A refined version of the inverse decomposition theorem for modular multiplicative inverse operators

Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional context on (ℤ/ϱℤ)* with ϱ > 3, where it is possible to distinguish different formulas that break up these operators over (ℤ/ϱℤ)*, all this thanks...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1730; no. 1; pp. 12123 - 12128
Main Author Cortés-Vega, Luis A.
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional context on (ℤ/ϱℤ)* with ϱ > 3, where it is possible to distinguish different formulas that break up these operators over (ℤ/ϱℤ)*, all this thanks to the so-called "inverse decomposition theorem (IDT)". In this paper, we will study these issues a little deeper. Though we mainly focus the paper on derived for these operators a refined version of the (IDT), also appear on the scene some additional contributions. Finally, in a brief overview, we compare the differences that exist among the new result here established and the old ones. However, along with this, there are still plenty of questions to be answered in this research field.
AbstractList Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional context on (ℤ/ϱℤ)* with ϱ > 3, where it is possible to distinguish different formulas that break up these operators over (ℤ/ϱℤ)*, all this thanks to the so-called “inverse decomposition theorem (IDT)”. In this paper, we will study these issues a little deeper. Though we mainly focus the paper on derived for these operators a refined version of the (IDT), also appear on the scene some additional contributions. Finally, in a brief overview, we compare the differences that exist among the new result here established and the old ones. However, along with this, there are still plenty of questions to be answered in this research field.
Abstract Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional context on (ℤ /ϱ ℤ)* with ϱ > 3, where it is possible to distinguish different formulas that break up these operators over (ℤ /ϱ ℤ)*, all this thanks to the so-called “inverse decomposition theorem (IDT)”. In this paper, we will study these issues a little deeper. Though we mainly focus the paper on derived for these operators a refined version of the (IDT), also appear on the scene some additional contributions. Finally, in a brief overview, we compare the differences that exist among the new result here established and the old ones. However, along with this, there are still plenty of questions to be answered in this research field.
Author Cortés-Vega, Luis A.
Author_xml – sequence: 1
  givenname: Luis A.
  surname: Cortés-Vega
  fullname: Cortés-Vega, Luis A.
  email: luis.cortes@uantof.cl
  organization: Mathematics Department, Antofagasta University , Chile
BookMark eNqFkF1LwzAUhoNMcJv-BgPeCXX5aNP0cgw_GSio1yFNE8xom5q0A_-9KZUNQTA355D3ec_hvAswa12rAbjE6AYjzlc4T0nCsoLFjqIVXiFMMKEnYH5QZoee8zOwCGGHEI0vnwO1hl4b2-oK7rUP1rXQGdh_aGjb8UPDSivXdC7YfhSj4rxuoHEeNq4aahnrUPe2q62Svd0fja7TXvbOh3NwamQd9MVPXYL3u9u3zUOyfb5_3Ky3iSJ5ShOqFCeUcVqm0siKGJSRomIyHpDqVBHOCi0lYUxqo3kuC6rKEpUY5xUiqWJ0Ca6muZ13n4MOvdi5wbdxpSAZpogiXqBI5ROlvAshHi86bxvpvwRGYkxUjFmJMTcxJiqwmBKNzuvJaV13HP30snn9DYquMhGmf8D_rfgGUESJIw
Cites_doi 10.4067/S0716-09172018000200265
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1730/1/012123
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A refined version of the inverse decomposition theorem for modular multiplicative inverse operators
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1730_1_012123
JPCS_1730_1_012123
Genre Conference Proceeding
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2743-3cc823683b4afad2f0529d6a5964e4c2869eaa266aefe87a93cbb0b117d024c63
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Thu Oct 10 16:18:16 EDT 2024
Fri Aug 23 03:59:25 EDT 2024
Wed Aug 21 03:34:08 EDT 2024
Wed Feb 24 05:40:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2743-3cc823683b4afad2f0529d6a5964e4c2869eaa266aefe87a93cbb0b117d024c63
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1730/1/012123
PQID 2513030890
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_2513030890
crossref_primary_10_1088_1742_6596_1730_1_012123
iop_journals_10_1088_1742_6596_1730_1_012123
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cortés–Vega (JPCS_1730_1_012123bib2) 2017; 936
Cortés–Vega (JPCS_1730_1_012123bib3) 2018; 37
Schroeder (JPCS_1730_1_012123bib4) 1997
Cortés–Vega (JPCS_1730_1_012123bib1) 2015; 633
References_xml – volume: 37
  start-page: 265
  year: 2018
  ident: JPCS_1730_1_012123bib3
  article-title: A general method for to decompose modular multiplicative inverse operators over Group of units
  publication-title: Proyecciones Journal of Mathematics
  doi: 10.4067/S0716-09172018000200265
  contributor:
    fullname: Cortés–Vega
– year: 1997
  ident: JPCS_1730_1_012123bib4
  contributor:
    fullname: Schroeder
– volume: 633
  year: 2015
  ident: JPCS_1730_1_012123bib1
  article-title: A functional technique based on the Euclidean algorithm with applications to 2-D acoustic di˙ractal di˙users
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Cortés–Vega
– volume: 936
  year: 2017
  ident: JPCS_1730_1_012123bib2
  article-title: On the decomposition of modular multiplicative inverse operators via a new functional algorithm approach to Bachet’s–Bezout’s Lemma
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Cortés–Vega
SSID ssj0033337
Score 2.2951603
Snippet Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional context...
Abstract Recently, we started in the IOP Conference Series [1, 2] and in [3] the study of modular multiplicative inverse operators in an algorithmic functional...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 12123
SubjectTerms Decomposition
Operators
Physics
Theorems
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9uQ_BF_MTplIA-WtYm6deTTNkYA8dQB76FNEnBh63Vzf393rUpYwjap5JeC70k97vcJyF3cYoJi6GC_S1CTwilvCTUmQfKiQZdLosMx-Tk52k0novJe_juDG4rF1bZyMRKUJtCo428DzjMsbZK6j-Unx52jULvqmuh0SIdBicFv006j8Pp7KWRxRyuuE6JZB5gbdJEeMGxz42lEdxxvx_0sboZ4zv41Pooyl9CukKe0RE5dCojHdRzfEz27PKE7Fehm3p1SvSAwldAWTR0Uxu_aJFT0OvoxxIHLDUWA8dddBatUxcXFLRVuigMhqFSF1ZY2e822xeL0lZe-NUZmY-Gb09jz7VO8DTDoqNca-xknvBMqFwZlqNDz0QKfldYoVkSpVYpAGdlc5vEKuU6y_wsCGIDoK0jfk7ay2JpLwhlqfJ1yJJcANqHcY7lZXgGGBeENuZCdYnfMEyWdYUMWXm2k0QijyXyWCKPZSBrHnfJPTBWut2y-p_8dod8Mnt63aWQpcm7pNfM05Z0u2ou_358RQ4YRqtUxpUeaa-_vu01qBvr7MatqR8lFMzR
  priority: 102
  providerName: ProQuest
Title A refined version of the inverse decomposition theorem for modular multiplicative inverse operators
URI https://iopscience.iop.org/article/10.1088/1742-6596/1730/1/012123
https://www.proquest.com/docview/2513030890
Volume 1730
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL2iIKS9bDCY1q1UltgjaZPYSZzHDlE-JKCCIXizbMeRpommWgsP_HrujROxgiaEyEMURdeJfeOPE_vcY4AfWU4Bi4nG9i2SQAitA5lYEyA4sYjlTFpwCk4-PUuPrsTJTXLzbyxMNWu6_gFeeqFg78KGECeHiKHjIE3yFK94OIyGJEsW8w6scWwx9AN2fD5pe2OOR-aDIimRlC3H6_8PWhqhOpiLF910PfaMP4Ftc-0pJ38GdwszsA_PBB3fV6wN-NhAUzbyKTZhxU0_w3pNEbXzLbAjhnlFUFqwez_JxqqSIX5kv6d0w7HCEUG9YYExHyJ5yxAVs9uqILora-iL9Tzh_VPCaubq1f75NlyND37tHwXNFg2BjUnclFtLO6ZLboQudRGXtHBYpBqLIZywsUxzpzWCAO1KJzOdc2tMaKIoKxAc2JR_gdVpNXVfgcW5Dm0Sy1IgqkiykmRsuMGxNEpcxoXuQth-FjXzShyqXkGXUpHvFPlOke9UpLzvurCH3lZNq5y_br67ZH4y2b9ctlCzouxCr60NT6aIEjkp_-Tht7e98zt8iIklU0_q9GB18ffO7SDMWZg-dOT4sA9rPw_OJhf9ulbj-ZxfPwKugO9B
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,38877,38902,43612,43817,53854,53880
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA7OIfoiXnFeA_poWduktydRUebchniBvYU0SWEPa6ub-_2e06aMIWifSnpa6ElyvpNzJeQqSjBhMZCwv3ngcC6lEwcqdUA5UaDLpaFmmJw8HIW9D94fB2NrcJvZsMpGJlaCWhcKbeRdwGGGtVUS96b8dLBrFHpXbQuNFmljqSo4fLXvHkYvr40sZnBFdUqk7wDWxk2EFxz77FgSwh1zu14Xq5v5bAWfWpOi_CWkK-R53CHbVmWkt_Uc75I1k--RjSp0U832ibql8BVQFjVd1MYvWmQU9Do6yXHAUG0wcNxGZ9E6dXFKQVul00JjGCq1YYWV_W6xfLEoTeWFnx2Qj8eH9_ueY1snOMrHoqNMKexkHrOUy0xqP0OHng4l_C43XPlxmBgpAZylyUwcyYSpNHVTz4s0gLYK2SFZz4vcHBHqJ9JVgR9nHNA-iDIsL8NSwDgvMBHjskPchmGirCtkiMqzHccCeSyQxwJ5LDxR87hDroGxwu6W2f_klyvk_Zf7t1UKUeqsQ06beVqSLlfN8d-PL8hm7304EIOn0fMJ2fIxcqUytJyS9fnXtzkD1WOentv19QMF08_L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50ovgi_sTp1IA-Wtc2SZs-DnXMX1NQ0beQpin4sHW46d_vXds5hojYp1AuaXpNch_Jd18BTuKEEhalwfktpCeEMZ6SNvUQnFjEcmmUcUpOvutHvWdx_SpfF6D7nQtTjOql_wyLlVBw5cKaEKfaiKFDL5JJhCXut4M2yZKFvD3K8kVYkqRuguP6nr9MV2SOV1wlRlJFpaY8r98bm4tSi9iTH0t1GX-667BWA0fWqbq5AQtuuAnLJYHTjrfAdhi2gpAxY5_VFhgrcobojr0N6YZjmSP6eM3RYlUC44AhZmWDIiMyKqvJheUu3uesYjFy5Vn8eBueu5dP5z2v_oGCZ0OSHuXW0v_MFU-FyU0W5nSsl0UGX1c4YUMVJc4YDNHG5U7FJuE2Tf00COIMQ7eN-A40hsXQ7QILE-NbGapcYMyXcU4iMzzFSBdIF3NhmuBPHaZHlU6GLs-3ldLkY00-1uRjHejKx004Rcfqes6M_zY_njO_fjh_nLfQOAKa0Jp-p5kpYjhOujyJv_e_Zx7BysNFV99e9W_2YTUkOku5-9KCxuT9wx0gHpmkh-Vg-wLAVM-2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+refined+version+of+the+inverse+decomposition+theorem+for+modular+multiplicative+inverse+operators&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Cort%C3%A9s%E2%80%93Vega%2C+Luis+A.&rft.date=2021-01-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1730&rft.issue=1&rft.spage=12123&rft_id=info:doi/10.1088%2F1742-6596%2F1730%2F1%2F012123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1730_1_012123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon