Integrating Uranyl Complexes into Porous Organic Cages for Enhanced Photocatalytic Oxidation of A Mustard‐Gas Simulant

In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as w...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of inorganic chemistry Vol. 28; no. 21
Main Authors Hu, Bo‐wen, Jin, Wei, Huang, Zhi‐wei, Zhou, Zhi‐heng, Hu, Kong‐qiu, Yuan, Li‐yong, He, Hui‐bing, Shi, Wei‐qun, Mei, Lei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 29.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future. Utilizing the post‐synthetic modification strategy, uranyl ions are successfully incorporated into the [6+12]‐type octahedral porous organic cage, leading to the creation of uranyl‐functionalized porous organic cages U@HPOCs, which serve as effective heterogeneous catalysts for selective oxidation of a sulfide CEES.
AbstractList In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U 20 @HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future.
In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future.
In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future. Utilizing the post‐synthetic modification strategy, uranyl ions are successfully incorporated into the [6+12]‐type octahedral porous organic cage, leading to the creation of uranyl‐functionalized porous organic cages U@HPOCs, which serve as effective heterogeneous catalysts for selective oxidation of a sulfide CEES.
Author Shi, Wei‐qun
Hu, Kong‐qiu
Mei, Lei
Hu, Bo‐wen
Huang, Zhi‐wei
Yuan, Li‐yong
Zhou, Zhi‐heng
He, Hui‐bing
Jin, Wei
Author_xml – sequence: 1
  givenname: Bo‐wen
  surname: Hu
  fullname: Hu, Bo‐wen
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Wei
  surname: Jin
  fullname: Jin, Wei
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Zhi‐wei
  surname: Huang
  fullname: Huang, Zhi‐wei
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Zhi‐heng
  surname: Zhou
  fullname: Zhou, Zhi‐heng
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Kong‐qiu
  surname: Hu
  fullname: Hu, Kong‐qiu
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Li‐yong
  surname: Yuan
  fullname: Yuan, Li‐yong
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Hui‐bing
  orcidid: 0000-0002-9584-2731
  surname: He
  fullname: He, Hui‐bing
  email: huibinghe@gxu.edu.cn
  organization: Guangxi University
– sequence: 8
  givenname: Wei‐qun
  surname: Shi
  fullname: Shi, Wei‐qun
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Lei
  orcidid: 0000-0002-2926-7265
  surname: Mei
  fullname: Mei, Lei
  email: meil@ihep.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkMtOwkAUhicGEwHdup7EdfHMpZdZkgYRg4FEWTfTdgolZQZnphF2PoLP6JNYgtGlq3OS8_3_Sb4B6mmjFUK3BEYEgN6rbV2MKNAQgITsAvUJCBFAlNBet3PGAyJ4coUGzm0BgAGL-ugw016trfS1XuOVlfrY4NTs9o06KIdr7Q1eGmtahxd2LXVd4FSuu0tlLJ7ojdSFKvFyY7wppJfN0XfE4lCXXaHR2FR4jJ9b56Utvz4-p9Lhl3rXNlL7a3RZycapm585RKuHyWv6GMwX01k6ngcFjTkLwqQqcoCcl4RWnNE8FCqiKmdxEhcgyoiWMecR4TxXAgijCUApJFGMhrGQjA3R3bl3b81bq5zPtqa1unuZMcp4p4VFcUeNzlRhjXNWVdne1jtpjxmB7GQ3O9nNfu12AXEOvNeNOv5DZ5OnWfqX_Qbh64EM
Cites_doi 10.1002/smll.202201556
10.1002/chem.202003431
10.1039/D4QI01578A
10.1007/s11426-022-1562-8
10.1021/jacsau.1c00168
10.1002/chem.201503583
10.1002/adma.202102354
10.1039/D3QI00769C
10.1002/adma.201605446
10.1002/adma.201806626
10.1021/jacs.3c05626
10.1021/acs.inorgchem.8b03511
10.1021/acscatal.9b00287
10.1016/j.scib.2023.06.024
10.1039/f19767200163
10.1016/j.tetlet.2020.152076
10.1002/adma.202007479
10.1002/anie.201503741
10.1039/cs9740300139
10.1021/ja406791t
10.1002/anie.201912663
10.1039/D4SC01310G
10.1002/anie.201412168
10.1007/s11426-013-4965-y
10.1039/D0DT02620D
10.1007/s10562-021-03544-5
10.1093/nsr/nwab156
10.1002/chem.201604972
10.1038/s41467-023-40403-w
10.1016/S1381-1169(00)00257-0
10.1039/D1QO00932J
10.1021/jacs.2c06519
10.1021/ic00128a014
10.1039/D5QI00141B
10.1021/jo4019182
10.3390/molecules29174077
10.1039/D1GC04042A
10.1021/jacs.1c07854
10.1021/acscatal.9b01408
10.1039/D3QO00940H
10.1002/anie.201402050
10.1002/anie.201906080
10.1039/D3QO00468F
10.3390/inorganics12120324
10.1039/D1SC04531H
10.1002/adfm.202308534
10.1002/anie.201603149
10.1039/C9DT04158C
10.1021/ja037591o
10.1016/j.apcatb.2017.10.034
10.1021/acsami.7b07055
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202500153
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage n/a
ExternalDocumentID 10_1002_ejic_202500153
EJIC202500153
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22122609; 22076186
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCZN
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2743-58fcb00b4d12f432b59e62eb3787c09d62d7446144be90132800d9a1e32579a33
IEDL.DBID DR2
ISSN 1434-1948
IngestDate Wed Aug 13 04:11:48 EDT 2025
Thu Aug 07 06:27:34 EDT 2025
Wed Aug 20 07:27:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2743-58fcb00b4d12f432b59e62eb3787c09d62d7446144be90132800d9a1e32579a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9584-2731
0000-0002-2926-7265
PQID 3234434367
PQPubID 2030176
PageCount 8
ParticipantIDs proquest_journals_3234434367
crossref_primary_10_1002_ejic_202500153
wiley_primary_10_1002_ejic_202500153_EJIC202500153
PublicationCentury 2000
PublicationDate July 29, 2025
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: July 29, 2025
  day: 29
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2020; 9 26
2023; 10
2015 2017 2017 2019 2020; 54 23 9 58 49
2017 2023; 29 33
2021; 12
2023; 66
2019 2022 2022; 31 18 34
2021; 33
2013; 78
2022 2023; 9 10
2021 2024 2023; 151 11 10
2019; 58
2018; 224
2020 2019 2000 2024; 61 9 160 12
2024 2024 2021 2016; 15 29 8 55
2022; 24
2015 2023 2013 2014 2020 2016 2021 2022 2023; 54 14 135 53 59 22 143 144 145
2023 2021; 68 1
2020 2025; 49 12
2024; 146
1974 1976; 3 72
2003; 125
2013 1995; 56 34
e_1_2_9_10_1
e_1_2_9_12_2
e_1_2_9_12_1
e_1_2_9_14_2
e_1_2_9_14_1
e_1_2_9_16_2
e_1_2_9_16_1
e_1_2_9_16_3
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_20_3
e_1_2_9_22_1
e_1_2_9_20_2
e_1_2_9_20_5
e_1_2_9_24_1
e_1_2_9_20_4
e_1_2_9_2_7
e_1_2_9_2_6
e_1_2_9_2_5
e_1_2_9_6_1
e_1_2_9_2_4
e_1_2_9_4_2
e_1_2_9_2_3
e_1_2_9_4_1
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_2_9
e_1_2_9_2_8
e_1_2_9_24_3
e_1_2_9_24_2
e_1_2_9_11_1
e_1_2_9_13_1
Zhao X. (e_1_2_9_8_1) 2024; 146
e_1_2_9_15_1
e_1_2_9_13_2
e_1_2_9_17_1
e_1_2_9_15_2
e_1_2_9_19_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_7_2
e_1_2_9_7_1
e_1_2_9_3_4
e_1_2_9_5_2
e_1_2_9_3_3
e_1_2_9_5_1
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_7_4
e_1_2_9_9_2
e_1_2_9_7_3
e_1_2_9_9_1
References_xml – volume: 10
  start-page: 2688
  year: 2023
  publication-title: Org. Chem. Front.
– volume: 61 9 160 12
  start-page: 152076 9025 263 324
  year: 2020 2019 2000 2024
  publication-title: Tetrahedron Lett. ACS Catal. J. Mol. Catal. A: Chem. Inorganics
– volume: 151 11 10
  start-page: 2982 6493 4754
  year: 2021 2024 2023
  publication-title: Catal. Lett. Inorg. Chem. Front. Inorg. Chem. Front.
– volume: 125
  start-page: 16444
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 124
  year: 2022
  publication-title: Green Chem.
– volume: 58
  start-page: 13499
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 68 1
  start-page: 1522 1141
  year: 2023 2021
  publication-title: Sci. Bull. JACS Au.
– volume: 33
  start-page: 2007479
  year: 2021
  publication-title: Adv. Mater.
– volume: 29 33
  start-page: 1605446 2308534
  year: 2017 2023
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 9 10
  start-page: nwab156 5130
  year: 2022 2023
  publication-title: Natl. Sci. Rev. Org. Chem. Front.
– volume: 78
  start-page: 11597
  year: 2013
  publication-title: J. Org. Chem.
– volume: 15 29 8 55
  start-page: 6965 4077 5968 8923
  year: 2024 2024 2021 2016
  publication-title: Chem. Sci. Molecules. Org. Chem. Front. Angew. Chem., Int. Ed.
– volume: 54 23 9 58 49
  start-page: 9001 214 19535 3586 983
  year: 2015 2017 2017 2019 2020
  publication-title: Angew. Chem., Int. Ed. Chem. Eur. J. ACS Appl. Mater. Inter. Inorg. Chem. Dalton Trans.
– volume: 224
  start-page: 479
  year: 2018
  publication-title: Appl. Catal., B
– volume: 56 34
  start-page: 1671 6034
  year: 2013 1995
  publication-title: Sci. China Chem. Inorg. Chem.
– volume: 146
  start-page: 11173
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 9 26
  start-page: 3054 16521
  year: 2019 2020
  publication-title: ACS Catal. Chem. Eur. J.
– volume: 3 72
  start-page: 139 163
  year: 1974 1976
  publication-title: Chem. Soc. Rev. J. Chem. Soc., Faraday Trans.
– volume: 54 14 135 53 59 22 143 144 145
  start-page: 8604 4657 13310 7158 2299 772 19748 18229 16271
  year: 2015 2023 2013 2014 2020 2016 2021 2022 2023
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Eur.J. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 12
  start-page: 13307
  year: 2021
  publication-title: Chem. Sci.
– volume: 66
  start-page: 1763
  year: 2023
  publication-title: Sci. China Chem.
– volume: 31 18 34
  start-page: 1806626 2201556 2102354
  year: 2019 2022 2022
  publication-title: Adv. Mate. Small Adv. Mater.
– volume: 49 12
  start-page: 17243 3262
  year: 2020 2025
  publication-title: Dalton Trans. Inorg. Chem. Front.
– ident: e_1_2_9_24_2
  doi: 10.1002/smll.202201556
– ident: e_1_2_9_9_2
  doi: 10.1002/chem.202003431
– ident: e_1_2_9_16_2
  doi: 10.1039/D4QI01578A
– ident: e_1_2_9_18_1
  doi: 10.1007/s11426-022-1562-8
– ident: e_1_2_9_14_2
  doi: 10.1021/jacsau.1c00168
– ident: e_1_2_9_2_6
  doi: 10.1002/chem.201503583
– ident: e_1_2_9_24_3
  doi: 10.1002/adma.202102354
– ident: e_1_2_9_16_3
  doi: 10.1039/D3QI00769C
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201605446
– ident: e_1_2_9_24_1
  doi: 10.1002/adma.201806626
– ident: e_1_2_9_2_9
  doi: 10.1021/jacs.3c05626
– ident: e_1_2_9_20_4
  doi: 10.1021/acs.inorgchem.8b03511
– ident: e_1_2_9_9_1
  doi: 10.1021/acscatal.9b00287
– ident: e_1_2_9_14_1
  doi: 10.1016/j.scib.2023.06.024
– ident: e_1_2_9_4_2
  doi: 10.1039/f19767200163
– ident: e_1_2_9_3_1
  doi: 10.1016/j.tetlet.2020.152076
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.202007479
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.201503741
– ident: e_1_2_9_4_1
  doi: 10.1039/cs9740300139
– ident: e_1_2_9_2_3
  doi: 10.1021/ja406791t
– ident: e_1_2_9_2_5
  doi: 10.1002/anie.201912663
– ident: e_1_2_9_7_1
  doi: 10.1039/D4SC01310G
– ident: e_1_2_9_2_1
  doi: 10.1002/anie.201412168
– ident: e_1_2_9_5_1
  doi: 10.1007/s11426-013-4965-y
– ident: e_1_2_9_13_1
  doi: 10.1039/D0DT02620D
– ident: e_1_2_9_16_1
  doi: 10.1007/s10562-021-03544-5
– ident: e_1_2_9_12_1
  doi: 10.1093/nsr/nwab156
– ident: e_1_2_9_20_2
  doi: 10.1002/chem.201604972
– ident: e_1_2_9_2_2
  doi: 10.1038/s41467-023-40403-w
– ident: e_1_2_9_3_3
  doi: 10.1016/S1381-1169(00)00257-0
– ident: e_1_2_9_7_3
  doi: 10.1039/D1QO00932J
– ident: e_1_2_9_2_8
  doi: 10.1021/jacs.2c06519
– ident: e_1_2_9_5_2
  doi: 10.1021/ic00128a014
– ident: e_1_2_9_13_2
  doi: 10.1039/D5QI00141B
– ident: e_1_2_9_19_1
  doi: 10.1021/jo4019182
– volume: 146
  start-page: 11173
  year: 2024
  ident: e_1_2_9_8_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_7_2
  doi: 10.3390/molecules29174077
– ident: e_1_2_9_11_1
  doi: 10.1039/D1GC04042A
– ident: e_1_2_9_2_7
  doi: 10.1021/jacs.1c07854
– ident: e_1_2_9_3_2
  doi: 10.1021/acscatal.9b01408
– ident: e_1_2_9_12_2
  doi: 10.1039/D3QO00940H
– ident: e_1_2_9_2_4
  doi: 10.1002/anie.201402050
– ident: e_1_2_9_6_1
  doi: 10.1002/anie.201906080
– ident: e_1_2_9_10_1
  doi: 10.1039/D3QO00468F
– ident: e_1_2_9_3_4
  doi: 10.3390/inorganics12120324
– ident: e_1_2_9_17_1
  doi: 10.1039/D1SC04531H
– ident: e_1_2_9_15_2
  doi: 10.1002/adfm.202308534
– ident: e_1_2_9_7_4
  doi: 10.1002/anie.201603149
– ident: e_1_2_9_20_5
  doi: 10.1039/C9DT04158C
– ident: e_1_2_9_21_1
  doi: 10.1021/ja037591o
– ident: e_1_2_9_22_1
  doi: 10.1016/j.apcatb.2017.10.034
– ident: e_1_2_9_20_3
  doi: 10.1021/acsami.7b07055
SSID ssj0003036
Score 2.4569178
Snippet In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Cages
calixresorcinarene
Catalysts
Catalytic activity
Catalytic oxidation
Contaminants
Mass transfer
Mustard gas
Oxidation
Photocatalysis
Photocatalysts
porous organic cages
post‐synthetic modification
uranyl
Title Integrating Uranyl Complexes into Porous Organic Cages for Enhanced Photocatalytic Oxidation of A Mustard‐Gas Simulant
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202500153
https://www.proquest.com/docview/3234434367
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YNrrxbUTRzMLEVaGdTgtdkgYEEpSoJOyaznQaqtga2ibgyk_wG_0S7_QB4sZEd-1i2unc17m3c88gdOWrHgHlBQkQnSqUEvCDROWKZvgqM32NNXXZOzy8NXtjOpgYk29d_Dk_xKrgJi0j89fSwF0WN9akoeIpkBSEEMIhokm6T7lhS6Ki-zV_lPTPWXsRzAOy9VbJ2qiSxubwzai0hprfAWsWcbp7yC3nmm80ea6nCavztx80jv_5mH20W8BR3M715wBtifAQbdvlKXBHaNEv-CQgxOExBLblDEsfMhMLEeMgTCI8iuZRGuO8q5NjGzxUjAEL4044zfYX4NE0SqKsULSE9-C7RZCf5IQjH7fxUPZwzb3P948bN8YPwUs6A3Efo3G382j3lOK0BoUTyXNqtHwONsyopxGf6oQZljAJ5OrgErhqeSbxmpB7QgLHhCX_8ABU9SxXEzp4DcvV9RNUCaNQnCLMLItD7uyrgni0Rblrcpfp1IVsS_U0VVTRdSkt5zUn5XBy-mXiyJV0VitZRbVSmE5hnLGjg1rKhlqzWUUkk8ovT3E6g769ujv7y6BztCOvZVWYWDVUSeapuAA4k7DLTGW_AOvC7E4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEJ4oHvTivxFF3YOJJ7TdXQo9EgICihqVxFvT3W4Diq2hJQFPPoLP6JM421JQLyZ6bJNttzv_05lvAI59w6PIvEgByniRc4p6kBqyaJZ8Q1i-KcpM9w53rqxml7cfSlk1oe6FSfEhZgk3LRmJvtYCrhPSZ3PUUPXY1xiEaMPRpLFFWNJjvZOo6naOIKU1dNJghDvBeL2S4TYa9Oz7-u92ae5sfnVZE5vTWAOR7TYtNXk6HcXiVL7-AHL81-esw-rUIyXVlIU2YEEFm7BcywbBbcG4NYWUQCtHumjbJgOi1chAjVVE-kEckptwGI4ikjZ2SlJDJRURdIdJPeglJQbkphfGYZIrmuB7yPW4nw5zIqFPqqSj27iG3sfb-7kbkbv-82iAFN-GbqN-X2sWpwMbipJqqNNSxZcoxoJ7JvU5o6JkK4tiuI5aQRq2Z1GvjOEnxnBC2fonD3qrnu2aiqHisF3GdiAXhIHaBSJsW2L47BuKerzCpWtJVzDuYsBleKah8nCSkct5SXE5nBSBmTr6JJ3ZSeahkFHTmcpn5DDkTN1Ta5XzQBOy_PIUp95u1WZXe39ZdATLzfvOpXPZurrYhxV9XyeJqV2AXDwcqQP0bmJxmPDvJ7mm8Gk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BkKAXKC81NC17QOIUWO9unPiI8ijhGUEjcbO8D4u0wY5iRwqc-hP6G_tLmLXjBHpBgqMtrb3emfnm4Z1vAQ5CqhkqL0qAcVEVgiEOMqqqTi2k0g0dWee2d_jyyj3ti7O72t2LLv6cH2JecLOWkeG1NfCRDo8XpKHm18BSEKILR4_Gl2FFuLRh9bp1syCQsgCd9RfhRDBdbxS0jZQdvx7_2i0tYs2XEWvmcjobEBSTzXea_D6apPJIPf3H4_iRr_kM67N4lJzkCrQJSybagrVmcQzcNky7M0IJ9HGkj57tcUgsiAzN1CRkEKUx6cXjeJKQvK1TkSZCVEIwGCbt6D7bYEB693EaZ5WiR3wPuZ4O8qOcSBySE3Jpm7jG-t-fvz-ChNwOHiZDlPcO9Dvtn83T6uy4hqpilui01ggVGrEU2mGh4EzWPOMyTNYRExT1tMt0HZNPzOCk8ewvHoxVtRc4hiNseAHnu1CK4sh8ASI9T2HyHFLDtGgIFbgqkFwEmG5R7VBThsNCWv4oZ-Xwc_5l5tuV9OcrWYZKIUx_Zp2Jz1EvbUetWy8Dy6TyxlP89lm3Ob_ae8-gfVjttTr-Rffq_Ct8srdthZh5FSil44n5hqFNKr9n2vsMCx_vIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Uranyl+Complexes+into+Porous+Organic+Cages+for+Enhanced+Photocatalytic+Oxidation+of+A+Mustard%E2%80%90Gas+Simulant&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Hu%2C+Bo%E2%80%90wen&rft.au=Jin%2C+Wei&rft.au=Huang%2C+Zhi%E2%80%90wei&rft.au=Zhou%2C+Zhi%E2%80%90heng&rft.date=2025-07-29&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=28&rft.issue=21&rft_id=info:doi/10.1002%2Fejic.202500153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ejic_202500153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon