Possibilities of deep learning neural networks for satellite image recognition

The main problem solved in this project is the analysis of big data using a system of computer processing and recognition of satellite images, based on a deep neural network architecture. The goal of the project is to develop methodological, theoretical and practical aspects of building such systems...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1703; no. 1; pp. 12031 - 12036
Main Authors Averkin, A N, Yarushev, S A
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2020
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/1703/1/012031

Cover

Loading…
Abstract The main problem solved in this project is the analysis of big data using a system of computer processing and recognition of satellite images, based on a deep neural network architecture. The goal of the project is to develop methodological, theoretical and practical aspects of building such systems in poorly formalized subject areas, as well as to study the possibilities and advantages of building predictive models for analyzing fresh water reserves and predicting the direction, speed and nature of the spread of large fires using such systems. and assessments of the economic impact of these natural disasters.
AbstractList The main problem solved in this project is the analysis of big data using a system of computer processing and recognition of satellite images, based on a deep neural network architecture. The goal of the project is to develop methodological, theoretical and practical aspects of building such systems in poorly formalized subject areas, as well as to study the possibilities and advantages of building predictive models for analyzing fresh water reserves and predicting the direction, speed and nature of the spread of large fires using such systems. and assessments of the economic impact of these natural disasters.
Author Averkin, A N
Yarushev, S A
Author_xml – sequence: 1
  givenname: A N
  surname: Averkin
  fullname: Averkin, A N
  email: averkin2003@inbox.ru
  organization: Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
– sequence: 2
  givenname: S A
  surname: Yarushev
  fullname: Yarushev, S A
  organization: Department of Informatics, Plekhanov Russian University of Economics , Russia
BookMark eNqFkFtLAzEQhYNUsK3-BgO-CWtza5J9lOKVogX7Hna3k7J1TdZki_jvzbJSEQTnZQZyzpnMN0Ej5x0gdE7JFSVaz6gSLJPzXKaJ8BmdEcoIp0dofHgZHWatT9Akxh0hPJUao6eVj7Eu66buaojYW7wBaHEDRXC122IH-1A0qXUfPrxGbH3AseigSQbA9VuxBRyg8luXArw7Rce2aCKcffcpWt_erBf32fL57mFxvcwqpgTNtNRKKgsVBUKpEIIREIoJZWUpuSQSckYrRayyOedgSalVxYSQuSgJ13yKLobYNvj3PcTO7Pw-uLTRsDnlCQud50mlBlUV0pEBrGlD-nH4NJSYnp3pqZiekOnZGWoGdsl5OThr3_5EP64WL7-Fpt3YJOZ_iP9b8QW1uX7l
Cites_doi 10.1016/j.knosys.2008.03.045
10.1093/brain/120.4.701
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1703/1/012031
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Possibilities of deep learning neural networks for satellite image recognition
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1703_1_012031
JPCS_1703_1_012031
Genre Conference Proceeding
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2741-868767fec1e01144420e47247f6b63606e921c70f7f933ef0b87c244694b0383
IEDL.DBID BENPR
ISSN 1742-6588
IngestDate Sun Jul 13 04:21:54 EDT 2025
Tue Jul 01 00:39:15 EDT 2025
Wed Feb 24 05:40:48 EST 2021
Wed Aug 21 03:34:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2741-868767fec1e01144420e47247f6b63606e921c70f7f933ef0b87c244694b0383
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/2513088159?pq-origsite=%requestingapplication%
PQID 2513088159
PQPubID 4998668
PageCount 6
ParticipantIDs iop_journals_10_1088_1742_6596_1703_1_012031
crossref_primary_10_1088_1742_6596_1703_1_012031
proquest_journals_2513088159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ranzato (JPCS_1703_1_012031bib1) 2008
Kohonen (JPCS_1703_1_012031bib6) 2001
Mountcastle (JPCS_1703_1_012031bib5) 1997; 120
Yu (JPCS_1703_1_012031bib4) 2008; 21
Hinton (JPCS_1703_1_012031bib2) 2012; 18
Sabour (JPCS_1703_1_012031bib3) 2017
Averkin (JPCS_1703_1_012031bib7) 2018; 2267
References_xml – volume: 21
  start-page: 900
  year: 2008
  ident: JPCS_1703_1_012031bib4
  article-title: Latent semantic analysis for text categorization using neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2008.03.045
– year: 2001
  ident: JPCS_1703_1_012031bib6
– volume: 120
  start-page: 701
  year: 1997
  ident: JPCS_1703_1_012031bib5
  article-title: The columnar organization of neocortex
  publication-title: Brain
  doi: 10.1093/brain/120.4.701
– volume: 18
  start-page: 1527
  year: 2012
  ident: JPCS_1703_1_012031bib2
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 2267
  start-page: 453
  year: 2018
  ident: JPCS_1703_1_012031bib7
  article-title: Time series and data analysis based on hybrid models of deep neural networks and Neuro-Fuzzy networks
  publication-title: CEUR Workshop Proceedings
– start-page: 792
  year: 2008
  ident: JPCS_1703_1_012031bib1
  article-title: Semi-supervised learning of compact document representations with deep networks
– start-page: 3859
  year: 2017
  ident: JPCS_1703_1_012031bib3
  article-title: Dynamic routing between capsules
SSID ssj0033337
Score 2.2434893
Snippet The main problem solved in this project is the analysis of big data using a system of computer processing and recognition of satellite images, based on a deep...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12031
SubjectTerms Artificial neural networks
Computer architecture
Deep learning
Economic impact
Fresh water
Impact analysis
Natural disasters
Neural networks
Object recognition
Physics
Prediction models
Satellite imagery
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EXwRrzidEtBH69ImTdJHGcoYOAdO3Fto0kR8sC12_n9PelGHiNinQE_S9EtzLuQ7pwhdxNwa0IE6IIaIgBmXBCm1KewrJlKw4BmVPjn5bsrHj2yyiBffc2GKslX9V9BsCgU3ELaEODkEHzoKeJxwaBE6DIc-_9OnUm9QyaUPwO7pU6eNKVyiSYr0naTsOF6_D7RiodZhFj_UdG17bnfQdus04utmirtozeZ7aLMmb5pqH01nRdWyXCHuxYXDmbUlbn8I8Yx9zUronjeM7wqDn4qrtC7FubT45RVUCv4kEhX5AZrf3sxH46D9T0JgfPGZwL81F86a0PrwhrGIWCYiJhzXvhwYt0kUGkGccAml1hEthQGzzhOmCUSoh6iXF7k9Qhju68SfZWpBmKYkjQ0NIxvCQmc2MnEfkQ4aVTbVMFR9ii2l8mgqj6byaKpQNWj20SVAqNqdUf0tfr4iPpmNHlYlVJm5Php0K_IlCp4ahZHBPzv-3zNP0Fbko-iapDJAveXbuz0FV2Opz-pv6QN9EcMQ
  priority: 102
  providerName: IOP Publishing
Title Possibilities of deep learning neural networks for satellite image recognition
URI https://iopscience.iop.org/article/10.1088/1742-6596/1703/1/012031
https://www.proquest.com/docview/2513088159
Volume 1703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT4MwEG7cFhNfjD_jdC5N9FGyQguFJ6PL5lziRnRG3xooxexBQJn_v1coLouJ8kCAHi_X9rte7-sdQpeupyRgYGwRSbjFZBpYEVURzCvGI7DgCfX14eSHmTd5ZtNX99VsuJWGVtlgYgXUSS71HvkA7DCFGQHW97r4sHTVKB1dNSU0WqgDEOyD89W5Hc3CxwaLKVy8PhLpWGBr_YbhBW6f-RZ48ETowB7oY6TU3rBPrWVe_ALpyvKM99CuWTLim7qP99GWyg7QdkXdlOUhmoV5aTiu4PXiPMWJUgU25SDesM5YCb9nNd-7xLBKxWVUJeJcKbx8B0DBPzSiPDtCi_FoMZxYpkqCJXXqGcv3ANB4qqSttHPDmEMU4w7jqRfrZGCeChxbcpLyNKBUpST2uQSj7gUsJuCfHqN2lmfqBGFojwMdyYw5YTElkSup7SgbujlRjnS7iDSqEUWdC0NUMWzfF1qbQmtTaG0KW9Ta7KIrUKEw86L8X_xiQ3waDp82JUSRpF3Ua3pkLboeH6d_N5-hHUf7zBUlpYfaq88vdQ4Li1XcRy1_fNc3Ywje7uch3Of05RsCFMcu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7g-A-rNsmmSbdqDiKjr-loEV_AW2jSVPdhWuyL-KP-jkz6URdCTPZVm2sNkZr5M5wWw1_GMRhsYOVRT6QidBE7ITYh6JWSICB5z3xYn3_S93r24fOg8TMBHUwtj0yobm1ga6jjT9h95G3GYo0Yg-h7lz46dGmWjq80IjUosrsz7G7psxeHFKe7vPmPds8FJz6mnCjjatmpxfA8NgEyMdo11BoRg1AjJhEy8yDbP8kzAXC1pIhN09k1CI19qBEEvEBFFfw4_OwnTgvPAKpTfPW8MP8dLVvWXzEFg95t0MvQx62eBh3eUt922rVnl7hgYTg6z_AcilDDXXYD5-nxKjiuBWoQJky7BTJknqotl6N9mRZ1Qiy42yRISG5OTevbEI7HtMfH1tEouLwgeiUkRll0_R4YMn9B6ka-cpSxdgcF_MG8VptIsNWtAcD0KbNg0klREnIYdzV1mXJSp2DDdaQFtWKPyqvGGKgPmvq8sN5XlprLcVK6quNmCA2ShqpWw-Jt8d4z88vbkbpxC5XHSgs1mR75Jv4Vx_fflHZjtDW6u1fVF_2oD5ph11stcmE2YGr28mi080Yyi7VKOCKh_lttPaUz7ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MieJF_MTp1IAerUubNGmPMh1z6hw4cbfQpql4sB12_v--tN1kiIg9BfqShl-a90F-7wXg3BdGow6MHaqpdLhOQydiJsJ9xWWEFjxhgU1OfhiK_jMfTPxJA3qLXJh8Wqv-S2xWhYIrCGtCXNBBH9pzhB8KbFHWcTs2_5O5nWmSrsCqz4SwVzg8spe5Rmb4yCox0nYMgjnP6_fBlqzUCs7kh6ou7U9vCzZrx5FcVdPchobJdmCtJHDqYheGo7yoma4Y-5I8JYkxU1JfCvFKbN1K7J5VrO-CoK9Kiqgsxzkz5O0d1QpZkInybA_GvZtxt-_UdyU42hagcQKBak2mRrvGhjice9Rw6XGZitiWBBMm9FwtaSrTkDGT0jiQGk27CHlMMUrdh2aWZ-YACL6PQ3ueGUvKY0YjXzPXMy4udmI87beAzqFR06oihipPsoNAWTSVRVNZNJWrKjRbcIEQqnp3FH-Lny2JD0bdp2UJhWvdgvZ8Rb5F0VtjODL6aIf_--YprI-ue-r-dnh3BBueDapLzkobmrOPT3OMnscsPil_qy_J7cb_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+of+deep+learning+neural+networks+for+satellite+image+recognition&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Averkin%2C+A+N&rft.au=Yarushev%2C+S+A&rft.date=2020-12-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1703&rft.issue=1&rft.spage=12031&rft_id=info:doi/10.1088%2F1742-6596%2F1703%2F1%2F012031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1703_1_012031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon