Decadal Variability of Southern Subtropical SST Wavenumber‐4 Pattern and Its Impact
A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical orthogonal function analysis. The decadal variability of the SST W4 pattern evolves from the decadal modulation of the South Pacific Meridional M...
Saved in:
Published in | Geophysical research letters Vol. 49; no. 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical orthogonal function analysis. The decadal variability of the SST W4 pattern evolves from the decadal modulation of the South Pacific Meridional Mode (SPMM) as seen in SST footprints. The SST residuals of the SPMM create a favorable environment for the frequent occurrence of positive/negative type of the SST W4 pattern and is discussed. Since SST W4 pattern covers the globe, it potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation. During positive phase, anomalous SST close to South America, Australia, and Southern Africa enforces the wind to go on/offshore and converges/diverges the moisture into/out of the landmass. As a result, specific humidity changes and alters the rainfall over Southern continents on a decadal scale. The scenario is opposite during the negative phase.
Plain Language Summary
The sea surface temperature (SST) has four positive (negative) loading centers located in the South‐central Pacific, South‐western Atlantic, South‐western Indian Ocean, and South of Australia (South‐eastern Pacific, South‐eastern Atlantic, South‐eastern Indian Ocean, and South‐western Pacific Ocean), called a wavenumber‐4 (W4) pattern in the southern subtropics. It is generated due to a coupling with a similar W4 pattern seen in the atmosphere. Apart from year‐to‐year variation, this W4 pattern also has a decadal cycle and is reported in this study. The reason behind this is mainly linked to the decadal variation of the South Pacific Meridional Mode (SPMM). When the SPMM decays, it leaves some SST signals over the South Pacific Ocean which remain for a longer time and lead to SST W4 having more positive/negative events in one decade compared to others. The resulted SST W4 pattern affects the Southern continental rainfall by controlling the local atmospheric circulation.
Key Points
Decadal variability in sea surface temperature (SST) wavenumber‐4 (W4) pattern is revealed over southern subtropics (20°–55°S)
The footprinting mechanism and SST residuals from the South Pacific Meridional Mode lead the SST W4 decadal variability by 2 years
SST W4 potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation |
---|---|
AbstractList | A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical orthogonal function analysis. The decadal variability of the SST W4 pattern evolves from the decadal modulation of the South Pacific Meridional Mode (SPMM) as seen in SST footprints. The SST residuals of the SPMM create a favorable environment for the frequent occurrence of positive/negative type of the SST W4 pattern and is discussed. Since SST W4 pattern covers the globe, it potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation. During positive phase, anomalous SST close to South America, Australia, and Southern Africa enforces the wind to go on/offshore and converges/diverges the moisture into/out of the landmass. As a result, specific humidity changes and alters the rainfall over Southern continents on a decadal scale. The scenario is opposite during the negative phase. Abstract A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical orthogonal function analysis. The decadal variability of the SST W4 pattern evolves from the decadal modulation of the South Pacific Meridional Mode (SPMM) as seen in SST footprints. The SST residuals of the SPMM create a favorable environment for the frequent occurrence of positive/negative type of the SST W4 pattern and is discussed. Since SST W4 pattern covers the globe, it potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation. During positive phase, anomalous SST close to South America, Australia, and Southern Africa enforces the wind to go on/offshore and converges/diverges the moisture into/out of the landmass. As a result, specific humidity changes and alters the rainfall over Southern continents on a decadal scale. The scenario is opposite during the negative phase. Plain Language Summary The sea surface temperature (SST) has four positive (negative) loading centers located in the South‐central Pacific, South‐western Atlantic, South‐western Indian Ocean, and South of Australia (South‐eastern Pacific, South‐eastern Atlantic, South‐eastern Indian Ocean, and South‐western Pacific Ocean), called a wavenumber‐4 (W4) pattern in the southern subtropics. It is generated due to a coupling with a similar W4 pattern seen in the atmosphere. Apart from year‐to‐year variation, this W4 pattern also has a decadal cycle and is reported in this study. The reason behind this is mainly linked to the decadal variation of the South Pacific Meridional Mode (SPMM). When the SPMM decays, it leaves some SST signals over the South Pacific Ocean which remain for a longer time and lead to SST W4 having more positive/negative events in one decade compared to others. The resulted SST W4 pattern affects the Southern continental rainfall by controlling the local atmospheric circulation. Key Points Decadal variability in sea surface temperature (SST) wavenumber‐4 (W4) pattern is revealed over southern subtropics (20°–55°S) The footprinting mechanism and SST residuals from the South Pacific Meridional Mode lead the SST W4 decadal variability by 2 years SST W4 potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical orthogonal function analysis. The decadal variability of the SST W4 pattern evolves from the decadal modulation of the South Pacific Meridional Mode (SPMM) as seen in SST footprints. The SST residuals of the SPMM create a favorable environment for the frequent occurrence of positive/negative type of the SST W4 pattern and is discussed. Since SST W4 pattern covers the globe, it potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation. During positive phase, anomalous SST close to South America, Australia, and Southern Africa enforces the wind to go on/offshore and converges/diverges the moisture into/out of the landmass. As a result, specific humidity changes and alters the rainfall over Southern continents on a decadal scale. The scenario is opposite during the negative phase. Plain Language Summary The sea surface temperature (SST) has four positive (negative) loading centers located in the South‐central Pacific, South‐western Atlantic, South‐western Indian Ocean, and South of Australia (South‐eastern Pacific, South‐eastern Atlantic, South‐eastern Indian Ocean, and South‐western Pacific Ocean), called a wavenumber‐4 (W4) pattern in the southern subtropics. It is generated due to a coupling with a similar W4 pattern seen in the atmosphere. Apart from year‐to‐year variation, this W4 pattern also has a decadal cycle and is reported in this study. The reason behind this is mainly linked to the decadal variation of the South Pacific Meridional Mode (SPMM). When the SPMM decays, it leaves some SST signals over the South Pacific Ocean which remain for a longer time and lead to SST W4 having more positive/negative events in one decade compared to others. The resulted SST W4 pattern affects the Southern continental rainfall by controlling the local atmospheric circulation. Key Points Decadal variability in sea surface temperature (SST) wavenumber‐4 (W4) pattern is revealed over southern subtropics (20°–55°S) The footprinting mechanism and SST residuals from the South Pacific Meridional Mode lead the SST W4 decadal variability by 2 years SST W4 potentially affects the decadal rainfall variability over Southern continents by modulating local atmospheric circulation |
Author | Senapati, Balaji Behera, Swadhin K. Dash, Mihir K. |
Author_xml | – sequence: 1 givenname: Balaji orcidid: 0000-0001-5029-9731 surname: Senapati fullname: Senapati, Balaji email: senapatibalaji@gmail.com organization: Indian Institute of Technology Kharagpur – sequence: 2 givenname: Mihir K. orcidid: 0000-0003-1426-7200 surname: Dash fullname: Dash, Mihir K. email: mihir@coral.iitkgp.ac.in organization: Indian Institute of Technology Kharagpur – sequence: 3 givenname: Swadhin K. orcidid: 0000-0001-8692-2388 surname: Behera fullname: Behera, Swadhin K. organization: Japan Agency for Marine‐Earth Science and Technology |
BookMark | eNp90L9OwzAQBnALgURb2HgAS6wUzo5jxyMqUCpFApEWxsj_IlKlSXAcUDcegWfkSUhVBiamu-Gnu0_fGB3WTe0QOiNwSYDKKwqUzlOQEhg_QCMiGZsmAOIQjQDksFPBj9G469YAEEFERmh144yyqsLPypdKl1UZtrgpcNb04dX5Gme9Dr5pSzOYLFviF_Xu6n6jnf_-_GL4UYWwY6q2eBE6vNi0yoQTdFSoqnOnv3OCVne3y9n9NH2YL2bX6dRQMWTTiYkLwhOWWFcIVVjQImaUJYISSyU1kdBFpAWh1ljDZBwLG2vNgSnNlCLRBJ3v77a-eetdF_J10_t6eJlTAYJzJiQf1MVeGd90nXdF3vpyo_w2J5Dvisv_FjdwuucfZeW2_9p8_pRyNuSJfgBvz3Cc |
CitedBy_id | crossref_primary_10_1029_2023GL107401 crossref_primary_10_1029_2023JC020801 crossref_primary_10_5194_acp_23_345_2023 |
Cites_doi | 10.1038/s41598-019-52805-2 10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2 10.1002/qj.4174 10.1007/s00382-016-3256-7 10.1002/joc.700 10.3402/tellusa.v46i4.15484 10.1175/JCLI-D-16-0063.1 10.1175/JCLI-D-13-00082.1 10.1002/2015GL067228 10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2 10.1175/JCLI-D-17-0405.1 10.1002/wcc.81 10.1002/joc.1222 10.1175/JCLI-D-19-0180.1 10.1175/1520-0442(1992)005<0541:aiomff>2.0.co;2 10.1175/JCLI-D-17-0860.1 10.1002/qj.3803 10.1029/2002GL014663 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1038/s41598-020-80492-x 10.1029/2002jd002670 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 10.1175/JCLI-D-15-0201.1 10.1175/JCLI-D-17-0722.1 10.1002/joc.1370 10.1007/s00382-021-06040-z 10.1029/1999GL900003 10.1002/2017GL073475 10.1029/2018GL080320 10.1007/s40641-018-0090-5 10.1002/2015JD024576 10.1142/S1793536909000047 10.1007/s00382-015-2525-1 10.1002/2015GL066281 10.1175/JCLI-D-19-0855.1 |
ContentType | Journal Article |
Copyright | 2022. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2022. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2022GL099046 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2022GL099046 GRL64604 |
Genre | article |
GeographicLocations | Indian Ocean South Pacific Australia |
GeographicLocations_xml | – name: South Pacific – name: Indian Ocean – name: Australia |
GrantInformation_xml | – fundername: Department of Science and Technology, New Delhi funderid: IF170092 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION PYCSY 7TG 7TN 8FD ALXUD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c2744-b8c5f16848def7afd0b754248721d292c37bf3b712dcdc49557d5bb604ab4aa13 |
ISSN | 0094-8276 |
IngestDate | Thu Oct 10 21:14:53 EDT 2024 Thu Sep 12 17:40:03 EDT 2024 Sat Aug 24 00:54:15 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2744-b8c5f16848def7afd0b754248721d292c37bf3b712dcdc49557d5bb604ab4aa13 |
ORCID | 0000-0003-1426-7200 0000-0001-8692-2388 0000-0001-5029-9731 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022GL099046 |
PQID | 2707664796 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2707664796 crossref_primary_10_1029_2022GL099046 wiley_primary_10_1029_2022GL099046_GRL64604 |
PublicationCentury | 2000 |
PublicationDate | 28 August 2022 |
PublicationDateYYYYMMDD | 2022-08-28 |
PublicationDate_xml | – month: 08 year: 2022 text: 28 August 2022 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 9 2002; 15 2011; 2 2017; 48 2021; 147 2019; 32 2017; 44 1999; 26 2014; 27 2007 2016; 121 2020; 146 2020; 33 2005; 25 2001; 21 2015; 45 2017; 30 2015; 28 2003; 108 2002; 29 2018; 4 2021; 11 2021 2000; 13 2015; 42 2019; 46 2016; 43 1982; 110 2009; 1 2018; 31 1994; 46A 1992; 5 2007; 27 1998; 79 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 IPCC (e_1_2_8_12_1) 2007 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 28 start-page: 8695 issue: 22 year: 2015 end-page: 8709 article-title: Potential sources of decadal climate variability over southern Africa publication-title: Journal of Climate – volume: 79 start-page: 61 issue: 1 year: 1998 end-page: 78 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society – volume: 31 start-page: 10141 issue: 24 year: 2018 end-page: 10163 article-title: The South Pacific meridional mode and its role in tropical Pacific climate variability publication-title: Journal of Climate – volume: 27 start-page: 769 issue: 2 year: 2014 end-page: 783 article-title: The south Pacific meridional mode: A mechanism for ENSO‐like variability publication-title: Journal of Climate – volume: 1 issue: 1 year: 2009 article-title: Ensemble empirical mode decomposition: A noise‐assisted data analysis method publication-title: Advances in Adaptive Data Analysis – volume: 43 start-page: 1280 issue: 3 year: 2016 end-page: 1286 article-title: The Bolivian, Botswana, and Bilybara Highs and Southern Hemisphere drought/floods publication-title: Geophysical Research Letters – volume: 4 start-page: 128 issue: 2 year: 2018 end-page: 144 article-title: Mechanisms and predictability of Pacific decadal variability publication-title: Current Climate Change Reports – year: 2007 – volume: 26 start-page: 459 issue: 4 year: 1999 end-page: 462 article-title: Definition of Antarctic oscillation index publication-title: Geophysical Research Letters – volume: 45 start-page: 3077 issue: 11–12 year: 2015 end-page: 3090 article-title: A tripole index for the Interdecadal Pacific Oscillation publication-title: Climate Dynamics – volume: 46 start-page: 906 issue: 2 year: 2019 end-page: 915 article-title: Separating the north and south Pacific meridional modes contributions to ENSO and tropical decadal variability publication-title: Geophysical Research Letters – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 12 article-title: Global wave number‐4 pattern in the southern subtropical sea surface temperature publication-title: Scientific Reports – volume: 121 start-page: 6215 issue: 11 year: 2016 end-page: 6239 article-title: Interannual to interdecadal variability of winter and summer southern African rainfall, and their teleconnections publication-title: Journal of Geophysical Research: Atmospheres – volume: 15 start-page: 1389 issue: 12 year: 2002 end-page: 1407 article-title: Linkages between summer rainfall variability over South America and sea surface temperature anomalies publication-title: Journal of Climate – volume: 27 start-page: 109 issue: 1 year: 2007 end-page: 121 article-title: Association between Australian rainfall and the Southern annular mode publication-title: International Journal of Climatology – volume: 30 start-page: 1705 issue: 5 year: 2017 end-page: 1720 article-title: Impact of the South and North Pacific meridional modes on the El Niño‐Southern Oscillation: Observational analysis and comparison publication-title: Journal of Climate – volume: 46A start-page: 340 issue: 4 year: 1994 end-page: 350 article-title: A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific publication-title: Tellus, Series A – volume: 31 start-page: 5845 issue: 15 year: 2018 end-page: 5872 article-title: From synoptic to interdecadal variability in Southern African rainfall: Toward a unified view across time scales publication-title: Journal of Climate – volume: 31 start-page: 5127 issue: 13 year: 2018 end-page: 5145 article-title: The South Pacific meridional mode as a thermally driven source of ENSO amplitude modulation and uncertainty publication-title: Journal of Climate – volume: 13 start-page: 1517 issue: 9 year: 2000 end-page: 1536 article-title: Pacific‐East Asian teleconnection: How does ENSO affect East Asian climate? publication-title: Journal of Climate – volume: 29 issue: 13 year: 2002 article-title: ENSO‐like decadal variability and South African rainfall publication-title: Geophysical Research Letters – volume: 33 start-page: 8693 issue: 20 year: 2020 end-page: 8719 article-title: Pattern recognition methods to separate forced responses from internal variability in climate model ensembles and observations publication-title: Journal of Climate – volume: 108 issue: D14 year: 2003 article-title: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century publication-title: Journal of Geophysical Research – year: 2021 article-title: Origin and dynamics of global atmospheric wavenumber‐4 in the Southern mid‐latitude during austral summer publication-title: Climate Dynamics – volume: 147 start-page: 4186 issue: 741 year: 2021 end-page: 4227 article-title: The ERA5 global reanalysis: Preliminary extension to 1950 publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 9 issue: 1 year: 2019 article-title: The role of the South Pacific in modulating Tropical Pacific variability publication-title: Scientific Reports – volume: 5 start-page: 541 issue: 6 year: 1992 end-page: 560 article-title: An intercomparison of methods for finding coupled patterns in climate data publication-title: Journal of Climate – volume: 21 start-page: 1623 issue: 13 year: 2001 end-page: 1644 article-title: Principal modes of interannual and decadal variability of summer rainfall over South America publication-title: International Journal of Climatology – volume: 32 start-page: 6299 issue: 19 year: 2019 end-page: 6318 article-title: Decadal SST variability in the southeast Indian Ocean and its impact on regional climate publication-title: Journal of Climate – volume: 44 start-page: 7438 issue: 14 year: 2017 end-page: 7446 article-title: The role of South Pacific atmospheric variability in the development of different types of ENSO publication-title: Geophysical Research Letters – volume: 2 start-page: 45 issue: 1 year: 2011 end-page: 65 article-title: Drought under global warming: A review publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 110 start-page: 699 issue: 7 year: 1982 end-page: 706 article-title: Sampling errors in the estimation of empirical orthogonal functions publication-title: Monthly Weather Review – volume: 25 start-page: 2017 issue: 15 year: 2005 end-page: 2030 article-title: ENSO‐related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes publication-title: International Journal of Climatology – volume: 42 start-page: 9440 issue: 21 year: 2015 end-page: 9448 article-title: ENSO and meridional modes: A null hypothesis for Pacific climate variability publication-title: Geophysical Research Letters – volume: 48 start-page: 3139 issue: 9–10 year: 2017 end-page: 3160 article-title: Understanding the control of extratropical atmospheric variability on ENSO using a coupled data assimilation approach publication-title: Climate Dynamics – ident: e_1_2_8_5_1 doi: 10.1038/s41598-019-52805-2 – ident: e_1_2_8_22_1 doi: 10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2 – ident: e_1_2_8_3_1 doi: 10.1002/qj.4174 – ident: e_1_2_8_17_1 doi: 10.1007/s00382-016-3256-7 – ident: e_1_2_8_37_1 doi: 10.1002/joc.700 – ident: e_1_2_8_33_1 doi: 10.3402/tellusa.v46i4.15484 – ident: e_1_2_8_19_1 doi: 10.1175/JCLI-D-16-0063.1 – ident: e_1_2_8_36_1 doi: 10.1175/JCLI-D-13-00082.1 – ident: e_1_2_8_25_1 doi: 10.1002/2015GL067228 – ident: e_1_2_8_21_1 doi: 10.1175/1520-0493(1982)110<0699:seiteo>2.0.co;2 – ident: e_1_2_8_23_1 doi: 10.1175/JCLI-D-17-0405.1 – ident: e_1_2_8_6_1 doi: 10.1002/wcc.81 – ident: e_1_2_8_2_1 doi: 10.1002/joc.1222 – ident: e_1_2_8_14_1 doi: 10.1175/JCLI-D-19-0180.1 – ident: e_1_2_8_4_1 doi: 10.1175/1520-0442(1992)005<0541:aiomff>2.0.co;2 – ident: e_1_2_8_35_1 doi: 10.1175/JCLI-D-17-0860.1 – ident: e_1_2_8_11_1 doi: 10.1002/qj.3803 – ident: e_1_2_8_26_1 doi: 10.1029/2002GL014663 – ident: e_1_2_8_29_1 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: e_1_2_8_27_1 doi: 10.1038/s41598-020-80492-x – ident: e_1_2_8_24_1 doi: 10.1029/2002jd002670 – ident: e_1_2_8_30_1 doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 – ident: e_1_2_8_20_1 doi: 10.1175/JCLI-D-15-0201.1 – ident: e_1_2_8_13_1 doi: 10.1175/JCLI-D-17-0722.1 – ident: e_1_2_8_18_1 doi: 10.1002/joc.1370 – ident: e_1_2_8_28_1 doi: 10.1007/s00382-021-06040-z – ident: e_1_2_8_9_1 doi: 10.1029/1999GL900003 – ident: e_1_2_8_34_1 doi: 10.1002/2017GL073475 – ident: e_1_2_8_15_1 doi: 10.1029/2018GL080320 – ident: e_1_2_8_16_1 doi: 10.1007/s40641-018-0090-5 – ident: e_1_2_8_8_1 doi: 10.1002/2015JD024576 – ident: e_1_2_8_32_1 doi: 10.1142/S1793536909000047 – ident: e_1_2_8_10_1 doi: 10.1007/s00382-015-2525-1 – ident: e_1_2_8_7_1 doi: 10.1002/2015GL066281 – ident: e_1_2_8_31_1 doi: 10.1175/JCLI-D-19-0855.1 – volume-title: Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel year: 2007 ident: e_1_2_8_12_1 contributor: fullname: IPCC |
SSID | ssj0003031 |
Score | 2.4637988 |
Snippet | A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and empirical... Abstract A decadal variability is revealed in sea surface temperature (SST) wavenumber‐4 (W4) pattern of southern subtropics (20°–55°S) using wavelet and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atmospheric circulation Continents decadal variability Decadal variations Decay EEMD Empirical analysis Function analysis Moisture effects Oceans Offshore Orthogonal functions Precipitation Rainfall Rainfall variability Sea surface Sea surface temperature Southern continental rainfall Specific humidity SPMM SST footprints Surface temperature Variability Wavelengths wavenumber‐4 pattern |
Title | Decadal Variability of Southern Subtropical SST Wavenumber‐4 Pattern and Its Impact |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099046 https://www.proquest.com/docview/2707664796 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKyQuqLxEoa32AKfKYG_WXvsY-kiAUCFSVxUXa19WUlVOlBhV5cRP4DfyS5h9OHbVqAIulmVLo9XO59mZ8TczCL3O0jLinNAg1aQMKGU84CWlQShKcF5jqqQy-Y7PJ8kwpx_P4_OWp2urS2rxVv5YW1fyP1qFZ6BXUyX7D5pdCYUHcA_6hStoGK5_peNDLbmCPT6DgNf12752RSiWtl4Zq1AvZnOrh_EYQnczO96OAFlxHKhp0m-Sgo4YXC9Nv2Aub2TsB3o2b9TpmwNN9i9tHdDKIx_rihtytvuHcckvpm0OfDlxBP3JdNFmVd9rU_llk69XXE2mlX_lMxAQvIZpU9FtT4fbFJ9bPE5DYAxSwnzXa2drM8AE-Kusa4xd_9IGdMlaIx8S0yPVrGQwMv_16Jpe2sP-uPhyeFyMPpx8uo82CZghsH-b_bP8W746qeH4dhMV_eJ8YQTIf9eVftNlaeOQbjRj3ZHTLfTIxxG470DxGN3T1RP0YGDnNF_DnWX2yuVTlHuQ4A5I8KzEDUhwByQYQIJbkPz--YtiDw8M8MAAD-zg8Qzlx0enB8PAz9IIpOkBGYhUxmWUpDRVumS8VKEws48hXCWRIhmRPSbKnmARga9TQtQcMxULkYSUC8p51HuONqpZpV8gHPY0CItUSCNFWZKlsdTgp2vwZJWmmm-jN812FXPXMqWwVAeSFd1t3UY7zV4W_qNaFoSFLEkoy-D1vt3fO2UUg6-jhMIqX94t7BV62CJ3B23Ui-96F7zJWux5UPwBRIhxfA |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFYIF8RRvPMCEIhL3YidjxaMtFISgAcQS2bE9pqgtAxs_gd_IL-HsBCgLElukOJZ1js_f3dnfR8hBmthISgZBYpgNAIQMpAUIQmURvMagC-3yHVfXvJvBxWP8WOucurswFT_Ed8LNrQzvr90Cdwnpmm3AkWRi2M46fVfYAT5LmrEr6TVIs32fPWXfzhg9dCWal-JwmOD12Xfs4Xj6-9-70g_UnAasfsc5XyKLNVSk7Wpul8mMKVfIXMdL8b7ikz-8WYxXSXZqCqmx6T0GvhXv9isdWurl8cyopOgdJqPhs5sPenc3oA9OQ95LgXy8vQO98RybJZWlpr3JmPb8zck1kp2fDU66QS2XEBSO5i9QSRHbiCeQaGOFtDpUTt4WIxIWaZayoiWUbSkRMZyAAgOjWOhYKR6CVCBl1FonjXJYmg1Cw5bBziIdQqRB8DSJC4NQzCBY0QaM3CSHX-bKnytWjNxXs1maT5t1k-x82TKv18Y4ZyIUnINI8fWRt--ffeSd2z4HHOXWv1rvk_nu4Kqf93vXl9tkwbVxqWCW7JDGZPRidhFLTNRe_b98AkPiv8U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELX4EIgF8SkKBTzAhCIS92InYwW0FApCQACxRHZsj2nVloGNn8Bv5JdwdgKUBYktUmzLOtvnd2f7PUIO0sRGUjIIEsNsACBkIC1AECqL4DUGXWiX77i65ucZXDzFT3XCzb2FqfghvhNubmV4f-0W-FDbmmzAcWRi1M66fXeuA3yWzCPQYDjD59sP2XP27YvRQVeaeSn2hgleX33HFo6n6__elH6Q5jRe9RtOZ4Us10iRtquhXSUzplwjC12vxPuKX_7uZjFeJ9mpKaTGog8Y91a02690YKlXxzOjkqJzmIwGQzcc9O7unj46CXmvBPLx9g70xlNsllSWmvYmY9rzDyc3SNY5uz85D2q1hKBwLH-BSorYRjyBRBsrpNWhcuq2GJCwSLOUFS2hbEuJiKH9C4yLYqFjpXgIUoGUUWuTzJWD0mwRGrYMNhbpECINgqdJXBhEYgaxijZgZIMcfpkrH1akGLk_zGZpPm3WBml-2TKvl8Y4ZyIUnINI8feRt--fbeTd2z4H7OX2v0rvk8Wb007e711f7pAlV8QlglnSJHOT0YvZRSQxUXv1dPkEQua-7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decadal+Variability+of+Southern+Subtropical+SST+Wavenumber%E2%80%904+Pattern+and+Its+Impact&rft.jtitle=Geophysical+research+letters&rft.au=Senapati%2C+Balaji&rft.au=Dash%2C+Mihir+K&rft.au=Behera%2C+Swadhin+K&rft.date=2022-08-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=16&rft_id=info:doi/10.1029%2F2022GL099046&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |