Aircraft Engine Audio Signal Analysis in Assisting Maintenance Inspections
As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the poten...
Saved in:
Published in | Journal of physics. Conference series Vol. 2218; no. 1; pp. 12002 - 12007 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the potential of overhaul and malfunction. Over many years, the industry has seen various methods of engine inspection and maintenance, ranging from manual inspection to computing large quantities of pre-existing data. Within, audio signal analysis has stood out as a productive, non-invasive method, with many alternate studies analyzing sound signals from components such as the combustion chamber. However, many of these methods, despite demonstrating good accuracy, are incredibly complex and require sophisticated apparatus. Therefore, this study begins by investigating the sound generation process of turbofan engines, especially how the features and form of the fan blade characterize its audio signals. This investigation proposes a solution that utilizes a fast Multi-Class Support Vector Machine (SVM) algorithm based on fan-blade-related audio signals from a perspective similar to the classification of music and images through supervised machine learning. Experimental results show that this fast Multi-Class SVM is more effective than traditional machine learning methods in its accuracy, F1-score, and other indicators. |
---|---|
AbstractList | As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the potential of overhaul and malfunction. Over many years, the industry has seen various methods of engine inspection and maintenance, ranging from manual inspection to computing large quantities of pre-existing data. Within, audio signal analysis has stood out as a productive, non-invasive method, with many alternate studies analyzing sound signals from components such as the combustion chamber. However, many of these methods, despite demonstrating good accuracy, are incredibly complex and require sophisticated apparatus. Therefore, this study begins by investigating the sound generation process of turbofan engines, especially how the features and form of the fan blade characterize its audio signals. This investigation proposes a solution that utilizes a fast Multi-Class Support Vector Machine (SVM) algorithm based on fan-blade-related audio signals from a perspective similar to the classification of music and images through supervised machine learning. Experimental results show that this fast Multi-Class SVM is more effective than traditional machine learning methods in its accuracy, F1-score, and other indicators. |
Author | Sakai, Yukino |
Author_xml | – sequence: 1 givenname: Yukino surname: Sakai fullname: Sakai, Yukino organization: Dulwich College Beijing , China |
BookMark | eNqFkE1LAzEQhoNUsK3-BgPehNp87Gazx6XU2lJRqJ5Dmk1KSk3WZHvovzfLSkUQnENmMvO-w_CMwMB5pwG4xegBI86nuMjIhOUlmxKC03eKMEGIXIDheTI415xfgVGMe4RoimIIVpUNKkjTwrnbWadhdaythxu7c_IAq_Scoo3QOljFVLTW7eCztK7VTjql4dLFRqvWehevwaWRh6hvvvMYvD_O32ZPk_XLYjmr1hNFuiPwlpdSZqwsZKlVTgqFGEcGs21dc8QU48yUNTdlYUxqULKlNFcqYwibIjeEjsFdv7cJ_vOoYyv2_hjSpVEQluW4pJznSVX0KhV8jEEb0QT7IcNJYCQ6cKJDIjo8ogMnsOjBJSftndY3P6v_d93_4Vq9zja_haKpDf0Ca9J-Ew |
Cites_doi | 10.1007/s13272-019-00384-3 10.1016/j.engappai.2020.103796 10.1016/j.measurement.2019.107460 10.3397/1.2888773 10.1111/exsy.12370 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2218/1/012002 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2218_1_012002 JPCS_2218_1_012002 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2742-1b89aa4697a9ec527c0680f16bdd806c686f9d8f97ffd8032b335cc4601f75f23 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Fri Jul 25 02:31:09 EDT 2025 Tue Jul 01 03:36:50 EDT 2025 Wed Apr 06 00:52:00 EDT 2022 Wed Aug 21 03:33:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2742-1b89aa4697a9ec527c0680f16bdd806c686f9d8f97ffd8032b335cc4601f75f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012002 |
PQID | 2645193885 |
PQPubID | 4998668 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2645193885 crossref_primary_10_1088_1742_6596_2218_1_012002 iop_journals_10_1088_1742_6596_2218_1_012002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gerhart (JPCS_2218_1_012002bib4) 2016 Zhao (JPCS_2218_1_012002bib12) 2020; 94 Cilimkovic (JPCS_2218_1_012002bib2) 2015; 15 Roger (JPCS_2218_1_012002bib9) 2006; 54 Bertsch (JPCS_2218_1_012002bib1) 2019; 10 Lighthill (JPCS_2218_1_012002bib6) 1952; 211 Palleja Cabre (JPCS_2218_1_012002bib8) 2021 Waligórski (JPCS_2218_1_012002bib11) 2020; 154 Miljković (JPCS_2218_1_012002bib7) 2011 Gharoun (JPCS_2218_1_012002bib5) 2019; 36 Duran (JPCS_2218_1_012002bib3) 2014 Russell (JPCS_2218_1_012002bib10) 1971 |
References_xml | – volume: 10 start-page: 3 year: 2019 ident: JPCS_2218_1_012002bib1 article-title: Aircraft noise generation and assessment: executive summary publication-title: CEAS Aeronaut J doi: 10.1007/s13272-019-00384-3 – start-page: 1 year: 2014 ident: JPCS_2218_1_012002bib3 article-title: Combustion noise in modern aero-engines[J] publication-title: Aerospace Lab – volume: 94 year: 2020 ident: JPCS_2218_1_012002bib12 article-title: An improved weighted one class support vector machine for turboshaft engine fault detection[J] publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103796 – volume: 154 year: 2020 ident: JPCS_2218_1_012002bib11 article-title: Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement[J] publication-title: Measurement doi: 10.1016/j.measurement.2019.107460 – volume: 54 year: 2006 ident: JPCS_2218_1_012002bib9 article-title: Broadband Fan Noise Prediction Using Single-Airfoil Theory[J] publication-title: Noise control engineering journal doi: 10.3397/1.2888773 – volume: 211 start-page: 564 year: 1952 ident: JPCS_2218_1_012002bib6 article-title: On sound generated aerodynamically I. General theory[J] publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences – year: 2016 ident: JPCS_2218_1_012002bib4 – volume: 36 start-page: e12370 year: 2019 ident: JPCS_2218_1_012002bib5 article-title: An integrated approach for aircraft turbofan engine fault detection based on data mining techniques[J] publication-title: Expert Systems doi: 10.1111/exsy.12370 – start-page: 1295 year: 1971 ident: JPCS_2218_1_012002bib10 article-title: Aircraft noise, its source and reduction[J] – start-page: 756 year: 2011 ident: JPCS_2218_1_012002bib7 – volume: 15 start-page: 1 year: 2015 ident: JPCS_2218_1_012002bib2 article-title: Neural networks and back propagation algorithm[J] publication-title: Institute of Technology Blanchardstown, Blanchardstown Road North Dublin – year: 2021 ident: JPCS_2218_1_012002bib8 |
SSID | ssj0033337 |
Score | 2.2878213 |
Snippet | As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12002 |
SubjectTerms | Aircraft Aircraft engines Aircraft maintenance Aircraft turbofan Algorithms Audio data Audio signals Combustion chambers Commercial aircraft Engine components Engine inspection and maintenance Fan blades Fast Multi-Class SVM High temperature Image classification Inspection Machine learning Physics Signal analysis Sound generation Support vector machines Turbofan engines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba8IwFA5TGexl7Mrc3Ahsjwv2mqZPw4niBEXmBN9CkjbSl9Z5-f87aVNEBlufQnL68uXkXJJzQehFUp8qlTCi3DQigfYCEoPeJ45gSsFIRGW7t8mUjhbBeBku7YXb1oZV1jKxFNRJocwdeRcUtzE2GAvf1t_EdI0yr6u2hUYDtUAEM3C-Wu-D6eyzlsU-fFGVEukR0LWsjvACt8_OxbTrgZrrul2TRmpvV2r91MiK9S8hXWqe4QU6tyYj7lV7fIlO0vwKnZahm2p7jca9bKM2Qu9wVVsQ9_ZJVuB5tir_skVHcJZj2ApzovMVnghTJsLU2kjxR15lWwL73aDFcPDVHxHbIYEo88RKXMliIcDDjUScqtCLlGmloV0qk4Q5VFFGdZwwHUdaw4TvSd8PlQrAC9NRqD3_FjXzIk_vEGZCuzKk0gmlCIT0pE5TyWDgOBrwUW3k1LjwdVUIg5cP2IxxAyU3UHIDJXd5BWUbvQJ-3B6K7f_kz0fk41l_fkzB14luo069HQfSA3Pc_738gM48k79QBpF1UHO32aePYFXs5JNlnR-u4cQV priority: 102 providerName: ProQuest |
Title | Aircraft Engine Audio Signal Analysis in Assisting Maintenance Inspections |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012002 https://www.proquest.com/docview/2645193885 |
Volume | 2218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7OIfgiXnFeSkAfrb0mPX2c4tTBLnjBvYUkbcZeurHL__ek7dAhIvahhHLShC_JOSfknC-EXCseca0zcHWQJ25swthN0e67vgStsSST8rq3Xp8_vcfdERt9z4WZzmrVf4vFiii4grAOiAMPfejQ5SzlXoj2yQs8m_9p-SSbEXCwG7BB9LHWxhE-SZUUaSsBrGO8fv_RhoVqYC9-qOnS9nT2yV7tNNJ21cUDspUXh2SnDN7UiyPSbU_mei7NklbsgrS9yiZT-joZl7Vq2hE6KSgOhl3TxZj2pCWKsGwbOX0uqnxLnIDH5L3z8Hb_5NZ3JLjaHrK6gYJUStzjJjLNNQsTbS_TMAFXWQY-1xy4STMwaWIMfohCFUVM6xj3YSZhJoxOyHYxLfJTQkGaQDGufKZkLFWoTJ4rwILvG8RHt4i_xkXMKioMUR5hAwgLpbBQCgulCEQFZYvcIH6iXhaLv8WvNsS7w_vXTQkxy0yLXKyH40sU_TrriwKws_-1eU52Q5vRUIaVXZDt5XyVX6KfsVQOaUDn0SHNu4f-8MWxOp_h-3kwdMop9gn_Usc9 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF7qlhYsATesTZzEcQ6oWrUsu9tuhdRW6s3Yjl3lkl12t6r4U_xGZvJQVSHBqTlZzuTyeTyfJ54HwEcrE-lcqbiLfc7TIFJeIO_zyCjncGTypt3b_ExOLtPZVXa1Bb_7XBgKq-xtYmOoy4Wjf-RDJG46bCiVHS5_cuoaRberfQuNVi1O_K9bdNnWX6bHuL6fhBh_vTia8K6rAHd0Lcljqwpj0CvMTeFdJnJH7SdCLG1Zqkg6qWQoShWKPAScSIRNksy5FD2XkGeBCh2gyX-cJklBO0qNv_WWP8EnbxMwBUdmV308GTqZ3VwhhwJJdRgPKWm1-5fTs-GjarH8ixIanhvvwPPugMpGrUa9gC1fv4QnTaCoW7-C2ahauZUJG9ZWMmSjm7JasPPquvmqK3HCqprhwpP9qK_Z3FBRCqrs4dm0bnM7Udlfw-WDIPcGtutF7XeBKRNim0kbZdakxgobvLcKB1EUEB83gKjHRS_bshu6uS5XShOUmqDUBKWOdQvlAD4jfrrbguv_i3-4Jz77fnR-X0IvyzCA_X457kTvVHHv36_fw9PJxfxUn07PTt7CM0GZE0342j5sb1Y3_gDPMxv7rlEiBj8eWmv_AGMb_rU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90ovgifuJ0akAfrW3TJk0fhzp0fg2m6FtI0mbspRv7-P-9tJ0yRMQ-HeXSht8ldxdyHwAXmkfcmEx4JswTL7Y09lK0-16ghDFIqaRs9_b0zO_e4u4H-1iBzlcuzGhcq_4rJKtCwRWEdUCc8NGHph5nKfcp2ic_9F3-Z0D9cWZXYY1FnLsWDi_R-0IjR_gkVWKkGyjEIs7r948tWalVnMkPVV3an842bNWOI2lX09yBlbzYhfUygNNM96DbHk7MRNkZqSoMkvY8G45IfzgoR9WlR8iwICgQt6-LAXlSrliEq7iRk_uiyrnERbgPb53b1-s7r-6T4Bl30eqFWqRK4Tk3UWluGE2Ma6hhQ66zTATccMFtmgmbJtbii4jqKGLGxHgWswmzNDqARjEq8kMgQtlQM64DplWsNNU2z7VAIggs4mOaECxwkeOqHIYsr7GFkA5K6aCUDkoZygrKJlwifrLeGtO_2c-X2Lu96_4yh0RBN6G1EMc3K_p2zh8Vgh39759nsNG76cjH--eHY9ikLsGhjDJrQWM2mecn6HbM9Gm5pj4BQhvGvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+Engine+Audio+Signal+Analysis+in+Assisting+Maintenance+Inspections&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Sakai%2C+Yukino&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2218&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2218%2F1%2F012002&rft.externalDocID=JPCS_2218_1_012002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |