Network Application Classification with DNN Model
Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great challenges to the quality of network services but also have an impact on Internet security. In order to efficiently use network resources and provide effect...
Saved in:
Published in | Journal of physics. Conference series Vol. 1576; no. 1; pp. 12026 - 12032 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great challenges to the quality of network services but also have an impact on Internet security. In order to efficiently use network resources and provide effective management and control measures for network managers, network traffic needs to be classified. At present, many traffic classification algorithms are not accurate enough, which affect the evaluation and further study of the network. Therefore, the innovation of this paper is to propose a network application classification model. This model uses Deep Neural Network (DNN). Different pretreatment methods are used for data sets to increase the accuracy. This model is compared with other models to prove the effectiveness of the work. |
---|---|
AbstractList | Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great challenges to the quality of network services but also have an impact on Internet security. In order to efficiently use network resources and provide effective management and control measures for network managers, network traffic needs to be classified. At present, many traffic classification algorithms are not accurate enough, which affect the evaluation and further study of the network. Therefore, the innovation of this paper is to propose a network application classification model. This model uses Deep Neural Network (DNN). Different pretreatment methods are used for data sets to increase the accuracy. This model is compared with other models to prove the effectiveness of the work. Abstract Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great challenges to the quality of network services but also have an impact on Internet security. In order to efficiently use network resources and provide effective management and control measures for network managers, network traffic needs to be classified. At present, many traffic classification algorithms are not accurate enough, which affect the evaluation and further study of the network. Therefore, the innovation of this paper is to propose a network application classification model. This model uses Deep Neural Network (DNN). Different pretreatment methods are used for data sets to increase the accuracy. This model is compared with other models to prove the effectiveness of the work. |
Author | Dong, Ligang Suo, Tongpeng Jiang, Xian |
Author_xml | – sequence: 1 givenname: Ligang surname: Dong fullname: Dong, Ligang email: donglg@zjgsu.edu.cn organization: College of Information and Electronic Engineering, Zhejiang Gongshang University , China – sequence: 2 givenname: Tongpeng surname: Suo fullname: Suo, Tongpeng organization: College of Information and Electronic Engineering, Zhejiang Gongshang University , China – sequence: 3 givenname: Xian surname: Jiang fullname: Jiang, Xian organization: College of Information and Electronic Engineering, Zhejiang Gongshang University , China |
BookMark | eNqFUNlKw0AUHaSCbfUbDPgmxM6dzJI8lrhTq6A-D-ksmBozcSal-PcmRCuC4H24C_ecu5wJGtWuNggdAz4DnKYzEJTEnGV8Bkx0boaBYML30HjXGe3yND1AkxDWGCediTGCpWm3zr9G86apSlW0paujvCpCKO13uS3bl-h8uYzunDbVIdq3RRXM0VecoufLi6f8Ol7cX93k80WsiKA8JkJhk1KrGSdKU6wyxhRjK2V1ZuhKFUoZTUUGAjhXqrvHrozVBrDWjNosmaKTYW7j3fvGhFau3cbX3UpJmMBJmmGADiUGlPIuBG-sbHz5VvgPCVj2-sj-c9mrIHt9JMhBn46ZDMzSNT-j_2ed_sG6fcgffwNlo23yCQ9bdik |
Cites_doi | 10.1016/j.comnet.2008.11.016 10.1126/science.1127647 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/1576/1/012026 |
DatabaseName | IOP Publishing (Open access) IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: IOP Publishing (Open access) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Network Application Classification with DNN Model |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_1576_1_012026 JPCS_1576_1_012026 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2746-27c0e84fd562cd40c955c55bcfd9e4bcacced47917166cc033fbefde10dd54f93 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Thu Oct 10 16:11:28 EDT 2024 Fri Aug 23 01:03:16 EDT 2024 Wed Aug 21 03:34:37 EDT 2024 Thu Jan 07 15:20:49 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2746-27c0e84fd562cd40c955c55bcfd9e4bcacced47917166cc033fbefde10dd54f93 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1576/1/012026 |
PQID | 2570389011 |
PQPubID | 4998668 |
PageCount | 7 |
ParticipantIDs | iop_journals_10_1088_1742_6596_1576_1_012026 proquest_journals_2570389011 crossref_primary_10_1088_1742_6596_1576_1_012026 |
PublicationCentury | 2000 |
PublicationDate | 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200601 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Santurkar (JPCS_1576_1_012026bib9) 2018 Memisevic (JPCS_1576_1_012026bib10) 2010 Bursztein (JPCS_1576_1_012026bib3) 2008 Li (JPCS_1576_1_012026bib7) 2009; 53 Shao (JPCS_1576_1_012026bib6) 2018 Shafiq (JPCS_1576_1_012026bib4) 2017 Hinton (JPCS_1576_1_012026bib8) 2006; 313 Sena (JPCS_1576_1_012026bib1) 2009; 9 Srivastava (JPCS_1576_1_012026bib11) 2014; 15 Lim (JPCS_1576_1_012026bib5) 2019 Luo (JPCS_1576_1_012026bib2) 2008 |
References_xml | – start-page: 49 year: 2008 ident: JPCS_1576_1_012026bib3 contributor: fullname: Bursztein – start-page: 046 year: 2019 ident: JPCS_1576_1_012026bib5 contributor: fullname: Lim – start-page: 1603 year: 2010 ident: JPCS_1576_1_012026bib10 article-title: Gated softmax classification contributor: fullname: Memisevic – start-page: 621 year: 2017 ident: JPCS_1576_1_012026bib4 contributor: fullname: Shafiq – start-page: 2483 year: 2018 ident: JPCS_1576_1_012026bib9 article-title: How does batch normalization help optimization? contributor: fullname: Santurkar – start-page: 13 year: 2018 ident: JPCS_1576_1_012026bib6 contributor: fullname: Shao – volume: 53 start-page: 790 year: 2009 ident: JPCS_1576_1_012026bib7 article-title: Efficient application identification and the temporal and spatial stability of classification schema publication-title: Computer Networks doi: 10.1016/j.comnet.2008.11.016 contributor: fullname: Li – volume: 313 start-page: 504 year: 2006 ident: JPCS_1576_1_012026bib8 article-title: Reducing the dimensionality of data with neural networks publication-title: science doi: 10.1126/science.1127647 contributor: fullname: Hinton – volume: 15 start-page: 1929 year: 2014 ident: JPCS_1576_1_012026bib11 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The journal of machine learning research contributor: fullname: Srivastava – volume: 9 start-page: 60 year: 2009 ident: JPCS_1576_1_012026bib1 contributor: fullname: Sena – start-page: 40 year: 2008 ident: JPCS_1576_1_012026bib2 contributor: fullname: Luo |
SSID | ssj0033337 |
Score | 2.2838957 |
Snippet | Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great challenges to... Abstract Due to the development of information technology, there are many kinds of Internet applications. Many network applications not only bring great... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 12026 |
SubjectTerms | Algorithms Artificial neural networks Classification Communications traffic Internet Model accuracy Physics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9uIvgifuJ0SkEfDW26JE2fZKhzDCyCDvYW2ksCgmzVzf_fXD-YQ9C-tb2XXI67-90nIddOWWYglxSnmXmAYnKaDqSixrFCAY4s4tg7_JTJ8ZRPZmLWBNyWTVllqxMrRW0WgDHyELeteePqxfG2_KC4NQqzq80KjQ7ZZnGSIPhSo8dWEw_8k9QNkTH1lla19V0e9DXfUhky73GHLMQmUpyw8MM6dd4W5S8VXdmd0T7ZaxzGYFjf8AHZsvNDslMVbsLyiLCsruMOhutMdFBtusQaoPoVY63BfZYFuPjs_ZhMRw-vd2ParEGg4CGjpHECkVXcGe-qgOERpEKAEAU4k1peQA5gDU9SHHwjAfyxXWGdsSwyRnCXDk5Id76Y21MSQGxE4TiPDUu5yz1WkzLOC38nHihApHokao-vy3raha6y1Epp5JhGjmnkmGa65liP3Hg26Ubyl_-TX22QT57vXjYpdGlcj_Rbrq9J1xJw9vfvc7IbIyquYiV90l19ftkL7zqsistKPr4BkXu51g priority: 102 providerName: ProQuest |
Title | Network Application Classification with DNN Model |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1576/1/012026 https://www.proquest.com/docview/2570389011 |
Volume | 1576 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RiIkX42dEkSzRo3Pr1pbuiAgiiYOoRG7N1o-TASL4_9uuW5AYY9xpTV639teX9r2-L4BrzRSSIqO-zWZmFBSZ-UlMmS81ypmwKYuwjR1-SulwikczMvseC7NYllv_rXl1iYIdhKVDHAuMDB35lCQ0QEZYDlBg4z8jWoNGbI1mhqfH8Vu1G8fm6bigSNuJscrH6_cPbZ1QNTOKH9t0cfYMDmC_FBq9rhviIeyo-RHsFs6bYnUMKHW-3F53Y432imqX1g_INe19q3efpp4tfvZ-AtNB_7U39MtSCL4waiP1o44IFcNaGnFFSByKhBBBSC60TBTORSaEkriT2OQ3VAgzbZ0rLRUKpSRYJ_Ep1OeLuToDT0SS5BrjSKIE68zoa5RGWW7WxSgLImRNCKvp86XLeMELSzVj3CLGLWLcIsYRd4g14cbAxEvuX_1NfrVFPpr0XrYp-FLqJrQq1DektuaeXWWEzv_3zwvYi6ymXNyftKC-_vhUl0acWOdtqLHBQxsad_108mxaj-NJu-ChL8_Kvag |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,38877,38902,43612,43817,53854,53880 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6IfoifuJ0akEfDWu6tEufZM6NObcydIO9hfaSgCBbdfP_N9cP5hC0b23vJZfj7n73ScitEZopiAOK08wsQFExDZuBoMqwRACOLOLYOzyKgv6UD2b-rAi4LYuyylInZopaLQBj5A3ctmaNqxXH-_SD4tYozK4WKzS2SRVHVVnwVX3oRuOXUhc37dPKWyI9am2tKCu8LOwrvoVBg1mfu8Ea2EaKMxZ-2Kftt0X6S0lnlqd3QPYLl9Fp53d8SLb0_IjsZKWbsDwmLMoruZ32OhftZLsusQoof8Voq_MYRQ6uPns_IdNed9Lp02IRAgULGgPqtcDVghtlnRVQ3IXQ98H3EzAq1DyBGEAr3gpx9E0AYI9tEm2UZq5SPjdh85RU5ou5PiMOeMpPDOeeYiE3sUVrQeDFib0VCxXAFTXilseXaT7vQmZ5aiEkckwixyRyTDKZc6xG7iybZCH7y__JbzbIB-PO6yaFTJWpkXrJ9TXpWgbO__59TXb7k9FQDp-i5wuy5yFGziIndVJZfX7pS-tIrJKrQlq-AbYdvic |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BJxAvbONDFMoWaTyS5qO26zxWQMXXskpbJd6s5GzzAGor2r7w13OOE1CZpmlanhLpnDi_2Jc7--53ACdWmkRjIULHZkYOii7CrCdkqG1SSnSURczlDn_PxeWYXd_xuzUYvubCTGe16u_SqScK9hDWAXEyIhs6DQXPRJSQsRwlkcv_TEU003YdPtAE5o5D_-rHqNHIPTr6PjHSNZSyifP6881W_lLr1JPfVHX1_xl-hPum5z7s5KG7XJRdfH5H6vj_r_YJtmsTNRj4Vp9hzUx2YKMKFcX5LiS5jxwPBm9730FVW9NFHflLt7obnOd54EqtPe7BeHjx6-wyrAsvhEhOqgjTPsZGMqvJOELNYsw4R85LtDozrMQC0WjWzxzVjkAkgG1prDZJrDVnNuvtQ2synZgDCDDVvLSMpTrJmC3IOxQiLUoaBeSaYCzbEDdAq5nn11DVvriUyqGhHBrKoaES5dFowynhp-q5Nv-7-LcV8evR2c9VCUXwtqHTfN83UVfhjww6UoGH__bMr7A5Oh-q26v85gi2UueiVws3HWgtnpbmmOyYRfmlGqQvRZjflw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Application+Classification+with+DNN+Model&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Dong%2C+Ligang&rft.au=Suo%2C+Tongpeng&rft.au=Jiang%2C+Xian&rft.date=2020-06-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1576&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1576%2F1%2F012026&rft.externalDocID=JPCS_1576_1_012026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |