnniXO4hu2GyIxBpNVdfRckfamtVINM83IgBriJFFHwf9Fp7e-yfuWim7gz2SKbCTDSk7aHt8mHsNghH5vCTbfaJfX4iUiQLiOdpvpAOm2KJANN56f-oUh6Nl9RwKgUMB9tyDCxTKjpGfx0HOZz2mJPOoLY5im0XwCq9mgYFLHiI-Tmn8nN5PTX-JwlFgXmIONULHPw5xFp-6QW0laQr8CgLTIVC2G1iJDwZNYGpWVRchc8aIZ7GS0kJgWgLZ_vkfXFchG-EOqls9q5oGNVykpUlkelIkCsobayFLpHeKc9U7eHZZhmkVtrgwo3qHCDCjfCtArvkSPQskkDZ_W--OEL8cvZ-OdLCVP72CMHXac9iz4b0P7br7-STxkgl7bK74CsP9w_hm-APB6qfmNefbIxOr2a_YCni-sZ3K_z3_8A51vSuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WyG4IJ7qQgFLwA1rE8fxOgeE6NJqt-2uKmil3ozjB0Ja7YamFeJP8RuZyYNSIcGpOTqTHD5_8XwTz3gAXo2tk2WUBbepdlyGLOOlSgK3PqP9x8InCdUOzxdqeioPzvKzDfjZ18JQWmW_JjYLtV87-kc-ypJCaEXHib2rvnHqGkW7q30LjZYWh-HHdwzZ6rezDzi_r4XY3zuZTHnXVYA7jMAUFy7XOlIbO6lTaUvU70jiXKiYp1anEQMAYW1QWuZF4oJHyZ54GS0K9RzVh8_wvZuwJamidQBbu3uL44_92p_hNW5LMAVH3677jDIMM7uxQo2ETopROqKyVdLdf_jDza_r6i-n0Hi6_Xtwt5Oo7H3LqfuwEVYP4FaTKurqh1BNfrcuZOvI5l1GIps3aZmBdSe2fmHUZm1ZM1TFDFUma9pvUmJSwwV6dBKWS9aqXbaL3tQzHJ-hjvdERUbq9PI81I_g9EYQfgyD1XoVtoF56ax2LuhYFrJMS5tEpSKKurG2skj1EJIePVO1x3OYZltda0OAGwLcEOAmNS3gQ3iDKJvuU63_b_7ymvnB8eTTdQtT-TiEnX7SrkyvKPvk37dfwO3pyfzIHM0Wh0_hjkDd1OYY7sDg4vwyPEPdc1E-78jG4PNN8_sX-nsKYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MieKLeMXp1IA-Wpu2aZY-6nRs6lRQ0beQ5uLL2Ibb_r8nbacMEbFPpZy06ZeT5DvkXABOW0qz3LEsUJHQAbNJEuSc2kCZxJ8_ZoZSHzvcv-fdF3bzlr7VoPMVCzMaV0v_Od6WiYJLCCuHOBEih44DnmY8jAXNwij08Z-Mh2PjlmA5TXjqc-g_JK_zFTnBq1UGRvqGQsz9vH5_2cIutYQ9-bFUF_tPZwPWK-JILspubkLNDrdgpXDg1JNtGLe_CgqSkSP9yk-Q9AtnSUuqPKrvxBc_G0wIclWC3I8URTG9u1AxQr5p2w4GpOSg5BL3OEPweQ_ZtfEKQjxnnKGNvgMvnevndjeoqikEGi1PHsQa_9z58n1MREzlaLfg5E1j7tJIicih4RMrZblgaUa1NYgMNcwpNFBSZF0m2YX6cDS0e0AM00pobYXLM5ZHuaKOc4dUqyUUyyLRADpHT47LpBmyOOwWQnrApQdcesBlJEvAG3CGKMtqAk3-Fj9ZEL95bD8tSkhUhwY054P2LZrQLBbc56Xb_983j2H18aoj73r3twewFiO5KR0Bm1CffszsIZKTaX5UaN4n4qfTVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Multiple+Machine+Learning+Models+for+the+Classification+of+Cell+States+Based+on+Impedance+Features&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Tian%2C+Dongze&rft.au=Wei%2C+Jian&rft.au=Yang%2C+Xinlong&rft.au=Su%2C+Fei&rft.date=2024-08-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2809&rft.issue=1&rft.spage=12046&rft_id=info:doi/10.1088%2F1742-6596%2F2809%2F1%2F012046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2809_1_012046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon