Analysis of MRI as a screening tool for the diagnosis of schizophrenia
Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great c...
Saved in:
Published in | Journal of physics. Conference series Vol. 2318; no. 1; pp. 12036 - 12047 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2318/1/012036 |
Cover
Abstract | Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with
p<0.001
. The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy. |
---|---|
AbstractList | Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with
p<0.001
. The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy. Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with p<0.001. The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy. |
Author | Subathra, Y Sudha, S Vidya, K Thilakavathi, B |
Author_xml | – sequence: 1 givenname: B surname: Thilakavathi fullname: Thilakavathi, B organization: Dept. of ECE, Rajalakshmi Engineering College Professor, , . India – sequence: 2 givenname: S surname: Sudha fullname: Sudha, S organization: Dept. of BME, Rajalakshmi Engineering College Assistant Professor (SG), Professor, , . India – sequence: 3 givenname: K surname: Vidya fullname: Vidya, K organization: Dept. of ECE, Saveetha School of Engineering Professor, , . India – sequence: 4 givenname: Y surname: Subathra fullname: Subathra, Y organization: Dept. of BME, Rajalakshmi Engineering College Assistant Professor, , . India |
BookMark | eNqFkFtLwzAUgINMcJv-BgO-CXM5Sdqkj2M4nUwUL88hTdOtYzY12R7mrzelYyIInpeckO9c8g1Qr3a1RegSyA0QKccgOB2lSZaOKYN4HROghKUnqH986R1zKc_QIIQ1ISyG6KPZpNabfagCdiV-fJljHbDGwXhr66pe4q1zG1w6j7cri4tKL2t3gINZVV-uWfkI6nN0WupNsBeHc4jeZ7dv0_vR4uluPp0sRoYKno4oiMyKpOSaZURYq4FzGzeTcbHcmIJTxnIopJSpzC3PKE1y0FQbYwXJuGBDdNX1bbz73NmwVWu38_ELQVEBHICTBCIlOsp4F4K3pWp89aH9XgFRrTTV6lCtGtVKU6A6abHyuqusXPPT-uF5-vobVE1RRpj9Af834htHI3u- |
Cites_doi | 10.14257/ijbsbt.2016.8.6.10 10.1016/j.neuroimage.2015.06.030 10.1016/j.cell.2008.12.044 10.1155/2013/867924 10.1016/j.ebiom.2018.03.017 10.1007/s11604-018-0794-4 10.1093/schbul/19.2.199 10.1007/978-3-540-30135-6_48 10.1109/TMI.2003.815867 10.1093/schbul/13.1.9 10.1109/20.952703 10.1155/2016/7849526 10.1016/j.neunet.2015.04.002 10.1109/34.232073 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2318/1/012036 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2318_1_012036 JPCS_2318_1_012036 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2746-2179e75f4a3907eea144e7428588bccd4233b1d88868be49225b1a2acce709473 |
IEDL.DBID | IOP |
ISSN | 1742-6588 |
IngestDate | Mon Jul 14 08:17:04 EDT 2025 Tue Jul 01 03:37:11 EDT 2025 Wed Aug 21 03:41:53 EDT 2024 Tue Sep 20 22:51:15 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2746-2179e75f4a3907eea144e7428588bccd4233b1d88868be49225b1a2acce709473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012036 |
PQID | 2714114051 |
PQPubID | 4998668 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2714114051 crossref_primary_10_1088_1742_6596_2318_1_012036 iop_journals_10_1088_1742_6596_2318_1_012036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Wahid (JPCS_2318_1_012036bib7) 2016; 8 Huttenlocher (JPCS_2318_1_012036bib8) 1993; 15 Indranath (JPCS_2318_1_012036bib4) 2019; 8 Latha (JPCS_2318_1_012036bib11) 2017 Chen (JPCS_2318_1_012036bib30) 2020; 2020 Nancy (JPCS_2318_1_012036bib14) 1987; 13 Nancy (JPCS_2318_1_012036bib15) 1993; 19 Waseem (JPCS_2318_1_012036bib1) 2010; 20 Zhu (JPCS_2318_1_012036bib28) 2020; 8 JPCS_2318_1_012036bib6 Damodaran (JPCS_2318_1_012036bib19) 2015 Pluim (JPCS_2318_1_012036bib17) 2003; 22 Jihoon (JPCS_2318_1_012036bib16) 2020; 11 He (JPCS_2318_1_012036bib21) 2001; 37 Kamdi (JPCS_2318_1_012036bib22) 2012; 2 Michael (JPCS_2318_1_012036bib2) 2009 Badari (JPCS_2318_1_012036bib3) 2017; 3 Yingwei (JPCS_2318_1_012036bib13) 2009; 136 Thilakvathi (JPCS_2318_1_012036bib23) 2017; 28 Veronese (JPCS_2318_1_012036bib24) 2013; 2013 Ling (JPCS_2318_1_012036bib12) 2018; 30 Darya (JPCS_2318_1_012036bib5) 2015; 68 Khanzadi (JPCS_2318_1_012036bib9) 2017 Kogan (JPCS_2318_1_012036bib10) 2016; 124 Koji (JPCS_2318_1_012036bib18) 2019; 37 Wang (JPCS_2318_1_012036bib26) 2018; 17 Kumar (JPCS_2318_1_012036bib25) 2012; 2 Jack (JPCS_2318_1_012036bib20) 2012; 2012 Liu (JPCS_2318_1_012036bib29) 2004; 3216 Chu (JPCS_2318_1_012036bib27) 2016; 2016 |
References_xml | – volume: 2 start-page: 1 year: 2012 ident: JPCS_2318_1_012036bib22 article-title: Image Segmentation and Region Growing Algorithm publication-title: International Journal of Computer Technology and Electronics Engineering – volume: 2 start-page: 56 year: 2012 ident: JPCS_2318_1_012036bib25 article-title: Importance of Statistical Measures in Digital Image Processing publication-title: International Journal of Emerging Technology and Advanced Engineering – volume: 8 start-page: 93 year: 2016 ident: JPCS_2318_1_012036bib7 article-title: Using Probabilistic Classification Technique and Statistical Features for Brain Magnetic Resonance Imaging (MRI) Classification: An Application of AI Technique in Bio-Science publication-title: International Journal of Bio-Science and Bio-Technology doi: 10.14257/ijbsbt.2016.8.6.10 – volume: 124 start-page: 1196 year: 2016 ident: JPCS_2318_1_012036bib10 article-title: Northwestern University schizophrenia data sharing for SchizConnect: A longitudinal dataset for large-scale integration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.030 – ident: JPCS_2318_1_012036bib6 – volume: 2020 start-page: 1 year: 2020 ident: JPCS_2318_1_012036bib30 article-title: Detecting Abnormal Brain Regions in Schizophrenia Using Structural MRI via Machine Learning publication-title: Computational Intelligence and Neuroscience – year: 2009 ident: JPCS_2318_1_012036bib2 – start-page: 0440 year: 2017 ident: JPCS_2318_1_012036bib9 article-title: A novel metric for digital image quality assessment using entropy-based image complexity – volume: 136 start-page: 1017 year: 2009 ident: JPCS_2318_1_012036bib13 article-title: Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3 beta/beta-catenin signaling publication-title: Cell doi: 10.1016/j.cell.2008.12.044 – volume: 2013 start-page: 1 year: 2013 ident: JPCS_2318_1_012036bib24 article-title: Machine learning approaches: From theory to application in schizophrenia publication-title: Comput. Math. Methods Med doi: 10.1155/2013/867924 – volume: 30 start-page: 74 year: 2018 ident: JPCS_2318_1_012036bib12 article-title: Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – volume: 37 start-page: 34 year: 2019 ident: JPCS_2318_1_012036bib18 article-title: Machine learning studies on major brain diseases: 5-year trends of 2014-2018 publication-title: Jpn. J. Radiol doi: 10.1007/s11604-018-0794-4 – volume: 2012 start-page: 578 year: 2012 ident: JPCS_2318_1_012036bib20 article-title: Brain Imaging for Diagnosis of Schizophrenia: Challenges, Successes and a Research Road Map publication-title: Ninth Intl Conference on Information Tech - New Generations – volume: 11 start-page: 1 year: 2020 ident: JPCS_2318_1_012036bib16 article-title: Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm publication-title: Frontiers in Psychiatry – volume: 3 start-page: 15 year: 2017 ident: JPCS_2318_1_012036bib3 article-title: Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature publication-title: NPJSchizophr – volume: 19 start-page: 199 year: 1993 ident: JPCS_2318_1_012036bib15 article-title: Diagnosis and Classification of Schizophrenia publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/19.2.199 – volume: 3216 start-page: 393 year: 2004 ident: JPCS_2318_1_012036bib29 article-title: Discriminative MR Image Feature Analysis for Automatic Schizophrenia and Alzheimer’s Disease Classification publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-30135-6_48 – volume: 28 start-page: 1 year: 2017 ident: JPCS_2318_1_012036bib23 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomedical Research – volume: 8 year: 2020 ident: JPCS_2318_1_012036bib28 article-title: Weighted Deep Forest for Schizophrenia Data Classification publication-title: IEEE Access – start-page: 1 year: 2017 ident: JPCS_2318_1_012036bib11 article-title: Segmentation and analysis of ventricles in Schizophrenic MR brain images using optimal region-based energy minimization framework – volume: 22 start-page: 986 year: 2003 ident: JPCS_2318_1_012036bib17 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.815867 – volume: 13 start-page: 9 year: 1987 ident: JPCS_2318_1_012036bib14 article-title: The Diagnosis of Schizophrenia publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/13.1.9 – volume: 37 start-page: 3741 year: 2001 ident: JPCS_2318_1_012036bib21 article-title: Research on MRI brain segmentation algorithm with the application in model-based EEG/MEG publication-title: IEEE Transactions on Magnetics doi: 10.1109/20.952703 – volume: 2016 start-page: 1 year: 2016 ident: JPCS_2318_1_012036bib27 article-title: A Correlative Classification Study of Schizophrenic Patients with Results of Clinical Evaluation and Structural Magnetic Resonance Images publication-title: Behavioural Neurology doi: 10.1155/2016/7849526 – volume: 68 start-page: 23 year: 2015 ident: JPCS_2318_1_012036bib5 article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM publication-title: Neural Networks: the Official Journal of the International Neural Network Society doi: 10.1016/j.neunet.2015.04.002 – volume: 15 start-page: 850 year: 1993 ident: JPCS_2318_1_012036bib8 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.232073 – start-page: 1801 year: 2015 ident: JPCS_2318_1_012036bib19 article-title: Feature Extraction from Segmented MRI Brain Tissues for Schizophrenia detection – volume: 8 start-page: 1 year: 2019 ident: JPCS_2318_1_012036bib4 article-title: Identification of brain regions associated with working memory deficit in schizophrenia publication-title: F1000Research – volume: 17 start-page: 331 year: 2018 ident: JPCS_2318_1_012036bib26 article-title: Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost publication-title: Journal of Integrative Neuroscience – volume: 20 start-page: 167 year: 2010 ident: JPCS_2318_1_012036bib1 article-title: Magnetic resonance imaging findings in patients with schizophrenia publication-title: Journal of the College of Physicians and Surgeons Pakistan |
SSID | ssj0033337 |
Score | 2.3017788 |
Snippet | Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12036 |
SubjectTerms | Back propagation networks Classification Datasets Euclidean distance Euclidean geometry Hausdorff dimension Magnetic resonance imaging MRI Neural networks Physics Schizophrenia Schizophrenia (SCZ) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB60IngRn1itsqBHl-bVPE4ixVoLFVELvS2b3Q0I0kRT_7_f5kEtgoZckswlM7Mz37c7s0t0pUG3cGue6iDk4BsplxkMkkipDOCGDhPbnDx9DMezYDIfzJsJt7Ipq2xjYhWoda7sHHnfi9wA2B0-dFN8cHtqlF1dbY7Q2KQtF5nG-nk8um8jsY8rqhsiPY5MG7f1XSB9zbsk7APg4LFvm0irfZpX2WnzLS9-hegq74z2aLcBjOy2tvA-bZjFAW1XhZuqPKRRu6sIyzM2fX5gsmSSIRaAnyIrsWWevzMAUwagx3RdV1cLlz_L7Y5oNrp7HY55czYCV9BtyMEkEhMNskD6oLfGSBAjg3-K8ZupUhooyU9dDX4bxqkJEgzb1JWeVLAAGF3kH1NnkS_MCTEwNpUksJBUWRB6joyNdCJlHGkibXzdJafViSjqLTBEtXQdx8KqUVg1CqtG4YpajV26hu5EMxzK_8Uv18QnT8OXdQlR6KxLvdYUK9GVW5z-_fmMdjzbuVDV7vWos_z8MufAE8v0onKab1dFwIc priority: 102 providerName: ProQuest |
Title | Analysis of MRI as a screening tool for the diagnosis of schizophrenia |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012036 https://www.proquest.com/docview/2714114051 |
Volume | 2318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6tVEi8wDZAFLrK0va49EeSOs4jQ-2gUqHqhuDNcmznBdRUtLzw1_M5TgTdNCG0KIoS6Zw4n527-5S7M9E3A7qF3QSZiXkAvpEFKseApEppC3fD8NQlJ08v-fl1PLkd3r7OhSmWlerv4tQXCvYQVgFxogcfOgz4MOU9-Ca47Ln8z4g3qOnWr3Sz_OJqVmvjCFvikyJdIyHqGK9_32jDQjXQi7_UdGl7xnuk6177kJO77uM66-qnPwo6_t9rfaTdyjVlp77FJ_pgF59puwwR1at9Gtf1S1iRs-n8gqkVUwxaB0wY9o-ti-KewQVmcCmZ8RF8Xnj1OrDvgK7Ho99n50G1CkOgMYo8AGdJbTLMYxWBSFurQMEs-ioAZqa1gT8WZQMDJs1FZuMUCiIbqFBpjDW4YxId0taiWNgjYuCGOk0xF5TOYx72lbCqn2jbVzYxNjIt6tfIy6UvtiHLn-RCSAePdPBIB48cSA9Pi74DUFl9eKu3xb9uiE9mZ782JeTS5C1q1wP-IhomgxjkEUrs-H3PPKGd0OVMlFGDbdpaPzzaL_Bk1lmHGmL8s0PNH6PL2bzjrMqwU05fHK-im2dIxeVR |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD64ieiLeMV5Dahvlm1d18uDiE7Hpm4ML7C3mCYpCLJOOxH_lL_RL70wRdAnS1_aHko4-Zrzfc05CdGBgtzCqaxQOa4FvRFaIkKHBEJIDbqh3MAUJ_f6bufeuRw2hzP0UdTCmLTKYkxMB2oVS_OPvGp7dQfcHRg6GT9bZtcoM7tabKGRweJKv79BsiXH3XP076Ftty_uWh0r31XAkmiVa4GDB9prRo6A3Pe0FpAUGs31m74fSqnALxphXUEZun6onQCAD-vCFhJthxbyGnhviWYdU9Faptmzi_7gphj7Gzi8rATTthDb_SKjDDIzvxe4VVAqXFZN2Wq6MvQ0HpYe4_GPoJBGuvYSLeYUlZ1mmFqmGT1aobk0VVQmq9Qu1jFhccR6N10mEiYYRh8oYsRBNonjJwYqzEAtmcoy-TLj5GuC3xrd_4vf1qk8ikd6gxg0ogwCYELIyHHtmvC1qHlS14T2lG6oCtUKn_BxtugGTyfLfZ8bN3LjRm7cyOs8c2OFjuA7nn-Ayd_m-9_MLwet2-8WfKyiCm0XXTE1nQJx8_fHezTfuetd8-tu_2qLFmxTN5FmDm5TefLyqnfAZibhbg4hRg__jdpPU5b9JA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qRfEiPrFadUGPxjavTXKUamirreIDvS2b3c1JmmLr__fLSy0iYsghgUmy-0129vvIzIboVENuYddWoj1uQW8klkzhkEhKZUA3NI_y4uTRmPefvOGL_9Kg-LMWJptWof8ch-VCwSWEVUJc2AGHdizuR7wDboLTTl7_6fLOVKdLtOy73M_X0L91n-uI7GILysLI_MIwrPO8fr_Zwiy1hJb8CNXF_BNv0HpFHNlF2cxNapjJFq0UCZxqtk1xvboIy1I2uh8wOWOSISZAp2J2YvMse2UgqAyEj-kyv640nn1Pu9uhp_jqsde3qn8kWAoYcwuKIjKBn3rShcw1RkIgGfQpRDcTpTTYkpvYGjqXh4nxIgzfxJaOVPAElF3g7lJzkk3MHjEoNxVF8JRUqcedrgyN7AbKdKUJtHF1i7o1JmJaLoUhik_YYShyGEUOo8hhFLYoYWzRGbAT1bCY_W1-smA-vOs9LFoIOLlF7doVX6ZOYHuQdggx-_975jGt3l3G4mYwvj6gNScvbijS-9rUnL-9m0NQjnlyVLxPH4A-xN4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+MRI+as+a+screening+tool+for+the+diagnosis+of+schizophrenia&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Thilakavathi%2C+B&rft.au=Sudha%2C+S&rft.au=Vidya%2C+K&rft.au=Subathra%2C+Y&rft.date=2022-08-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2318&rft.issue=1&rft.spage=12036&rft_id=info:doi/10.1088%2F1742-6596%2F2318%2F1%2F012036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2318_1_012036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |