Integrating Uranyl Complexes into Porous Organic Cages for Enhanced Photocatalytic Oxidation of A Mustard‐Gas Simulant
In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as w...
Saved in:
Published in | European journal of inorganic chemistry Vol. 28; no. 21 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
29.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future.
Utilizing the post‐synthetic modification strategy, uranyl ions are successfully incorporated into the [6+12]‐type octahedral porous organic cage, leading to the creation of uranyl‐functionalized porous organic cages U@HPOCs, which serve as effective heterogeneous catalysts for selective oxidation of a sulfide CEES. |
---|---|
AbstractList | In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U 20 @HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future. In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future. In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a post‐synthetic modification (PSM) of preassembled porous organic cages (POCs) by uranyl sources. The successful integration of uranyl into U@HPOCs, as well as coordination environments of uranyl centers, are well characterized by a combination of analysis techniques, and the catalytic performance of these uranyl compounds as photocatalysts is further evaluated. The results show that all U@HPOCs working as stable heterogeneous catalysts exhibit enhanced photocatalytic activity compared with the corresponding molecular uranyl complex for the oxidation of a mustard gas mimetic 2‐chloroethyl ethyl sulfide (CEES), among which U20@HPOC with the highest amount of uranyl loading exhibits the highest catalytic oxidation efficiency. The enhanced catalytic effect of U@HPOCs demonstrates the important role of POCs with restrained nanotraps, which can expedite mass transfer of catalytic substrates effectively and help to improve the chemical stability. This work not only provides a promising uranyl photocatalyst for effective detoxification of toxic contaminants, but also paves the way to acquiring new catalysts by integrating molecular complexes with POCs, which is expected to inspire more systems with improved catalytic activities in the future. Utilizing the post‐synthetic modification strategy, uranyl ions are successfully incorporated into the [6+12]‐type octahedral porous organic cage, leading to the creation of uranyl‐functionalized porous organic cages U@HPOCs, which serve as effective heterogeneous catalysts for selective oxidation of a sulfide CEES. |
Author | Shi, Wei‐qun Hu, Kong‐qiu Mei, Lei Hu, Bo‐wen Huang, Zhi‐wei Yuan, Li‐yong Zhou, Zhi‐heng He, Hui‐bing Jin, Wei |
Author_xml | – sequence: 1 givenname: Bo‐wen surname: Hu fullname: Hu, Bo‐wen organization: Chinese Academy of Sciences – sequence: 2 givenname: Wei surname: Jin fullname: Jin, Wei organization: Chinese Academy of Sciences – sequence: 3 givenname: Zhi‐wei surname: Huang fullname: Huang, Zhi‐wei organization: Chinese Academy of Sciences – sequence: 4 givenname: Zhi‐heng surname: Zhou fullname: Zhou, Zhi‐heng organization: Chinese Academy of Sciences – sequence: 5 givenname: Kong‐qiu surname: Hu fullname: Hu, Kong‐qiu organization: Chinese Academy of Sciences – sequence: 6 givenname: Li‐yong surname: Yuan fullname: Yuan, Li‐yong organization: Chinese Academy of Sciences – sequence: 7 givenname: Hui‐bing orcidid: 0000-0002-9584-2731 surname: He fullname: He, Hui‐bing email: huibinghe@gxu.edu.cn organization: Guangxi University – sequence: 8 givenname: Wei‐qun surname: Shi fullname: Shi, Wei‐qun organization: Shanghai Jiao Tong University – sequence: 9 givenname: Lei orcidid: 0000-0002-2926-7265 surname: Mei fullname: Mei, Lei email: meil@ihep.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkMtOwkAUhicGEwHdup7EdfHMpZdZkgYRg4FEWTfTdgolZQZnphF2PoLP6JNYgtGlq3OS8_3_Sb4B6mmjFUK3BEYEgN6rbV2MKNAQgITsAvUJCBFAlNBet3PGAyJ4coUGzm0BgAGL-ugw016trfS1XuOVlfrY4NTs9o06KIdr7Q1eGmtahxd2LXVd4FSuu0tlLJ7ojdSFKvFyY7wppJfN0XfE4lCXXaHR2FR4jJ9b56Utvz4-p9Lhl3rXNlL7a3RZycapm585RKuHyWv6GMwX01k6ngcFjTkLwqQqcoCcl4RWnNE8FCqiKmdxEhcgyoiWMecR4TxXAgijCUApJFGMhrGQjA3R3bl3b81bq5zPtqa1unuZMcp4p4VFcUeNzlRhjXNWVdne1jtpjxmB7GQ3O9nNfu12AXEOvNeNOv5DZ5OnWfqX_Qbh64EM |
Cites_doi | 10.1002/smll.202201556 10.1002/chem.202003431 10.1039/D4QI01578A 10.1007/s11426-022-1562-8 10.1021/jacsau.1c00168 10.1002/chem.201503583 10.1002/adma.202102354 10.1039/D3QI00769C 10.1002/adma.201605446 10.1002/adma.201806626 10.1021/jacs.3c05626 10.1021/acs.inorgchem.8b03511 10.1021/acscatal.9b00287 10.1016/j.scib.2023.06.024 10.1039/f19767200163 10.1016/j.tetlet.2020.152076 10.1002/adma.202007479 10.1002/anie.201503741 10.1039/cs9740300139 10.1021/ja406791t 10.1002/anie.201912663 10.1039/D4SC01310G 10.1002/anie.201412168 10.1007/s11426-013-4965-y 10.1039/D0DT02620D 10.1007/s10562-021-03544-5 10.1093/nsr/nwab156 10.1002/chem.201604972 10.1038/s41467-023-40403-w 10.1016/S1381-1169(00)00257-0 10.1039/D1QO00932J 10.1021/jacs.2c06519 10.1021/ic00128a014 10.1039/D5QI00141B 10.1021/jo4019182 10.3390/molecules29174077 10.1039/D1GC04042A 10.1021/jacs.1c07854 10.1021/acscatal.9b01408 10.1039/D3QO00940H 10.1002/anie.201402050 10.1002/anie.201906080 10.1039/D3QO00468F 10.3390/inorganics12120324 10.1039/D1SC04531H 10.1002/adfm.202308534 10.1002/anie.201603149 10.1039/C9DT04158C 10.1021/ja037591o 10.1016/j.apcatb.2017.10.034 10.1021/acsami.7b07055 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ejic.202500153 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0682 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ejic_202500153 EJIC202500153 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22122609; 22076186 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCZN ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2743-58fcb00b4d12f432b59e62eb3787c09d62d7446144be90132800d9a1e32579a33 |
IEDL.DBID | DR2 |
ISSN | 1434-1948 |
IngestDate | Wed Aug 13 04:11:48 EDT 2025 Thu Aug 07 06:27:34 EDT 2025 Wed Aug 20 07:27:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2743-58fcb00b4d12f432b59e62eb3787c09d62d7446144be90132800d9a1e32579a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9584-2731 0000-0002-2926-7265 |
PQID | 3234434367 |
PQPubID | 2030176 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3234434367 crossref_primary_10_1002_ejic_202500153 wiley_primary_10_1002_ejic_202500153_EJIC202500153 |
PublicationCentury | 2000 |
PublicationDate | July 29, 2025 |
PublicationDateYYYYMMDD | 2025-07-29 |
PublicationDate_xml | – month: 07 year: 2025 text: July 29, 2025 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of inorganic chemistry |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2020; 9 26 2023; 10 2015 2017 2017 2019 2020; 54 23 9 58 49 2017 2023; 29 33 2021; 12 2023; 66 2019 2022 2022; 31 18 34 2021; 33 2013; 78 2022 2023; 9 10 2021 2024 2023; 151 11 10 2019; 58 2018; 224 2020 2019 2000 2024; 61 9 160 12 2024 2024 2021 2016; 15 29 8 55 2022; 24 2015 2023 2013 2014 2020 2016 2021 2022 2023; 54 14 135 53 59 22 143 144 145 2023 2021; 68 1 2020 2025; 49 12 2024; 146 1974 1976; 3 72 2003; 125 2013 1995; 56 34 e_1_2_9_10_1 e_1_2_9_12_2 e_1_2_9_12_1 e_1_2_9_14_2 e_1_2_9_14_1 e_1_2_9_16_2 e_1_2_9_16_1 e_1_2_9_16_3 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_20_3 e_1_2_9_22_1 e_1_2_9_20_2 e_1_2_9_20_5 e_1_2_9_24_1 e_1_2_9_20_4 e_1_2_9_2_7 e_1_2_9_2_6 e_1_2_9_2_5 e_1_2_9_6_1 e_1_2_9_2_4 e_1_2_9_4_2 e_1_2_9_2_3 e_1_2_9_4_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_2_9 e_1_2_9_2_8 e_1_2_9_24_3 e_1_2_9_24_2 e_1_2_9_11_1 e_1_2_9_13_1 Zhao X. (e_1_2_9_8_1) 2024; 146 e_1_2_9_15_1 e_1_2_9_13_2 e_1_2_9_17_1 e_1_2_9_15_2 e_1_2_9_19_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_7_1 e_1_2_9_3_4 e_1_2_9_5_2 e_1_2_9_3_3 e_1_2_9_5_1 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_7_4 e_1_2_9_9_2 e_1_2_9_7_3 e_1_2_9_9_1 |
References_xml | – volume: 10 start-page: 2688 year: 2023 publication-title: Org. Chem. Front. – volume: 61 9 160 12 start-page: 152076 9025 263 324 year: 2020 2019 2000 2024 publication-title: Tetrahedron Lett. ACS Catal. J. Mol. Catal. A: Chem. Inorganics – volume: 151 11 10 start-page: 2982 6493 4754 year: 2021 2024 2023 publication-title: Catal. Lett. Inorg. Chem. Front. Inorg. Chem. Front. – volume: 125 start-page: 16444 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 124 year: 2022 publication-title: Green Chem. – volume: 58 start-page: 13499 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 68 1 start-page: 1522 1141 year: 2023 2021 publication-title: Sci. Bull. JACS Au. – volume: 33 start-page: 2007479 year: 2021 publication-title: Adv. Mater. – volume: 29 33 start-page: 1605446 2308534 year: 2017 2023 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 9 10 start-page: nwab156 5130 year: 2022 2023 publication-title: Natl. Sci. Rev. Org. Chem. Front. – volume: 78 start-page: 11597 year: 2013 publication-title: J. Org. Chem. – volume: 15 29 8 55 start-page: 6965 4077 5968 8923 year: 2024 2024 2021 2016 publication-title: Chem. Sci. Molecules. Org. Chem. Front. Angew. Chem., Int. Ed. – volume: 54 23 9 58 49 start-page: 9001 214 19535 3586 983 year: 2015 2017 2017 2019 2020 publication-title: Angew. Chem., Int. Ed. Chem. Eur. J. ACS Appl. Mater. Inter. Inorg. Chem. Dalton Trans. – volume: 224 start-page: 479 year: 2018 publication-title: Appl. Catal., B – volume: 56 34 start-page: 1671 6034 year: 2013 1995 publication-title: Sci. China Chem. Inorg. Chem. – volume: 146 start-page: 11173 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 9 26 start-page: 3054 16521 year: 2019 2020 publication-title: ACS Catal. Chem. Eur. J. – volume: 3 72 start-page: 139 163 year: 1974 1976 publication-title: Chem. Soc. Rev. J. Chem. Soc., Faraday Trans. – volume: 54 14 135 53 59 22 143 144 145 start-page: 8604 4657 13310 7158 2299 772 19748 18229 16271 year: 2015 2023 2013 2014 2020 2016 2021 2022 2023 publication-title: Angew. Chem., Int. Ed. Nat. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Chem. Eur.J. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 12 start-page: 13307 year: 2021 publication-title: Chem. Sci. – volume: 66 start-page: 1763 year: 2023 publication-title: Sci. China Chem. – volume: 31 18 34 start-page: 1806626 2201556 2102354 year: 2019 2022 2022 publication-title: Adv. Mate. Small Adv. Mater. – volume: 49 12 start-page: 17243 3262 year: 2020 2025 publication-title: Dalton Trans. Inorg. Chem. Front. – ident: e_1_2_9_24_2 doi: 10.1002/smll.202201556 – ident: e_1_2_9_9_2 doi: 10.1002/chem.202003431 – ident: e_1_2_9_16_2 doi: 10.1039/D4QI01578A – ident: e_1_2_9_18_1 doi: 10.1007/s11426-022-1562-8 – ident: e_1_2_9_14_2 doi: 10.1021/jacsau.1c00168 – ident: e_1_2_9_2_6 doi: 10.1002/chem.201503583 – ident: e_1_2_9_24_3 doi: 10.1002/adma.202102354 – ident: e_1_2_9_16_3 doi: 10.1039/D3QI00769C – ident: e_1_2_9_15_1 doi: 10.1002/adma.201605446 – ident: e_1_2_9_24_1 doi: 10.1002/adma.201806626 – ident: e_1_2_9_2_9 doi: 10.1021/jacs.3c05626 – ident: e_1_2_9_20_4 doi: 10.1021/acs.inorgchem.8b03511 – ident: e_1_2_9_9_1 doi: 10.1021/acscatal.9b00287 – ident: e_1_2_9_14_1 doi: 10.1016/j.scib.2023.06.024 – ident: e_1_2_9_4_2 doi: 10.1039/f19767200163 – ident: e_1_2_9_3_1 doi: 10.1016/j.tetlet.2020.152076 – ident: e_1_2_9_23_1 doi: 10.1002/adma.202007479 – ident: e_1_2_9_20_1 doi: 10.1002/anie.201503741 – ident: e_1_2_9_4_1 doi: 10.1039/cs9740300139 – ident: e_1_2_9_2_3 doi: 10.1021/ja406791t – ident: e_1_2_9_2_5 doi: 10.1002/anie.201912663 – ident: e_1_2_9_7_1 doi: 10.1039/D4SC01310G – ident: e_1_2_9_2_1 doi: 10.1002/anie.201412168 – ident: e_1_2_9_5_1 doi: 10.1007/s11426-013-4965-y – ident: e_1_2_9_13_1 doi: 10.1039/D0DT02620D – ident: e_1_2_9_16_1 doi: 10.1007/s10562-021-03544-5 – ident: e_1_2_9_12_1 doi: 10.1093/nsr/nwab156 – ident: e_1_2_9_20_2 doi: 10.1002/chem.201604972 – ident: e_1_2_9_2_2 doi: 10.1038/s41467-023-40403-w – ident: e_1_2_9_3_3 doi: 10.1016/S1381-1169(00)00257-0 – ident: e_1_2_9_7_3 doi: 10.1039/D1QO00932J – ident: e_1_2_9_2_8 doi: 10.1021/jacs.2c06519 – ident: e_1_2_9_5_2 doi: 10.1021/ic00128a014 – ident: e_1_2_9_13_2 doi: 10.1039/D5QI00141B – ident: e_1_2_9_19_1 doi: 10.1021/jo4019182 – volume: 146 start-page: 11173 year: 2024 ident: e_1_2_9_8_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_7_2 doi: 10.3390/molecules29174077 – ident: e_1_2_9_11_1 doi: 10.1039/D1GC04042A – ident: e_1_2_9_2_7 doi: 10.1021/jacs.1c07854 – ident: e_1_2_9_3_2 doi: 10.1021/acscatal.9b01408 – ident: e_1_2_9_12_2 doi: 10.1039/D3QO00940H – ident: e_1_2_9_2_4 doi: 10.1002/anie.201402050 – ident: e_1_2_9_6_1 doi: 10.1002/anie.201906080 – ident: e_1_2_9_10_1 doi: 10.1039/D3QO00468F – ident: e_1_2_9_3_4 doi: 10.3390/inorganics12120324 – ident: e_1_2_9_17_1 doi: 10.1039/D1SC04531H – ident: e_1_2_9_15_2 doi: 10.1002/adfm.202308534 – ident: e_1_2_9_7_4 doi: 10.1002/anie.201603149 – ident: e_1_2_9_20_5 doi: 10.1039/C9DT04158C – ident: e_1_2_9_21_1 doi: 10.1021/ja037591o – ident: e_1_2_9_22_1 doi: 10.1016/j.apcatb.2017.10.034 – ident: e_1_2_9_20_3 doi: 10.1021/acsami.7b07055 |
SSID | ssj0003036 |
Score | 2.4569178 |
Snippet | In this work, a new kind of uranyl‐based photocatalysts, i.e., uranyl‐modified porous organic cages, U@HPOCs, are prepared for the first time via a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Cages calixresorcinarene Catalysts Catalytic activity Catalytic oxidation Contaminants Mass transfer Mustard gas Oxidation Photocatalysis Photocatalysts porous organic cages post‐synthetic modification uranyl |
Title | Integrating Uranyl Complexes into Porous Organic Cages for Enhanced Photocatalytic Oxidation of A Mustard‐Gas Simulant |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202500153 https://www.proquest.com/docview/3234434367 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YNrrxbUTRzMLEVaGdTgtdkgYEEpSoJOyaznQaqtga2ibgyk_wG_0S7_QB4sZEd-1i2unc17m3c88gdOWrHgHlBQkQnSqUEvCDROWKZvgqM32NNXXZOzy8NXtjOpgYk29d_Dk_xKrgJi0j89fSwF0WN9akoeIpkBSEEMIhokm6T7lhS6Ki-zV_lPTPWXsRzAOy9VbJ2qiSxubwzai0hprfAWsWcbp7yC3nmm80ea6nCavztx80jv_5mH20W8BR3M715wBtifAQbdvlKXBHaNEv-CQgxOExBLblDEsfMhMLEeMgTCI8iuZRGuO8q5NjGzxUjAEL4044zfYX4NE0SqKsULSE9-C7RZCf5IQjH7fxUPZwzb3P948bN8YPwUs6A3Efo3G382j3lOK0BoUTyXNqtHwONsyopxGf6oQZljAJ5OrgErhqeSbxmpB7QgLHhCX_8ABU9SxXEzp4DcvV9RNUCaNQnCLMLItD7uyrgni0Rblrcpfp1IVsS_U0VVTRdSkt5zUn5XBy-mXiyJV0VitZRbVSmE5hnLGjg1rKhlqzWUUkk8ovT3E6g769ujv7y6BztCOvZVWYWDVUSeapuAA4k7DLTGW_AOvC7E4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEJ4oHvTivxFF3YOJJ7TdXQo9EgICihqVxFvT3W4Diq2hJQFPPoLP6JM421JQLyZ6bJNttzv_05lvAI59w6PIvEgByniRc4p6kBqyaJZ8Q1i-KcpM9w53rqxml7cfSlk1oe6FSfEhZgk3LRmJvtYCrhPSZ3PUUPXY1xiEaMPRpLFFWNJjvZOo6naOIKU1dNJghDvBeL2S4TYa9Oz7-u92ae5sfnVZE5vTWAOR7TYtNXk6HcXiVL7-AHL81-esw-rUIyXVlIU2YEEFm7BcywbBbcG4NYWUQCtHumjbJgOi1chAjVVE-kEckptwGI4ikjZ2SlJDJRURdIdJPeglJQbkphfGYZIrmuB7yPW4nw5zIqFPqqSj27iG3sfb-7kbkbv-82iAFN-GbqN-X2sWpwMbipJqqNNSxZcoxoJ7JvU5o6JkK4tiuI5aQRq2Z1GvjOEnxnBC2fonD3qrnu2aiqHisF3GdiAXhIHaBSJsW2L47BuKerzCpWtJVzDuYsBleKah8nCSkct5SXE5nBSBmTr6JJ3ZSeahkFHTmcpn5DDkTN1Ta5XzQBOy_PIUp95u1WZXe39ZdATLzfvOpXPZurrYhxV9XyeJqV2AXDwcqQP0bmJxmPDvJ7mm8Gk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BkKAXKC81NC17QOIUWO9unPiI8ijhGUEjcbO8D4u0wY5iRwqc-hP6G_tLmLXjBHpBgqMtrb3emfnm4Z1vAQ5CqhkqL0qAcVEVgiEOMqqqTi2k0g0dWee2d_jyyj3ti7O72t2LLv6cH2JecLOWkeG1NfCRDo8XpKHm18BSEKILR4_Gl2FFuLRh9bp1syCQsgCd9RfhRDBdbxS0jZQdvx7_2i0tYs2XEWvmcjobEBSTzXea_D6apPJIPf3H4_iRr_kM67N4lJzkCrQJSybagrVmcQzcNky7M0IJ9HGkj57tcUgsiAzN1CRkEKUx6cXjeJKQvK1TkSZCVEIwGCbt6D7bYEB693EaZ5WiR3wPuZ4O8qOcSBySE3Jpm7jG-t-fvz-ChNwOHiZDlPcO9Dvtn83T6uy4hqpilui01ggVGrEU2mGh4EzWPOMyTNYRExT1tMt0HZNPzOCk8ewvHoxVtRc4hiNseAHnu1CK4sh8ASI9T2HyHFLDtGgIFbgqkFwEmG5R7VBThsNCWv4oZ-Xwc_5l5tuV9OcrWYZKIUx_Zp2Jz1EvbUetWy8Dy6TyxlP89lm3Ob_ae8-gfVjttTr-Rffq_Ct8srdthZh5FSil44n5hqFNKr9n2vsMCx_vIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Uranyl+Complexes+into+Porous+Organic+Cages+for+Enhanced+Photocatalytic+Oxidation+of+A+Mustard%E2%80%90Gas+Simulant&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Hu%2C+Bo%E2%80%90wen&rft.au=Jin%2C+Wei&rft.au=Huang%2C+Zhi%E2%80%90wei&rft.au=Zhou%2C+Zhi%E2%80%90heng&rft.date=2025-07-29&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=28&rft.issue=21&rft_id=info:doi/10.1002%2Fejic.202500153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ejic_202500153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |