Aircraft Engine Audio Signal Analysis in Assisting Maintenance Inspections

As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the poten...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2218; no. 1; pp. 12002 - 12007
Main Author Sakai, Yukino
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the potential of overhaul and malfunction. Over many years, the industry has seen various methods of engine inspection and maintenance, ranging from manual inspection to computing large quantities of pre-existing data. Within, audio signal analysis has stood out as a productive, non-invasive method, with many alternate studies analyzing sound signals from components such as the combustion chamber. However, many of these methods, despite demonstrating good accuracy, are incredibly complex and require sophisticated apparatus. Therefore, this study begins by investigating the sound generation process of turbofan engines, especially how the features and form of the fan blade characterize its audio signals. This investigation proposes a solution that utilizes a fast Multi-Class Support Vector Machine (SVM) algorithm based on fan-blade-related audio signals from a perspective similar to the classification of music and images through supervised machine learning. Experimental results show that this fast Multi-Class SVM is more effective than traditional machine learning methods in its accuracy, F1-score, and other indicators.
AbstractList As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high temperatures and immense pressures causes problems for the engine components, such as the fan blades, as they are frequently burdened with the potential of overhaul and malfunction. Over many years, the industry has seen various methods of engine inspection and maintenance, ranging from manual inspection to computing large quantities of pre-existing data. Within, audio signal analysis has stood out as a productive, non-invasive method, with many alternate studies analyzing sound signals from components such as the combustion chamber. However, many of these methods, despite demonstrating good accuracy, are incredibly complex and require sophisticated apparatus. Therefore, this study begins by investigating the sound generation process of turbofan engines, especially how the features and form of the fan blade characterize its audio signals. This investigation proposes a solution that utilizes a fast Multi-Class Support Vector Machine (SVM) algorithm based on fan-blade-related audio signals from a perspective similar to the classification of music and images through supervised machine learning. Experimental results show that this fast Multi-Class SVM is more effective than traditional machine learning methods in its accuracy, F1-score, and other indicators.
Author Sakai, Yukino
Author_xml – sequence: 1
  givenname: Yukino
  surname: Sakai
  fullname: Sakai, Yukino
  organization: Dulwich College Beijing , China
BookMark eNqFkE1LAzEQhoNUsK3-BgPehNp87Gazx6XU2lJRqJ5Dmk1KSk3WZHvovzfLSkUQnENmMvO-w_CMwMB5pwG4xegBI86nuMjIhOUlmxKC03eKMEGIXIDheTI415xfgVGMe4RoimIIVpUNKkjTwrnbWadhdaythxu7c_IAq_Scoo3QOljFVLTW7eCztK7VTjql4dLFRqvWehevwaWRh6hvvvMYvD_O32ZPk_XLYjmr1hNFuiPwlpdSZqwsZKlVTgqFGEcGs21dc8QU48yUNTdlYUxqULKlNFcqYwibIjeEjsFdv7cJ_vOoYyv2_hjSpVEQluW4pJznSVX0KhV8jEEb0QT7IcNJYCQ6cKJDIjo8ogMnsOjBJSftndY3P6v_d93_4Vq9zja_haKpDf0Ca9J-Ew
Cites_doi 10.1007/s13272-019-00384-3
10.1016/j.engappai.2020.103796
10.1016/j.measurement.2019.107460
10.3397/1.2888773
10.1111/exsy.12370
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2218/1/012002
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2218_1_012002
JPCS_2218_1_012002
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2742-1b89aa4697a9ec527c0680f16bdd806c686f9d8f97ffd8032b335cc4601f75f23
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Fri Jul 25 02:31:09 EDT 2025
Tue Jul 01 03:36:50 EDT 2025
Wed Apr 06 00:52:00 EDT 2022
Wed Aug 21 03:33:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2742-1b89aa4697a9ec527c0680f16bdd806c686f9d8f97ffd8032b335cc4601f75f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012002
PQID 2645193885
PQPubID 4998668
PageCount 6
ParticipantIDs proquest_journals_2645193885
crossref_primary_10_1088_1742_6596_2218_1_012002
iop_journals_10_1088_1742_6596_2218_1_012002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 20220301
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gerhart (JPCS_2218_1_012002bib4) 2016
Zhao (JPCS_2218_1_012002bib12) 2020; 94
Cilimkovic (JPCS_2218_1_012002bib2) 2015; 15
Roger (JPCS_2218_1_012002bib9) 2006; 54
Bertsch (JPCS_2218_1_012002bib1) 2019; 10
Lighthill (JPCS_2218_1_012002bib6) 1952; 211
Palleja Cabre (JPCS_2218_1_012002bib8) 2021
Waligórski (JPCS_2218_1_012002bib11) 2020; 154
Miljković (JPCS_2218_1_012002bib7) 2011
Gharoun (JPCS_2218_1_012002bib5) 2019; 36
Duran (JPCS_2218_1_012002bib3) 2014
Russell (JPCS_2218_1_012002bib10) 1971
References_xml – volume: 10
  start-page: 3
  year: 2019
  ident: JPCS_2218_1_012002bib1
  article-title: Aircraft noise generation and assessment: executive summary
  publication-title: CEAS Aeronaut J
  doi: 10.1007/s13272-019-00384-3
– start-page: 1
  year: 2014
  ident: JPCS_2218_1_012002bib3
  article-title: Combustion noise in modern aero-engines[J]
  publication-title: Aerospace Lab
– volume: 94
  year: 2020
  ident: JPCS_2218_1_012002bib12
  article-title: An improved weighted one class support vector machine for turboshaft engine fault detection[J]
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103796
– volume: 154
  year: 2020
  ident: JPCS_2218_1_012002bib11
  article-title: Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107460
– volume: 54
  year: 2006
  ident: JPCS_2218_1_012002bib9
  article-title: Broadband Fan Noise Prediction Using Single-Airfoil Theory[J]
  publication-title: Noise control engineering journal
  doi: 10.3397/1.2888773
– volume: 211
  start-page: 564
  year: 1952
  ident: JPCS_2218_1_012002bib6
  article-title: On sound generated aerodynamically I. General theory[J]
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– year: 2016
  ident: JPCS_2218_1_012002bib4
– volume: 36
  start-page: e12370
  year: 2019
  ident: JPCS_2218_1_012002bib5
  article-title: An integrated approach for aircraft turbofan engine fault detection based on data mining techniques[J]
  publication-title: Expert Systems
  doi: 10.1111/exsy.12370
– start-page: 1295
  year: 1971
  ident: JPCS_2218_1_012002bib10
  article-title: Aircraft noise, its source and reduction[J]
– start-page: 756
  year: 2011
  ident: JPCS_2218_1_012002bib7
– volume: 15
  start-page: 1
  year: 2015
  ident: JPCS_2218_1_012002bib2
  article-title: Neural networks and back propagation algorithm[J]
  publication-title: Institute of Technology Blanchardstown, Blanchardstown Road North Dublin
– year: 2021
  ident: JPCS_2218_1_012002bib8
SSID ssj0033337
Score 2.2878213
Snippet As the core component of modern commercial aircraft, turbofan engines have long been the center of focus in aircraft maintenance. Being subject to high...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12002
SubjectTerms Aircraft
Aircraft engines
Aircraft maintenance
Aircraft turbofan
Algorithms
Audio data
Audio signals
Combustion chambers
Commercial aircraft
Engine components
Engine inspection and maintenance
Fan blades
Fast Multi-Class SVM
High temperature
Image classification
Inspection
Machine learning
Physics
Signal analysis
Sound generation
Support vector machines
Turbofan engines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba8IwFA5TGexl7Mrc3Ahsjwv2mqZPw4niBEXmBN9CkjbSl9Z5-f87aVNEBlufQnL68uXkXJJzQehFUp8qlTCi3DQigfYCEoPeJ45gSsFIRGW7t8mUjhbBeBku7YXb1oZV1jKxFNRJocwdeRcUtzE2GAvf1t_EdI0yr6u2hUYDtUAEM3C-Wu-D6eyzlsU-fFGVEukR0LWsjvACt8_OxbTrgZrrul2TRmpvV2r91MiK9S8hXWqe4QU6tyYj7lV7fIlO0vwKnZahm2p7jca9bKM2Qu9wVVsQ9_ZJVuB5tir_skVHcJZj2ApzovMVnghTJsLU2kjxR15lWwL73aDFcPDVHxHbIYEo88RKXMliIcDDjUScqtCLlGmloV0qk4Q5VFFGdZwwHUdaw4TvSd8PlQrAC9NRqD3_FjXzIk_vEGZCuzKk0gmlCIT0pE5TyWDgOBrwUW3k1LjwdVUIg5cP2IxxAyU3UHIDJXd5BWUbvQJ-3B6K7f_kz0fk41l_fkzB14luo069HQfSA3Pc_738gM48k79QBpF1UHO32aePYFXs5JNlnR-u4cQV
  priority: 102
  providerName: ProQuest
Title Aircraft Engine Audio Signal Analysis in Assisting Maintenance Inspections
URI https://iopscience.iop.org/article/10.1088/1742-6596/2218/1/012002
https://www.proquest.com/docview/2645193885
Volume 2218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7OIfgiXnFeSkAfrb0mPX2c4tTBLnjBvYUkbcZeurHL__ek7dAhIvahhHLShC_JOSfknC-EXCseca0zcHWQJ25swthN0e67vgStsSST8rq3Xp8_vcfdERt9z4WZzmrVf4vFiii4grAOiAMPfejQ5SzlXoj2yQs8m_9p-SSbEXCwG7BB9LHWxhE-SZUUaSsBrGO8fv_RhoVqYC9-qOnS9nT2yV7tNNJ21cUDspUXh2SnDN7UiyPSbU_mei7NklbsgrS9yiZT-joZl7Vq2hE6KSgOhl3TxZj2pCWKsGwbOX0uqnxLnIDH5L3z8Hb_5NZ3JLjaHrK6gYJUStzjJjLNNQsTbS_TMAFXWQY-1xy4STMwaWIMfohCFUVM6xj3YSZhJoxOyHYxLfJTQkGaQDGufKZkLFWoTJ4rwILvG8RHt4i_xkXMKioMUR5hAwgLpbBQCgulCEQFZYvcIH6iXhaLv8WvNsS7w_vXTQkxy0yLXKyH40sU_TrriwKws_-1eU52Q5vRUIaVXZDt5XyVX6KfsVQOaUDn0SHNu4f-8MWxOp_h-3kwdMop9gn_Usc9
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF7qlhYsATesTZzEcQ6oWrUsu9tuhdRW6s3Yjl3lkl12t6r4U_xGZvJQVSHBqTlZzuTyeTyfJ54HwEcrE-lcqbiLfc7TIFJeIO_zyCjncGTypt3b_ExOLtPZVXa1Bb_7XBgKq-xtYmOoy4Wjf-RDJG46bCiVHS5_cuoaRberfQuNVi1O_K9bdNnWX6bHuL6fhBh_vTia8K6rAHd0Lcljqwpj0CvMTeFdJnJH7SdCLG1Zqkg6qWQoShWKPAScSIRNksy5FD2XkGeBCh2gyX-cJklBO0qNv_WWP8EnbxMwBUdmV308GTqZ3VwhhwJJdRgPKWm1-5fTs-GjarH8ixIanhvvwPPugMpGrUa9gC1fv4QnTaCoW7-C2ahauZUJG9ZWMmSjm7JasPPquvmqK3HCqprhwpP9qK_Z3FBRCqrs4dm0bnM7Udlfw-WDIPcGtutF7XeBKRNim0kbZdakxgobvLcKB1EUEB83gKjHRS_bshu6uS5XShOUmqDUBKWOdQvlAD4jfrrbguv_i3-4Jz77fnR-X0IvyzCA_X457kTvVHHv36_fw9PJxfxUn07PTt7CM0GZE0342j5sb1Y3_gDPMxv7rlEiBj8eWmv_AGMb_rU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90ovgifuJ0akAfrW3TJk0fhzp0fg2m6FtI0mbspRv7-P-9tJ0yRMQ-HeXSht8ldxdyHwAXmkfcmEx4JswTL7Y09lK0-16ghDFIqaRs9_b0zO_e4u4H-1iBzlcuzGhcq_4rJKtCwRWEdUCc8NGHph5nKfcp2ic_9F3-Z0D9cWZXYY1FnLsWDi_R-0IjR_gkVWKkGyjEIs7r948tWalVnMkPVV3an842bNWOI2lX09yBlbzYhfUygNNM96DbHk7MRNkZqSoMkvY8G45IfzgoR9WlR8iwICgQt6-LAXlSrliEq7iRk_uiyrnERbgPb53b1-s7r-6T4Bl30eqFWqRK4Tk3UWluGE2Ma6hhQ66zTATccMFtmgmbJtbii4jqKGLGxHgWswmzNDqARjEq8kMgQtlQM64DplWsNNU2z7VAIggs4mOaECxwkeOqHIYsr7GFkA5K6aCUDkoZygrKJlwifrLeGtO_2c-X2Lu96_4yh0RBN6G1EMc3K_p2zh8Vgh39759nsNG76cjH--eHY9ikLsGhjDJrQWM2mecn6HbM9Gm5pj4BQhvGvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+Engine+Audio+Signal+Analysis+in+Assisting+Maintenance+Inspections&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Sakai%2C+Yukino&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2218&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2218%2F1%2F012002&rft.externalDocID=JPCS_2218_1_012002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon