Analysis of MRI as a screening tool for the diagnosis of schizophrenia

Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great c...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2318; no. 1; pp. 12036 - 12047
Main Authors Thilakavathi, B, Sudha, S, Vidya, K, Subathra, Y
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.08.2022
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2318/1/012036

Cover

Abstract Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with p<0.001 . The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy.
AbstractList Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with p<0.001 . The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy.
Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in lifelong social and mental disturbance. At present, there is no cure, but this can be diagnosed and treated. Classification of SCZ imposes great challenges even for the most experienced neurologists. A non-intrusive technique like MRI is taken for diagnosing various diseases which are used as a base for our tool. Many researchers used large datasets of SCZ and normal for analyzing SCZ using various parameters like Grey matter, white matter, voxel-based morphometry, etc., This work proposes a simpler but effective approach to classify the same. This paper determined statistical and complexity features from 32 SCZ and 18 normal MRI images. Totally 9 features are determined out of these, novel features Hausdorff dimension and Euclidean distance played an important role in classification. Hausdorff dimension is selected as the most significant feature by student’s t-test with p<0.001. The back propagation neural network receives substantial information from the t-test as input. Our promising approach, with a minimal dataset, classified the subjects with 100% sensitivity, 88.9% specificity, and 94.4% accuracy.
Author Subathra, Y
Sudha, S
Vidya, K
Thilakavathi, B
Author_xml – sequence: 1
  givenname: B
  surname: Thilakavathi
  fullname: Thilakavathi, B
  organization: Dept. of ECE, Rajalakshmi Engineering College Professor, , . India
– sequence: 2
  givenname: S
  surname: Sudha
  fullname: Sudha, S
  organization: Dept. of BME, Rajalakshmi Engineering College Assistant Professor (SG), Professor, , . India
– sequence: 3
  givenname: K
  surname: Vidya
  fullname: Vidya, K
  organization: Dept. of ECE, Saveetha School of Engineering Professor, , . India
– sequence: 4
  givenname: Y
  surname: Subathra
  fullname: Subathra, Y
  organization: Dept. of BME, Rajalakshmi Engineering College Assistant Professor, , . India
BookMark eNqFkFtLwzAUgINMcJv-BgO-CXM5Sdqkj2M4nUwUL88hTdOtYzY12R7mrzelYyIInpeckO9c8g1Qr3a1RegSyA0QKccgOB2lSZaOKYN4HROghKUnqH986R1zKc_QIIQ1ISyG6KPZpNabfagCdiV-fJljHbDGwXhr66pe4q1zG1w6j7cri4tKL2t3gINZVV-uWfkI6nN0WupNsBeHc4jeZ7dv0_vR4uluPp0sRoYKno4oiMyKpOSaZURYq4FzGzeTcbHcmIJTxnIopJSpzC3PKE1y0FQbYwXJuGBDdNX1bbz73NmwVWu38_ELQVEBHICTBCIlOsp4F4K3pWp89aH9XgFRrTTV6lCtGtVKU6A6abHyuqusXPPT-uF5-vobVE1RRpj9Af834htHI3u-
Cites_doi 10.14257/ijbsbt.2016.8.6.10
10.1016/j.neuroimage.2015.06.030
10.1016/j.cell.2008.12.044
10.1155/2013/867924
10.1016/j.ebiom.2018.03.017
10.1007/s11604-018-0794-4
10.1093/schbul/19.2.199
10.1007/978-3-540-30135-6_48
10.1109/TMI.2003.815867
10.1093/schbul/13.1.9
10.1109/20.952703
10.1155/2016/7849526
10.1016/j.neunet.2015.04.002
10.1109/34.232073
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2318/1/012036
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2318_1_012036
JPCS_2318_1_012036
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2746-2179e75f4a3907eea144e7428588bccd4233b1d88868be49225b1a2acce709473
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Mon Jul 14 08:17:04 EDT 2025
Tue Jul 01 03:37:11 EDT 2025
Wed Aug 21 03:41:53 EDT 2024
Tue Sep 20 22:51:15 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2746-2179e75f4a3907eea144e7428588bccd4233b1d88868be49225b1a2acce709473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012036
PQID 2714114051
PQPubID 4998668
PageCount 12
ParticipantIDs proquest_journals_2714114051
crossref_primary_10_1088_1742_6596_2318_1_012036
iop_journals_10_1088_1742_6596_2318_1_012036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 20220801
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Wahid (JPCS_2318_1_012036bib7) 2016; 8
Huttenlocher (JPCS_2318_1_012036bib8) 1993; 15
Indranath (JPCS_2318_1_012036bib4) 2019; 8
Latha (JPCS_2318_1_012036bib11) 2017
Chen (JPCS_2318_1_012036bib30) 2020; 2020
Nancy (JPCS_2318_1_012036bib14) 1987; 13
Nancy (JPCS_2318_1_012036bib15) 1993; 19
Waseem (JPCS_2318_1_012036bib1) 2010; 20
Zhu (JPCS_2318_1_012036bib28) 2020; 8
JPCS_2318_1_012036bib6
Damodaran (JPCS_2318_1_012036bib19) 2015
Pluim (JPCS_2318_1_012036bib17) 2003; 22
Jihoon (JPCS_2318_1_012036bib16) 2020; 11
He (JPCS_2318_1_012036bib21) 2001; 37
Kamdi (JPCS_2318_1_012036bib22) 2012; 2
Michael (JPCS_2318_1_012036bib2) 2009
Badari (JPCS_2318_1_012036bib3) 2017; 3
Yingwei (JPCS_2318_1_012036bib13) 2009; 136
Thilakvathi (JPCS_2318_1_012036bib23) 2017; 28
Veronese (JPCS_2318_1_012036bib24) 2013; 2013
Ling (JPCS_2318_1_012036bib12) 2018; 30
Darya (JPCS_2318_1_012036bib5) 2015; 68
Khanzadi (JPCS_2318_1_012036bib9) 2017
Kogan (JPCS_2318_1_012036bib10) 2016; 124
Koji (JPCS_2318_1_012036bib18) 2019; 37
Wang (JPCS_2318_1_012036bib26) 2018; 17
Kumar (JPCS_2318_1_012036bib25) 2012; 2
Jack (JPCS_2318_1_012036bib20) 2012; 2012
Liu (JPCS_2318_1_012036bib29) 2004; 3216
Chu (JPCS_2318_1_012036bib27) 2016; 2016
References_xml – volume: 2
  start-page: 1
  year: 2012
  ident: JPCS_2318_1_012036bib22
  article-title: Image Segmentation and Region Growing Algorithm
  publication-title: International Journal of Computer Technology and Electronics Engineering
– volume: 2
  start-page: 56
  year: 2012
  ident: JPCS_2318_1_012036bib25
  article-title: Importance of Statistical Measures in Digital Image Processing
  publication-title: International Journal of Emerging Technology and Advanced Engineering
– volume: 8
  start-page: 93
  year: 2016
  ident: JPCS_2318_1_012036bib7
  article-title: Using Probabilistic Classification Technique and Statistical Features for Brain Magnetic Resonance Imaging (MRI) Classification: An Application of AI Technique in Bio-Science
  publication-title: International Journal of Bio-Science and Bio-Technology
  doi: 10.14257/ijbsbt.2016.8.6.10
– volume: 124
  start-page: 1196
  year: 2016
  ident: JPCS_2318_1_012036bib10
  article-title: Northwestern University schizophrenia data sharing for SchizConnect: A longitudinal dataset for large-scale integration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.030
– ident: JPCS_2318_1_012036bib6
– volume: 2020
  start-page: 1
  year: 2020
  ident: JPCS_2318_1_012036bib30
  article-title: Detecting Abnormal Brain Regions in Schizophrenia Using Structural MRI via Machine Learning
  publication-title: Computational Intelligence and Neuroscience
– year: 2009
  ident: JPCS_2318_1_012036bib2
– start-page: 0440
  year: 2017
  ident: JPCS_2318_1_012036bib9
  article-title: A novel metric for digital image quality assessment using entropy-based image complexity
– volume: 136
  start-page: 1017
  year: 2009
  ident: JPCS_2318_1_012036bib13
  article-title: Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3 beta/beta-catenin signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.044
– volume: 2013
  start-page: 1
  year: 2013
  ident: JPCS_2318_1_012036bib24
  article-title: Machine learning approaches: From theory to application in schizophrenia
  publication-title: Comput. Math. Methods Med
  doi: 10.1155/2013/867924
– volume: 30
  start-page: 74
  year: 2018
  ident: JPCS_2318_1_012036bib12
  article-title: Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– volume: 37
  start-page: 34
  year: 2019
  ident: JPCS_2318_1_012036bib18
  article-title: Machine learning studies on major brain diseases: 5-year trends of 2014-2018
  publication-title: Jpn. J. Radiol
  doi: 10.1007/s11604-018-0794-4
– volume: 2012
  start-page: 578
  year: 2012
  ident: JPCS_2318_1_012036bib20
  article-title: Brain Imaging for Diagnosis of Schizophrenia: Challenges, Successes and a Research Road Map
  publication-title: Ninth Intl Conference on Information Tech - New Generations
– volume: 11
  start-page: 1
  year: 2020
  ident: JPCS_2318_1_012036bib16
  article-title: Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm
  publication-title: Frontiers in Psychiatry
– volume: 3
  start-page: 15
  year: 2017
  ident: JPCS_2318_1_012036bib3
  article-title: Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature
  publication-title: NPJSchizophr
– volume: 19
  start-page: 199
  year: 1993
  ident: JPCS_2318_1_012036bib15
  article-title: Diagnosis and Classification of Schizophrenia
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/19.2.199
– volume: 3216
  start-page: 393
  year: 2004
  ident: JPCS_2318_1_012036bib29
  article-title: Discriminative MR Image Feature Analysis for Automatic Schizophrenia and Alzheimer’s Disease Classification
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-30135-6_48
– volume: 28
  start-page: 1
  year: 2017
  ident: JPCS_2318_1_012036bib23
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomedical Research
– volume: 8
  year: 2020
  ident: JPCS_2318_1_012036bib28
  article-title: Weighted Deep Forest for Schizophrenia Data Classification
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  ident: JPCS_2318_1_012036bib11
  article-title: Segmentation and analysis of ventricles in Schizophrenic MR brain images using optimal region-based energy minimization framework
– volume: 22
  start-page: 986
  year: 2003
  ident: JPCS_2318_1_012036bib17
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2003.815867
– volume: 13
  start-page: 9
  year: 1987
  ident: JPCS_2318_1_012036bib14
  article-title: The Diagnosis of Schizophrenia
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/13.1.9
– volume: 37
  start-page: 3741
  year: 2001
  ident: JPCS_2318_1_012036bib21
  article-title: Research on MRI brain segmentation algorithm with the application in model-based EEG/MEG
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/20.952703
– volume: 2016
  start-page: 1
  year: 2016
  ident: JPCS_2318_1_012036bib27
  article-title: A Correlative Classification Study of Schizophrenic Patients with Results of Clinical Evaluation and Structural Magnetic Resonance Images
  publication-title: Behavioural Neurology
  doi: 10.1155/2016/7849526
– volume: 68
  start-page: 23
  year: 2015
  ident: JPCS_2318_1_012036bib5
  article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM
  publication-title: Neural Networks: the Official Journal of the International Neural Network Society
  doi: 10.1016/j.neunet.2015.04.002
– volume: 15
  start-page: 850
  year: 1993
  ident: JPCS_2318_1_012036bib8
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.232073
– start-page: 1801
  year: 2015
  ident: JPCS_2318_1_012036bib19
  article-title: Feature Extraction from Segmented MRI Brain Tissues for Schizophrenia detection
– volume: 8
  start-page: 1
  year: 2019
  ident: JPCS_2318_1_012036bib4
  article-title: Identification of brain regions associated with working memory deficit in schizophrenia
  publication-title: F1000Research
– volume: 17
  start-page: 331
  year: 2018
  ident: JPCS_2318_1_012036bib26
  article-title: Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost
  publication-title: Journal of Integrative Neuroscience
– volume: 20
  start-page: 167
  year: 2010
  ident: JPCS_2318_1_012036bib1
  article-title: Magnetic resonance imaging findings in patients with schizophrenia
  publication-title: Journal of the College of Physicians and Surgeons Pakistan
SSID ssj0033337
Score 2.3017788
Snippet Schizophrenia (SCZ) is a clinical disorder that affects 0.01% of the world population. It affects people in late teen hood or early maturity resulting in...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12036
SubjectTerms Back propagation networks
Classification
Datasets
Euclidean distance
Euclidean geometry
Hausdorff dimension
Magnetic resonance imaging
MRI
Neural networks
Physics
Schizophrenia
Schizophrenia (SCZ)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB60IngRn1itsqBHl-bVPE4ixVoLFVELvS2b3Q0I0kRT_7_f5kEtgoZckswlM7Mz37c7s0t0pUG3cGue6iDk4BsplxkMkkipDOCGDhPbnDx9DMezYDIfzJsJt7Ipq2xjYhWoda7sHHnfi9wA2B0-dFN8cHtqlF1dbY7Q2KQtF5nG-nk8um8jsY8rqhsiPY5MG7f1XSB9zbsk7APg4LFvm0irfZpX2WnzLS9-hegq74z2aLcBjOy2tvA-bZjFAW1XhZuqPKRRu6sIyzM2fX5gsmSSIRaAnyIrsWWevzMAUwagx3RdV1cLlz_L7Y5oNrp7HY55czYCV9BtyMEkEhMNskD6oLfGSBAjg3-K8ZupUhooyU9dDX4bxqkJEgzb1JWeVLAAGF3kH1NnkS_MCTEwNpUksJBUWRB6joyNdCJlHGkibXzdJafViSjqLTBEtXQdx8KqUVg1CqtG4YpajV26hu5EMxzK_8Uv18QnT8OXdQlR6KxLvdYUK9GVW5z-_fmMdjzbuVDV7vWos_z8MufAE8v0onKab1dFwIc
  priority: 102
  providerName: ProQuest
Title Analysis of MRI as a screening tool for the diagnosis of schizophrenia
URI https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012036
https://www.proquest.com/docview/2714114051
Volume 2318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6tVEi8wDZAFLrK0va49EeSOs4jQ-2gUqHqhuDNcmznBdRUtLzw1_M5TgTdNCG0KIoS6Zw4n527-5S7M9E3A7qF3QSZiXkAvpEFKseApEppC3fD8NQlJ08v-fl1PLkd3r7OhSmWlerv4tQXCvYQVgFxogcfOgz4MOU9-Ca47Ln8z4g3qOnWr3Sz_OJqVmvjCFvikyJdIyHqGK9_32jDQjXQi7_UdGl7xnuk6177kJO77uM66-qnPwo6_t9rfaTdyjVlp77FJ_pgF59puwwR1at9Gtf1S1iRs-n8gqkVUwxaB0wY9o-ti-KewQVmcCmZ8RF8Xnj1OrDvgK7Ho99n50G1CkOgMYo8AGdJbTLMYxWBSFurQMEs-ioAZqa1gT8WZQMDJs1FZuMUCiIbqFBpjDW4YxId0taiWNgjYuCGOk0xF5TOYx72lbCqn2jbVzYxNjIt6tfIy6UvtiHLn-RCSAePdPBIB48cSA9Pi74DUFl9eKu3xb9uiE9mZ782JeTS5C1q1wP-IhomgxjkEUrs-H3PPKGd0OVMlFGDbdpaPzzaL_Bk1lmHGmL8s0PNH6PL2bzjrMqwU05fHK-im2dIxeVR
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD64ieiLeMV5Dahvlm1d18uDiE7Hpm4ML7C3mCYpCLJOOxH_lL_RL70wRdAnS1_aHko4-Zrzfc05CdGBgtzCqaxQOa4FvRFaIkKHBEJIDbqh3MAUJ_f6bufeuRw2hzP0UdTCmLTKYkxMB2oVS_OPvGp7dQfcHRg6GT9bZtcoM7tabKGRweJKv79BsiXH3XP076Ftty_uWh0r31XAkmiVa4GDB9prRo6A3Pe0FpAUGs31m74fSqnALxphXUEZun6onQCAD-vCFhJthxbyGnhviWYdU9Faptmzi_7gphj7Gzi8rATTthDb_SKjDDIzvxe4VVAqXFZN2Wq6MvQ0HpYe4_GPoJBGuvYSLeYUlZ1mmFqmGT1aobk0VVQmq9Qu1jFhccR6N10mEiYYRh8oYsRBNonjJwYqzEAtmcoy-TLj5GuC3xrd_4vf1qk8ikd6gxg0ogwCYELIyHHtmvC1qHlS14T2lG6oCtUKn_BxtugGTyfLfZ8bN3LjRm7cyOs8c2OFjuA7nn-Ayd_m-9_MLwet2-8WfKyiCm0XXTE1nQJx8_fHezTfuetd8-tu_2qLFmxTN5FmDm5TefLyqnfAZibhbg4hRg__jdpPU5b9JA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qRfEiPrFadUGPxjavTXKUamirreIDvS2b3c1JmmLr__fLSy0iYsghgUmy-0129vvIzIboVENuYddWoj1uQW8klkzhkEhKZUA3NI_y4uTRmPefvOGL_9Kg-LMWJptWof8ch-VCwSWEVUJc2AGHdizuR7wDboLTTl7_6fLOVKdLtOy73M_X0L91n-uI7GILysLI_MIwrPO8fr_Zwiy1hJb8CNXF_BNv0HpFHNlF2cxNapjJFq0UCZxqtk1xvboIy1I2uh8wOWOSISZAp2J2YvMse2UgqAyEj-kyv640nn1Pu9uhp_jqsde3qn8kWAoYcwuKIjKBn3rShcw1RkIgGfQpRDcTpTTYkpvYGjqXh4nxIgzfxJaOVPAElF3g7lJzkk3MHjEoNxVF8JRUqcedrgyN7AbKdKUJtHF1i7o1JmJaLoUhik_YYShyGEUOo8hhFLYoYWzRGbAT1bCY_W1-smA-vOs9LFoIOLlF7doVX6ZOYHuQdggx-_975jGt3l3G4mYwvj6gNScvbijS-9rUnL-9m0NQjnlyVLxPH4A-xN4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+MRI+as+a+screening+tool+for+the+diagnosis+of+schizophrenia&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Thilakavathi%2C+B&rft.au=Sudha%2C+S&rft.au=Vidya%2C+K&rft.au=Subathra%2C+Y&rft.date=2022-08-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2318&rft.issue=1&rft.spage=12036&rft_id=info:doi/10.1088%2F1742-6596%2F2318%2F1%2F012036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2318_1_012036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon