Interaction of a Row of Ellipsoidal Inclusions in an Infinite Body under Asymmetric Uniaxial Tension

This paper deals with an interaction problem of a row of ellipsoidal inclusions under asymmetric uniaxial tension using singular integral equations of the body force method. The problem is solved on the superposition of two auxiliary loads ; (i) biaxial tension and (ii) plane state of pure shear. Th...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japan Society of Mechanical Engineers Series A Vol. 65; no. 633; pp. 1032 - 1037
Main Authors NODA, NaoAki, HAYASHIDA, Hitoshi, TOMARI, Kenji
Format Journal Article
LanguageEnglish
Japanese
Published The Japan Society of Mechanical Engineers 1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper deals with an interaction problem of a row of ellipsoidal inclusions under asymmetric uniaxial tension using singular integral equations of the body force method. The problem is solved on the superposition of two auxiliary loads ; (i) biaxial tension and (ii) plane state of pure shear. These problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are densities of body forces distributed in the γ, θ, z directions in infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynominals. The present method is found to yield rapidly converging numerical results for stress distributions along the boundaries. For any fixed shape and spacing of inclusions, the maximum stress is shown to be linear with the reciprocal of the squared number of inclusions.
AbstractList This paper deals with an interaction problem of a row of ellipsoidal inclusions under asymmetric uniaxial tension using singular integral equations of the body force method. The problem is solved on the superposition of two auxiliary loads ; (i) biaxial tension and (ii) plane state of pure shear. These problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are densities of body forces distributed in the γ, θ, z directions in infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynominals. The present method is found to yield rapidly converging numerical results for stress distributions along the boundaries. For any fixed shape and spacing of inclusions, the maximum stress is shown to be linear with the reciprocal of the squared number of inclusions.
Author NODA, NaoAki
HAYASHIDA, Hitoshi
TOMARI, Kenji
Author_xml – sequence: 1
  fullname: NODA, NaoAki
– sequence: 2
  fullname: HAYASHIDA, Hitoshi
– sequence: 3
  fullname: TOMARI, Kenji
BookMark eNo9kE1PwkAYhDcGE1G5et4_UHz3s7tHJKhEEhMD5-Ztu6srZUu6Jcq_twT1NJPJM3OYazKKbXSE3DGYMm7t_TZsMeBUqykDwS_ImBkjMyOEGZExCJNnCsBckUlKoQQQLGeg-ZjUy9i7Dqs-tJG2niJ9a79OZtE0YZ_aUGNDl7FqDmkgEg2RYhwCH2LoHX1o6yM9xNp1dJaOu53ru1DRTQz4HYbi2sVT7ZZcemySm_zqDdk8Ltbz52z1-rScz1ZZxXPJM2084ywXuQeF3lcOrbWgytr5UknlJGApRCmFswBDBqWy0nINxnImjRY35OW8-5l6fHfFvgs77I4Fdn2oGlecT2I2t4VWhRbiT06f_VPVB3aFi-IHFkNpDQ
ContentType Journal Article
Copyright The Japan Society of Mechanical Engineers
Copyright_xml – notice: The Japan Society of Mechanical Engineers
DOI 10.1299/kikaia.65.1032
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8338
EndPage 1037
ExternalDocumentID article_kikaia1979_65_633_65_633_1032_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
RJT
ID FETCH-LOGICAL-c2742-68f121737f05affcea99905bdefb545e40ab33b43e900efb0b594926089214863
ISSN 0387-5008
IngestDate Wed Apr 05 05:26:13 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 633
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2742-68f121737f05affcea99905bdefb545e40ab33b43e900efb0b594926089214863
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaia1979/65/633/65_633_1032/_article/-char/en
PageCount 6
ParticipantIDs jstage_primary_article_kikaia1979_65_633_65_633_1032_article_char_en
PublicationCentury 1900
PublicationDate 1999-00-00
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999-00-00
PublicationDecade 1990
PublicationTitle Transactions of the Japan Society of Mechanical Engineers Series A
PublicationTitleAlternate JSMET
PublicationYear 1999
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (1) Eshelby, J. D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceeding Royal Society Londen Series A, Vol.241(1957), 376-396
(8) 野田尚昭•松尾忠利•原田昭治•中村資生, 特異積分方程式による回 転だ円体状介在物の干渉効果の解析, 機論, 61-585, A(1995), 965-973.
(10) 野田尚昭•泊賢治•松尾忠利, 回転だ円体状介在物を持つ無限体の非 軸対称一軸引張りにおける干渉効果, 機論, 64-622, A(1998), 1577-1582
(2) Eshelby, J. D., The Elastic Field outside an Ellipsoidaa Inclusion, Proceeding Royal Society London Series A, Vol.252(1959), 561-569
(6) 土田栄一郎•内山直人•中原一郎•小玉正雄, 数個の球かを有する弾 性体の非軸対称問題(第2報,3球かを有する弾性体), 機論, 44-382, (1978), 1876-1883.
(5) 野田尚昭•小笠原望•松尾忠利, 回転だ円体状空かの非軸対称一軸引 張りにおける干渉効果, 機論, 62-596, A(1996), 1051-1058
(3) Shadowsky, M. A., and Sternberg, E., Stress Concentration Around an Ellipsoidal Cavity in an Infinite Body under Arbitrary Plane Stress Perpendicular to the Axis of Revolution of Cavity, Trans. ASME. J. Appl. Mach, Vol.69 (1947), 191-201
(4) 土田栄一郎•中原一郎•小玉正雄, 数個の球かを有する弾性体の非軸 対称問題(第1報,2球かを有する弾性体), 機論, 42-353, (1976), 46-54.
(11) 野田尚昭•泊賢治, 軸対称体の非軸対称一軸引張り問題における応力 解析の基本解とその応用, 九州工業大学研究報告(工学), No.70(1976), 7-12.
(7) 野田尚昭•小笠原望•松尾忠利, 任意個の回転だ円体状空かを持つ無 限体の非軸対称一軸引張りにおける干渉効果, 機論, 62-602, A(1996), 97-103
(9) 松尾忠利•野田尚昭•原田昭治, 任意個の回転だ円体状介在物を持つ 無限体の引張り, 機論, 62-597, A(1996), 1226-1233
References_xml
SSID ssib003171062
ssib020472909
ssib012348311
ssib023160638
ssib006634344
ssib007138296
ssib005439746
ssib002252314
ssib022232348
ssib000936936
ssib003117832
ssib002223790
ssj0000578916
ssib002222542
ssj0000608107
Score 1.4734356
Snippet This paper deals with an interaction problem of a row of ellipsoidal inclusions under asymmetric uniaxial tension using singular integral equations of the body...
SourceID jstage
SourceType Publisher
StartPage 1032
SubjectTerms Body Force Method
Elasticity
Ellipsoidal Inclusion
Numerical Analysis
Stress Concentration Factor
Title Interaction of a Row of Ellipsoidal Inclusions in an Infinite Body under Asymmetric Uniaxial Tension
URI https://www.jstage.jst.go.jp/article/kikaia1979/65/633/65_633_1032/_article/-char/en
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japan Society of Mechanical Engineers Series A, 1999/05/25, Vol.65(633), pp.1032-1037
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaWcoED4ine8oEbypLEzusYaNG2qK0oW6mcIjux1ezSBHV3Jcpv5ccwE8eJV-qhVFyym3fk8Yy_Gc18Q8g7LgMZaKY9oWTpcV2Vnqx46kUqZFqHrEy7YM7hUTw75Qdn0dlk8sfJWtqs5bT8fW1dyW2kCsdArlgl-w-SHR4KB-A_yBe2IGHY3kjGXTivb_bd1TmetF0Vyl4X4G_rqiPSKH9sVjZhXGAMUNcINN9_bKurrg3uJQjp6uICe2uVCELFLwyjzzG1vRfawlnYzPtWNrngAFbbZkj-xIQahcXEnewt2eEKTRK45GPg9Oh4NzfGvc2X9TC38u_5t9m-OTUDW7M6H87Njw_zk_2-lGhRj9EKZDgYZtb8pl_kGEDk_Y1839hnZQx0mnIvZYYRxlpw022in6kxY45BRr5AZ3HHqshrFw5YlUHay3opajGNo-l43xYZdy_qwlwYZElWxFEBr7Q_eF9hr8LCOZind8jdEMwgJpx--eqAX-ylyFyyOrCtPHT3WbJVpRyFW70GgiBJnapgQILg3zvka4g1HWcfsCVnDphLkH5yJFsECMNTNlr7EHlEs5HcDT8HLxn2WRD71nobJv0ktc6GwUEANw1fgRVkz5oKg_1he6gB_y3AG7KZlB24mz8kD3qvjOZmRB-RyUI8Jvcdrs4npHKUjbaaCgrKhn8cZaOjstG6oaKhVtkoKhvtlI2OykatstFe2Z6S0897808zr29R4pWY4-DFqQ7AqWeJ9iOhdakEzHk_kpXSEnwTxX0hGZOcqcz34ZgvowwpOv00CwOexuwZ2WnaRj0nNMqU5FHCyhJQPQy9rKpQCRiqOOF-KfkLsmuGqPhpeGiKW03Gl__nMa_IPUNggsHI12RnfblRbwCer-Xbbpb_BW3Q1DM
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+a+Row+of+Ellipsoidal+Inclusions+in+an+Infinite+Body+under+Asymmetric+Uniaxial+Tension&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+A&rft.au=NODA%2C+NaoAki&rft.au=HAYASHIDA%2C+Hitoshi&rft.au=TOMARI%2C+Kenji&rft.date=1999&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5008&rft.eissn=1884-8338&rft.volume=65&rft.issue=633&rft.spage=1032&rft.epage=1037&rft_id=info:doi/10.1299%2Fkikaia.65.1032&rft.externalDocID=article_kikaia1979_65_633_65_633_1032_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5008&client=summon