Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) Trial
RATIONALE:Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal ste...
Saved in:
Published in | Circulation research Vol. 114; no. 8; pp. 1302 - 1310 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
11.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RATIONALE:Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis.
OBJECTIVE:To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects.
METHODS AND RESULTS:Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4±1.7%, P=0.0002) and decreased scar mass (−47.5±8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score2.93±0.07), whereas revascularized (0.5±0.21) and nontreated segments (−0.07±0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments).
CONCLUSIONS:Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications.
CLINICAL TRIAL REGISTRATION:URLhttp://clinicaltrials.gov/show/NCT00587990. Unique identifierNCT00587990. |
---|---|
AbstractList | Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis.
To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects.
Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4 ± 1.7%, P=0.0002) and decreased scar mass (-47.5 ± 8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93 ± 0.07), whereas revascularized (0.5 ± 0.21) and nontreated segments (-0.07 ± 0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments).
Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications.
http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990. Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis.RATIONALEAlthough accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis.To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects.OBJECTIVETo test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects.Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4 ± 1.7%, P=0.0002) and decreased scar mass (-47.5 ± 8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93 ± 0.07), whereas revascularized (0.5 ± 0.21) and nontreated segments (-0.07 ± 0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments).METHODS AND RESULTSSix patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4 ± 1.7%, P=0.0002) and decreased scar mass (-47.5 ± 8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93 ± 0.07), whereas revascularized (0.5 ± 0.21) and nontreated segments (-0.07 ± 0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments).Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications.CONCLUSIONSIntramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications.http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990.CLINICAL TRIAL REGISTRATION URLhttp://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990. RATIONALE:Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis. OBJECTIVE:To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects. METHODS AND RESULTS:Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4±1.7%, P=0.0002) and decreased scar mass (−47.5±8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score2.93±0.07), whereas revascularized (0.5±0.21) and nontreated segments (−0.07±0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments). CONCLUSIONS:Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. CLINICAL TRIAL REGISTRATION:URLhttp://clinicaltrials.gov/show/NCT00587990. Unique identifierNCT00587990. |
Author | Byrnes, John Conte, John Feigenbaum, Gary Fishman, Joel Heldman, Alan W. Suncion, Viky Y. Karas, Tomer Z. Hare, Joshua M. DiFede, Darcy L. Borrello, Ivan Wu, Katherine Karantalis, Vasileios Schwarz, Richard Lowery, Maureen Pattany, Pradip Lardo, Albert C. Gerstenblith, Gary Schulman, Steven Mushtaq, Muzammil Davis-Sproul, Janice McNiece, Ian Pham, Si Symes, James Zambrano, Juan Pablo Shah, Ashish Mendizabal, Adam Breton, Elayne |
AuthorAffiliation | From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL (V.K., D.L.D., R.S., M.M., V.Y.S., A.W.L., J.M.H.); Johns Hopkins University, Cardiovascular Division, Baltimore, MD (G.G., S.S., E.B., J.D.-S., A.C.L.); University of Maryland, Cardiothoracic Surgery, Baltimore, MD (S.P., J.C.); Veterans Affairs Healthcare System, Cardiothoracic Surgery, Miami, FL (J.S., T.Z.K.); Jackson Health System, Cardiology, Miami, FL (J.P.Z.); University of Miami Miller School of Medicine, Radiology, Miami, FL (J.F., P.P.); University of Texas MD Anderson, Stem Cell Transplantation, Houston, TX (I.M.N.), Johns Hopkins University, Heart and Vascular Institute, Baltimore, MD (K.W.), Johns Hopkins University, Comprehensive Transplant Center (A.S.); University of Southern California, Internal Medicine, Los Angeles, CA (G.F.); Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (I.B.); EMMES Corporation, Rockville, MD (A.M.), Univer |
AuthorAffiliation_xml | – name: From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL (V.K., D.L.D., R.S., M.M., V.Y.S., A.W.L., J.M.H.); Johns Hopkins University, Cardiovascular Division, Baltimore, MD (G.G., S.S., E.B., J.D.-S., A.C.L.); University of Maryland, Cardiothoracic Surgery, Baltimore, MD (S.P., J.C.); Veterans Affairs Healthcare System, Cardiothoracic Surgery, Miami, FL (J.S., T.Z.K.); Jackson Health System, Cardiology, Miami, FL (J.P.Z.); University of Miami Miller School of Medicine, Radiology, Miami, FL (J.F., P.P.); University of Texas MD Anderson, Stem Cell Transplantation, Houston, TX (I.M.N.), Johns Hopkins University, Heart and Vascular Institute, Baltimore, MD (K.W.), Johns Hopkins University, Comprehensive Transplant Center (A.S.); University of Southern California, Internal Medicine, Los Angeles, CA (G.F.); Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (I.B.); EMMES Corporation, Rockville, MD (A.M.), University of Miami Miller School of Medicine, Hematology/Oncology, Miami, FL (J.B.); and University of Miami Miller School of Medicine, Cardiology, Miami, FL (T.Z.K., M.L.) |
Author_xml | – sequence: 1 givenname: Vasileios surname: Karantalis fullname: Karantalis, Vasileios organization: From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL (V.K., D.L.D., R.S., M.M., V.Y.S., A.W.L., J.M.H.); Johns Hopkins University, Cardiovascular Division, Baltimore, MD (G.G., S.S., E.B., J.D.-S., A.C.L.); University of Maryland, Cardiothoracic Surgery, Baltimore, MD (S.P., J.C.); Veterans Affairs Healthcare System, Cardiothoracic Surgery, Miami, FL (J.S., T.Z.K.); Jackson Health System, Cardiology, Miami, FL (J.P.Z.); University of Miami Miller School of Medicine, Radiology, Miami, FL (J.F., P.P.); University of Texas MD Anderson, Stem Cell Transplantation, Houston, TX (I.M.N.), Johns Hopkins University, Heart and Vascular Institute, Baltimore, MD (K.W.), Johns Hopkins University, Comprehensive Transplant Center (A.S.); University of Southern California, Internal Medicine, Los Angeles, CA (G.F.); Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (I.B.); EMMES Corporation, Rockville, MD (A.M.), University of Miami Miller School of Medicine, Hematology/Oncology, Miami, FL (J.B.); and University of Miami Miller School of Medicine, Cardiology, Miami, FL (T.Z.K., M.L.) – sequence: 2 givenname: Darcy surname: DiFede middlename: L. fullname: DiFede, Darcy L. – sequence: 3 givenname: Gary surname: Gerstenblith fullname: Gerstenblith, Gary – sequence: 4 givenname: Si surname: Pham fullname: Pham, Si – sequence: 5 givenname: James surname: Symes fullname: Symes, James – sequence: 6 givenname: Juan surname: Zambrano middlename: Pablo fullname: Zambrano, Juan Pablo – sequence: 7 givenname: Joel surname: Fishman fullname: Fishman, Joel – sequence: 8 givenname: Pradip surname: Pattany fullname: Pattany, Pradip – sequence: 9 givenname: Ian surname: McNiece fullname: McNiece, Ian – sequence: 10 givenname: John surname: Conte fullname: Conte, John – sequence: 11 givenname: Steven surname: Schulman fullname: Schulman, Steven – sequence: 12 givenname: Katherine surname: Wu fullname: Wu, Katherine – sequence: 13 givenname: Ashish surname: Shah fullname: Shah, Ashish – sequence: 14 givenname: Elayne surname: Breton fullname: Breton, Elayne – sequence: 15 givenname: Janice surname: Davis-Sproul fullname: Davis-Sproul, Janice – sequence: 16 givenname: Richard surname: Schwarz fullname: Schwarz, Richard – sequence: 17 givenname: Gary surname: Feigenbaum fullname: Feigenbaum, Gary – sequence: 18 givenname: Muzammil surname: Mushtaq fullname: Mushtaq, Muzammil – sequence: 19 givenname: Viky surname: Suncion middlename: Y. fullname: Suncion, Viky Y. – sequence: 20 givenname: Albert surname: Lardo middlename: C. fullname: Lardo, Albert C. – sequence: 21 givenname: Ivan surname: Borrello fullname: Borrello, Ivan – sequence: 22 givenname: Adam surname: Mendizabal fullname: Mendizabal, Adam – sequence: 23 givenname: Tomer surname: Karas middlename: Z. fullname: Karas, Tomer Z. – sequence: 24 givenname: John surname: Byrnes fullname: Byrnes, John – sequence: 25 givenname: Maureen surname: Lowery fullname: Lowery, Maureen – sequence: 26 givenname: Alan surname: Heldman middlename: W. fullname: Heldman, Alan W. – sequence: 27 givenname: Joshua surname: Hare middlename: M. fullname: Hare, Joshua M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24565698$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1P2zAUzSamUdh-wiY_MmllduKkCXsKUUsrgajaoj1GjnPTekvszh-g7NfPoaBJExIvtq99zj2-99yT4EgqCUHwieBzQhLyrVisitV0nc9zH9PzCEckxW-DEYlDOqbxhBwFI4xxNp5EET4OToz5iTGhUZi9D45DGidxkqWjN0XurGrVVjmDbsCA5Lu-Yy1aW-hQAW1r0FKr2nFAhZJc6ZpJixbdXqt76EBag4REK9gKJT1t5iS3_vgVbYQxDtASdOPM4w2TNZqJSisrOLp0ugaJfuz8ktedkMJY0FAjq9CSWfGY-U7WoLdKyK0X115A9yjXHtejy37PjEFXmjXWv1-gzQ6Gn5o9-A_cA1p5OdWJPz7l2rq6R6p5ucCBqdm-H-p4UZnpWjCO1k5vB-Wz5er2ZrqZT-_WX9BGC9Z-CN41rDXw8Wk_De5m000xH1_fXi2K_HrMwwnF4zSahDgMWZhUEFZNFmVpFjKaVVESQlVjzBteUc4SmqacRUA8KqaTtIIsiggk0Wlwdsjrm__bgbFlJwz3JTAJ3r-SxCT25ARTD_38BHVVB3W516Lz3SufjfeA7wcA9z0zGpqSC8sG66xmoi0JLocxK_-NmY9peRgzz47_Yz8LvMbLDrwH1Xobza_WPYAud8Bau3uF-xehOO99 |
CitedBy_id | crossref_primary_10_18632_oncotarget_4358 crossref_primary_10_2217_rme_2019_0024 crossref_primary_10_3389_fonc_2014_00299 crossref_primary_10_1016_j_ijpharm_2019_118692 crossref_primary_10_1039_C5TB00739A crossref_primary_10_1038_s41598_018_27881_5 crossref_primary_10_4062_biomolther_2015_085 crossref_primary_10_1161_CIRCRESAHA_115_305821 crossref_primary_10_1161_CIRCULATIONAHA_117_029003 crossref_primary_10_3892_ijmm_2015_2229 crossref_primary_10_1016_j_cpcardiol_2024_102562 crossref_primary_10_1253_circj_CJ_18_1179 crossref_primary_10_1089_bioe_2020_0025 crossref_primary_10_1016_j_ymthe_2018_05_009 crossref_primary_10_1016_j_xjon_2021_06_030 crossref_primary_10_1002_sctm_18_0120 crossref_primary_10_1177_0963689719840351 crossref_primary_10_1038_srep19155 crossref_primary_10_5507_bp_2018_071 crossref_primary_10_1074_jbc_M115_649657 crossref_primary_10_36660_abc_20230830 crossref_primary_10_1016_j_pharmthera_2016_10_005 crossref_primary_10_1080_14779072_2019_1653185 crossref_primary_10_4155_cli_15_44 crossref_primary_10_1371_journal_pone_0146074 crossref_primary_10_1038_s41598_020_73693_x crossref_primary_10_4070_kcj_2022_0005 crossref_primary_10_3389_fphys_2018_00991 crossref_primary_10_1016_j_ijcard_2015_06_070 crossref_primary_10_4070_kcj_2018_0312 crossref_primary_10_3109_08941939_2015_1128997 crossref_primary_10_1016_j_semcdb_2019_10_014 crossref_primary_10_1186_s11658_024_00551_3 crossref_primary_10_1016_j_yjmcc_2016_05_014 crossref_primary_10_1002_sctm_16_0484 crossref_primary_10_1016_j_biomaterials_2015_09_026 crossref_primary_10_3390_ijms242316844 crossref_primary_10_2174_1566524022666220118103136 crossref_primary_10_1001_jama_2019_2341 crossref_primary_10_3390_ijms21175952 crossref_primary_10_1053_j_jvca_2018_04_048 crossref_primary_10_1016_j_yjmcc_2018_04_012 crossref_primary_10_1186_s13287_015_0187_x crossref_primary_10_3390_ijms222111849 crossref_primary_10_1161_CIRCRESAHA_118_311207 crossref_primary_10_1097_MAT_0000000000000861 crossref_primary_10_1152_ajpheart_00091_2018 crossref_primary_10_1002_sctm_16_0353 crossref_primary_10_1016_j_cjca_2014_08_027 crossref_primary_10_1093_eurheartj_ehy503 crossref_primary_10_1111_jcmm_12632 crossref_primary_10_3390_cells12131727 crossref_primary_10_3390_cancers13051169 crossref_primary_10_1152_physrev_00019_2015 crossref_primary_10_1177_15353702231151960 crossref_primary_10_1002_ejhf_2178 crossref_primary_10_1093_ejcts_ezw230 crossref_primary_10_1155_2022_9346939 crossref_primary_10_4070_kcj_2018_0437 crossref_primary_10_1016_j_biomaterials_2019_04_014 crossref_primary_10_1016_j_repce_2019_11_011 crossref_primary_10_2217_rme_2017_0134 crossref_primary_10_1016_j_jcyt_2024_07_004 crossref_primary_10_1007_s13577_025_01190_2 crossref_primary_10_1093_stcltm_szab004 crossref_primary_10_5966_sctm_2015_0101 crossref_primary_10_1186_s13287_016_0450_9 crossref_primary_10_1016_j_hfc_2014_12_006 crossref_primary_10_1158_1078_0432_CCR_21_4520 crossref_primary_10_3389_fsurg_2015_00031 crossref_primary_10_1016_j_matt_2024_05_041 crossref_primary_10_1161_CIRCRESAHA_115_307362 crossref_primary_10_1016_j_jcmg_2022_02_014 crossref_primary_10_1016_j_molmed_2018_05_002 crossref_primary_10_1186_s13287_015_0142_x crossref_primary_10_1161_CIRCRESAHA_117_310796 crossref_primary_10_1016_j_arcmed_2020_08_006 crossref_primary_10_1161_CIRCRESAHA_116_310257 crossref_primary_10_3389_fcell_2023_1211217 crossref_primary_10_3390_jcm5070062 crossref_primary_10_1016_j_jcmg_2021_12_011 crossref_primary_10_3390_ijms19103236 crossref_primary_10_1161_CIRCRESAHA_116_303614 crossref_primary_10_1002_cyto_a_22849 crossref_primary_10_3389_fcvm_2022_802551 crossref_primary_10_3390_bioengineering10060742 crossref_primary_10_1038_nrd_2017_106 crossref_primary_10_3390_ijms23010249 crossref_primary_10_1002_jcp_26860 crossref_primary_10_1155_2020_8837654 crossref_primary_10_7759_cureus_41533 crossref_primary_10_3389_fcvm_2021_794690 crossref_primary_10_1016_j_jacbts_2017_07_014 crossref_primary_10_1016_j_biopha_2018_11_113 crossref_primary_10_4252_wjsc_v15_i2_16 crossref_primary_10_1002_sctm_16_0328 crossref_primary_10_1002_14651858_CD007888_pub3 crossref_primary_10_1007_s10741_016_9576_1 crossref_primary_10_1253_circj_CJ_18_0786 crossref_primary_10_1097_TP_0000000000000734 crossref_primary_10_5334_gh_1098 crossref_primary_10_1161_CIRCRESAHA_115_307346 crossref_primary_10_3390_ijms21114062 crossref_primary_10_1038_s41569_020_00499_9 crossref_primary_10_1089_ten_teb_2016_0136 crossref_primary_10_1002_stem_2080 crossref_primary_10_1038_s41536_019_0083_6 crossref_primary_10_1161_CIRCRESAHA_116_309819 crossref_primary_10_1038_s41419_020_2634_6 crossref_primary_10_1039_D0MA00957A crossref_primary_10_1007_s10565_020_09521_9 crossref_primary_10_1016_j_jcyt_2016_10_006 crossref_primary_10_1016_j_bbadis_2019_06_003 crossref_primary_10_1161_JAHA_115_002796 crossref_primary_10_1016_j_biopha_2019_109451 crossref_primary_10_1111_jce_14185 crossref_primary_10_2174_0115733998275428231210055650 crossref_primary_10_3389_fbioe_2020_502213 crossref_primary_10_1016_j_addr_2020_04_003 crossref_primary_10_1016_j_jtcvs_2015_09_035 crossref_primary_10_1016_j_ahj_2017_06_009 crossref_primary_10_1016_j_repc_2019_10_003 crossref_primary_10_1111_jcmm_13331 crossref_primary_10_1016_j_pharmthera_2015_02_003 crossref_primary_10_15671_hjbc_1522356 crossref_primary_10_1002_jcb_28186 crossref_primary_10_1038_srep33067 crossref_primary_10_2217_rme_2021_0024 crossref_primary_10_1155_2021_8888575 crossref_primary_10_1002_btm2_10471 crossref_primary_10_1186_s13287_019_1536_y crossref_primary_10_3389_fbioe_2020_00291 crossref_primary_10_1016_j_jcyt_2015_11_014 crossref_primary_10_3390_membranes11100796 crossref_primary_10_1016_j_athoracsur_2019_07_093 crossref_primary_10_1089_scd_2014_0581 crossref_primary_10_1161_CIRCRESAHA_119_315806 crossref_primary_10_1016_j_tcm_2016_02_001 crossref_primary_10_1146_annurev_genet_112414_054911 crossref_primary_10_5966_sctm_2014_0240 crossref_primary_10_1002_adfm_201809009 crossref_primary_10_4330_wjc_v16_i6_339 crossref_primary_10_1007_s10561_015_9514_9 crossref_primary_10_15407_biotech16_04_031 crossref_primary_10_3389_fphys_2021_755881 crossref_primary_10_1155_2019_8636930 crossref_primary_10_1016_j_yjmcc_2015_04_008 crossref_primary_10_3389_fcvm_2024_1394453 crossref_primary_10_4103_cjop_CJOP_D_22_00144 crossref_primary_10_15252_emmm_201504395 crossref_primary_10_3390_bioengineering11100954 crossref_primary_10_1002_stem_2050 crossref_primary_10_1007_s10557_017_6714_5 crossref_primary_10_4068_cmj_2018_54_1_10 crossref_primary_10_3390_ijms19103194 crossref_primary_10_1097_CRD_0000000000000291 crossref_primary_10_36660_abc_20230830i crossref_primary_10_3390_ijms21145013 crossref_primary_10_1080_14712598_2023_2245329 crossref_primary_10_1371_journal_pcbi_1005014 crossref_primary_10_1038_s41598_018_21789_w crossref_primary_10_3389_fphar_2023_1067992 crossref_primary_10_5966_sctm_2014_0144 crossref_primary_10_1161_CIRCHEARTFAILURE_118_005454 crossref_primary_10_1016_j_phrs_2017_02_015 crossref_primary_10_1016_j_reth_2025_02_012 crossref_primary_10_3390_ijms22031201 crossref_primary_10_1186_s12967_020_02504_8 crossref_primary_10_1186_s13287_021_02443_1 crossref_primary_10_1371_journal_pone_0215678 crossref_primary_10_3390_cells10061287 crossref_primary_10_1016_j_biomaterials_2015_01_065 crossref_primary_10_1038_s41569_021_00603_7 crossref_primary_10_1016_j_lfs_2024_122858 crossref_primary_10_1097_HCO_0000000000000167 crossref_primary_10_1161_CIRCRESAHA_116_308409 crossref_primary_10_1002_sctm_17_0210 crossref_primary_10_3389_fbioe_2020_00043 crossref_primary_10_1093_cvr_cvab135 crossref_primary_10_4070_kcj_2020_0518 crossref_primary_10_1007_s10557_014_6568_z crossref_primary_10_1186_s13287_022_03189_0 crossref_primary_10_1161_CIRCRESAHA_116_309733 crossref_primary_10_1186_s13287_021_02591_4 crossref_primary_10_7759_cureus_60254 crossref_primary_10_1080_14779072_2017_1379898 crossref_primary_10_1016_j_cdtm_2019_02_002 crossref_primary_10_15252_embj_201490563 crossref_primary_10_2174_1568026623666221201150933 crossref_primary_10_1139_cjpp_2014_0468 crossref_primary_10_1152_ajpheart_00955_2015 crossref_primary_10_1161_CIRCRESAHA_118_310426 crossref_primary_10_1155_2018_8283648 crossref_primary_10_1253_circj_CJ_19_0567 crossref_primary_10_1016_j_lfs_2018_10_047 crossref_primary_10_1161_CIRCRESAHA_115_305227 crossref_primary_10_3389_fimmu_2019_01645 crossref_primary_10_1016_j_carpath_2024_107635 crossref_primary_10_1038_srep46731 crossref_primary_10_1186_s13287_020_01855_9 crossref_primary_10_1161_JAHA_114_001464 crossref_primary_10_1007_s11892_014_0554_5 crossref_primary_10_1002_jcp_30299 crossref_primary_10_3892_ol_2021_13046 crossref_primary_10_1161_CIRCRESAHA_117_310712 crossref_primary_10_1126_scitranslmed_aaz2253 crossref_primary_10_1186_2193_1801_3_440 crossref_primary_10_1017_S1047951115000840 crossref_primary_10_1038_s41423_023_01020_1 crossref_primary_10_3390_ijms22157920 crossref_primary_10_1007_s11748_018_0937_7 crossref_primary_10_3390_ijms22147447 crossref_primary_10_1080_14712598_2022_2016695 crossref_primary_10_1126_sciadv_abo4616 crossref_primary_10_3390_ijms24108784 crossref_primary_10_1021_acsbiomaterials_7b00005 crossref_primary_10_1021_acs_jproteome_4c00030 crossref_primary_10_1155_2018_1909346 crossref_primary_10_1177_1751143715586420 crossref_primary_10_3390_ijms23020694 crossref_primary_10_1016_j_jacc_2014_06_1175 crossref_primary_10_1093_eurheartj_suw018 crossref_primary_10_3389_fcell_2022_902677 crossref_primary_10_1007_s12265_016_9686_0 crossref_primary_10_1016_j_conctc_2021_100702 crossref_primary_10_1016_j_jtcvs_2016_09_023 crossref_primary_10_1186_s13287_022_02919_8 crossref_primary_10_1002_stem_2256 crossref_primary_10_1002_stem_2498 crossref_primary_10_1161_CIRCRESAHA_117_311589 crossref_primary_10_2174_1566523220666201005111126 crossref_primary_10_1007_s12265_023_10438_x crossref_primary_10_1007_s00441_018_2918_7 crossref_primary_10_1016_j_ijcard_2016_11_236 crossref_primary_10_1111_micc_12324 crossref_primary_10_1126_sciadv_1603078 crossref_primary_10_1016_j_addr_2024_115203 crossref_primary_10_1038_s41598_021_87571_7 crossref_primary_10_1053_j_semtcvs_2016_10_003 |
Cites_doi | 10.1016/j.jacc.2009.06.055 10.1161/JAHA.113.000253 10.1016/S0003-4975(02)03517-8 10.1001/jama.2013.282909 10.1161/atvbaha.111.231100 10.1016/j.ijcard.2013.01.217 10.1161/01.CIR.100.12.1298 10.1161/circresaha.111.245969 10.1073/pnas.0903201106 10.1161/circresaha.110.231456 10.1016/j.jtcvs.2005.07.056 10.1073/pnas.0504388102 10.5966/sctm.2012-0027 10.1161/01.cir.0000151812.86142.45 10.1001/jama.2012.25321 10.1161/circresaha.112.269894 10.1161/CIRCULATIONAHA.105.000505 10.1161/JAHA.113.000140 10.1161/01.cir.0000100724.44398.01 10.1111/j.1475-097X.1985.tb00771.x 10.1152/ajpheart.00533.2012 10.1007/s12410-011-9070-z 10.1089/ten.tea.2013.0312 10.1056/NEJM200011163432003 10.1001/jama.2011.1670 10.1161/CIRCULATIONAHA.112.131110 10.1016/j.jacc.2011.01.037 10.1016/j.ehj.2004.06.024 10.1016/j.athoracsur.2003.09.081 10.1161/circresaha.111.242610 10.4103/0975-3583.83037 10.1161/circresaha.111.243147 10.1016/0002-9149(80)90637-2 10.1016/j.yjmcc.2011.08.019 10.1517/14712598.2011.616491 10.1016/j.jtcvs.2006.08.077 10.1161/circresaha.110.222703 10.1152/ajpheart.01017.2005 10.1093/eurheartj/ehp265 10.1007/978-1-62703-505-7_8 10.1152/ajpheart.00221.2012 10.1161/01.CIR.67.3.549 10.1161/CIRCRESAHA.114.302854 10.1161/01.CIR.87.6.1921 10.1016/j.yjmcc.2012.03.008 |
ContentType | Journal Article |
Copyright | 2014 American Heart Association, Inc. |
Copyright_xml | – notice: 2014 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCRESAHA.114.303180 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 1310 |
ExternalDocumentID | 24565698 10_1161_CIRCRESAHA_114_303180 10.1161/CIRCRESAHA.114.303180 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL110737 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NHLBI NIH HHS grantid: R01 HL110737-01 – fundername: NHLBI NIH HHS grantid: R01HL084275 – fundername: NHLBI NIH HHS grantid: UM1 HL113460 – fundername: NHLBI NIH HHS grantid: U54 HL081028 – fundername: NHLBI NIH HHS grantid: P20 HL101443 – fundername: NHLBI NIH HHS grantid: R01 HL107110 – fundername: NHLBI NIH HHS grantid: R01 HL084275 – fundername: NHLBI NIH HHS grantid: R01 HL094849 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACNWC ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AEETU AENEX AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV ZZMQN AAYXX ADGHP CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM ODA OLW RHF 7X8 |
ID | FETCH-LOGICAL-c2740-8372022a26be2bf939892a49b362ebd00cfcb4ca6488ca3e1e2b5478be9331e63 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Fri Jul 11 04:42:34 EDT 2025 Wed Feb 19 01:57:25 EST 2025 Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 04:27:45 EDT 2025 Fri May 16 03:44:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | stem cell coronary artery bypass mesenchymal stromal cells |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2740-8372022a26be2bf939892a49b362ebd00cfcb4ca6488ca3e1e2b5478be9331e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 24565698 |
PQID | 1515648604 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1515648604 pubmed_primary_24565698 crossref_citationtrail_10_1161_CIRCRESAHA_114_303180 crossref_primary_10_1161_CIRCRESAHA_114_303180 wolterskluwer_health_10_1161_CIRCRESAHA_114_303180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-April-11 |
PublicationDateYYYYMMDD | 2014-04-11 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-April-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2014 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_3_2 Liang X (e_1_3_4_31_2) e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_25_2 Rizzello V (e_1_3_4_45_2) 2005; 49 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 19666564 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14022-7 16473959 - Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2196-203 8504505 - Circulation. 1993 Jun;87(6):1921-7 21475412 - Curr Cardiovasc Imaging Rep. 2011 Apr;4(2):149-158 12078791 - Ann Thorac Surg. 2002 Jun;73(6):1919-25; discussion 1926 16061805 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11474-9 21885831 - Circ Res. 2011 Oct 14;109(9):1044-54 23686370 - J Am Heart Assoc. 2013 Jun;2(3):e000140 21415390 - Circ Res. 2011 Apr 1;108(7):792-6 19958962 - J Am Coll Cardiol. 2009 Dec 8;54(24):2277-86 16820557 - Circulation. 2006 Jul 4;114(1 Suppl):I101-7 11078769 - N Engl J Med. 2000 Nov 16;343(20):1445-53 24449819 - Circ Res. 2014 Apr 11;114(8):1292-301 3931960 - Clin Physiol. 1985 Oct;5(5):403-15 22084195 - JAMA. 2011 Nov 16;306(19):2110-9 21889943 - J Mol Cell Cardiol. 2012 Apr;52(4):822-31 21293002 - Circ Res. 2011 Mar 18;108(6):653-63 6821896 - Circulation. 1983 Mar;67(3):549-57 23197875 - Stem Cells Transl Med. 2012 Sep;1(9):685-95 10491374 - Circulation. 1999 Sep 21;100(12):1298-304 15642764 - Circulation. 2005 Jan 18;111(2):150-6 20671238 - Circ Res. 2010 Oct 1;107(7):913-22 21981749 - Expert Opin Biol Ther. 2011 Dec;11(12):1569-79 22636682 - Am J Physiol Heart Circ Physiol. 2012 Aug 1;303(3):H256-70 16308009 - J Thorac Cardiovasc Surg. 2005 Dec;130(6):1631-8 21960725 - Circ Res. 2011 Sep 30;109(8):923-40 24723652 - Circ Res. 2014 Apr 11;114(8):1222-4 15724138 - Q J Nucl Med Mol Imaging. 2005 Mar;49(1):81-96 22723295 - Circ Res. 2012 Aug 3;111(4):455-68 19586959 - Eur Heart J. 2009 Nov;30(22):2722-32 24029934 - Methods Mol Biol. 2013;1037:145-63 23117550 - JAMA. 2012 Dec 12;308(22):2369-79 17320570 - J Thorac Cardiovasc Surg. 2007 Mar;133(3):717-25 21658561 - J Am Coll Cardiol. 2011 Jun 14;57(24):2409-15 23241322 - Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H600-9 14992951 - Ann Thorac Surg. 2004 Mar;77(3):1121-30 21814420 - J Cardiovasc Dis Res. 2011 Apr;2(2):133-6 24295499 - Tissue Eng Part A. 2014 Apr;20(7-8):1325-35 22465692 - J Mol Cell Cardiol. 2012 Jun;52(6):1249-56 24247587 - JAMA. 2014 Jan 1;311(1):62-73 15321700 - Eur Heart J. 2004 Aug;25(16):1419-27 23478196 - Int J Cardiol. 2013 Oct 3;168(3):2221-7 6965556 - Am J Cardiol. 1980 Feb;45(2):210-6 24080908 - J Am Heart Assoc. 2013 Oct;2(5):e000253 14623811 - Circulation. 2003 Dec 9;108(23):2877-82 23676629 - Cell Transplant. 2014;23(9):1045-59 21757660 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2210-5 |
References_xml | – ident: e_1_3_4_31_2 article-title: Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives [published online ahead of print May 14, 2013]. publication-title: Cell Transplant – ident: e_1_3_4_28_2 doi: 10.1016/j.jacc.2009.06.055 – ident: e_1_3_4_37_2 doi: 10.1161/JAHA.113.000253 – ident: e_1_3_4_8_2 doi: 10.1016/S0003-4975(02)03517-8 – ident: e_1_3_4_17_2 doi: 10.1001/jama.2013.282909 – ident: e_1_3_4_41_2 doi: 10.1161/atvbaha.111.231100 – ident: e_1_3_4_32_2 doi: 10.1016/j.ijcard.2013.01.217 – ident: e_1_3_4_25_2 doi: 10.1161/01.CIR.100.12.1298 – ident: e_1_3_4_11_2 doi: 10.1161/circresaha.111.245969 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.0903201106 – ident: e_1_3_4_35_2 doi: 10.1161/circresaha.110.231456 – ident: e_1_3_4_3_2 doi: 10.1016/j.jtcvs.2005.07.056 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.0504388102 – ident: e_1_3_4_9_2 doi: 10.5966/sctm.2012-0027 – ident: e_1_3_4_23_2 doi: 10.1161/01.cir.0000151812.86142.45 – ident: e_1_3_4_16_2 doi: 10.1001/jama.2012.25321 – ident: e_1_3_4_40_2 doi: 10.1161/circresaha.112.269894 – ident: e_1_3_4_6_2 doi: 10.1161/CIRCULATIONAHA.105.000505 – ident: e_1_3_4_27_2 doi: 10.1161/JAHA.113.000140 – ident: e_1_3_4_30_2 doi: 10.1161/01.cir.0000100724.44398.01 – ident: e_1_3_4_34_2 doi: 10.1111/j.1475-097X.1985.tb00771.x – ident: e_1_3_4_42_2 doi: 10.1152/ajpheart.00533.2012 – ident: e_1_3_4_46_2 doi: 10.1007/s12410-011-9070-z – ident: e_1_3_4_12_2 doi: 10.1089/ten.tea.2013.0312 – ident: e_1_3_4_29_2 doi: 10.1056/NEJM200011163432003 – ident: e_1_3_4_47_2 doi: 10.1001/jama.2011.1670 – ident: e_1_3_4_48_2 doi: 10.1161/CIRCULATIONAHA.112.131110 – ident: e_1_3_4_13_2 doi: 10.1016/j.jacc.2011.01.037 – ident: e_1_3_4_20_2 doi: 10.1016/j.ehj.2004.06.024 – ident: e_1_3_4_5_2 doi: 10.1016/j.athoracsur.2003.09.081 – ident: e_1_3_4_19_2 doi: 10.1161/circresaha.111.242610 – ident: e_1_3_4_14_2 doi: 10.4103/0975-3583.83037 – ident: e_1_3_4_18_2 doi: 10.1161/circresaha.111.243147 – ident: e_1_3_4_26_2 doi: 10.1016/0002-9149(80)90637-2 – volume: 49 start-page: 81 year: 2005 ident: e_1_3_4_45_2 article-title: Assessment of myocardial viability in chronic ischemic heart disease: current status. publication-title: Q J Nucl Med Mol Imaging – ident: e_1_3_4_44_2 doi: 10.1016/j.yjmcc.2011.08.019 – ident: e_1_3_4_2_2 doi: 10.1517/14712598.2011.616491 – ident: e_1_3_4_4_2 doi: 10.1016/j.jtcvs.2006.08.077 – ident: e_1_3_4_10_2 doi: 10.1161/circresaha.110.222703 – ident: e_1_3_4_22_2 doi: 10.1152/ajpheart.01017.2005 – ident: e_1_3_4_7_2 doi: 10.1093/eurheartj/ehp265 – ident: e_1_3_4_15_2 doi: 10.1007/978-1-62703-505-7_8 – ident: e_1_3_4_38_2 doi: 10.1152/ajpheart.00221.2012 – ident: e_1_3_4_21_2 doi: 10.1161/01.CIR.67.3.549 – ident: e_1_3_4_36_2 doi: 10.1161/CIRCRESAHA.114.302854 – ident: e_1_3_4_33_2 doi: 10.1161/01.CIR.87.6.1921 – ident: e_1_3_4_43_2 doi: 10.1016/j.yjmcc.2012.03.008 – reference: 23197875 - Stem Cells Transl Med. 2012 Sep;1(9):685-95 – reference: 23241322 - Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H600-9 – reference: 21960725 - Circ Res. 2011 Sep 30;109(8):923-40 – reference: 24247587 - JAMA. 2014 Jan 1;311(1):62-73 – reference: 11078769 - N Engl J Med. 2000 Nov 16;343(20):1445-53 – reference: 14623811 - Circulation. 2003 Dec 9;108(23):2877-82 – reference: 14992951 - Ann Thorac Surg. 2004 Mar;77(3):1121-30 – reference: 12078791 - Ann Thorac Surg. 2002 Jun;73(6):1919-25; discussion 1926 – reference: 10491374 - Circulation. 1999 Sep 21;100(12):1298-304 – reference: 22723295 - Circ Res. 2012 Aug 3;111(4):455-68 – reference: 24295499 - Tissue Eng Part A. 2014 Apr;20(7-8):1325-35 – reference: 16473959 - Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2196-203 – reference: 21757660 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2210-5 – reference: 21415390 - Circ Res. 2011 Apr 1;108(7):792-6 – reference: 15724138 - Q J Nucl Med Mol Imaging. 2005 Mar;49(1):81-96 – reference: 22465692 - J Mol Cell Cardiol. 2012 Jun;52(6):1249-56 – reference: 21889943 - J Mol Cell Cardiol. 2012 Apr;52(4):822-31 – reference: 8504505 - Circulation. 1993 Jun;87(6):1921-7 – reference: 17320570 - J Thorac Cardiovasc Surg. 2007 Mar;133(3):717-25 – reference: 23117550 - JAMA. 2012 Dec 12;308(22):2369-79 – reference: 20671238 - Circ Res. 2010 Oct 1;107(7):913-22 – reference: 23676629 - Cell Transplant. 2014;23(9):1045-59 – reference: 15321700 - Eur Heart J. 2004 Aug;25(16):1419-27 – reference: 21814420 - J Cardiovasc Dis Res. 2011 Apr;2(2):133-6 – reference: 22636682 - Am J Physiol Heart Circ Physiol. 2012 Aug 1;303(3):H256-70 – reference: 24029934 - Methods Mol Biol. 2013;1037:145-63 – reference: 19666564 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14022-7 – reference: 21475412 - Curr Cardiovasc Imaging Rep. 2011 Apr;4(2):149-158 – reference: 15642764 - Circulation. 2005 Jan 18;111(2):150-6 – reference: 22084195 - JAMA. 2011 Nov 16;306(19):2110-9 – reference: 21658561 - J Am Coll Cardiol. 2011 Jun 14;57(24):2409-15 – reference: 23686370 - J Am Heart Assoc. 2013 Jun;2(3):e000140 – reference: 21981749 - Expert Opin Biol Ther. 2011 Dec;11(12):1569-79 – reference: 21293002 - Circ Res. 2011 Mar 18;108(6):653-63 – reference: 6965556 - Am J Cardiol. 1980 Feb;45(2):210-6 – reference: 19958962 - J Am Coll Cardiol. 2009 Dec 8;54(24):2277-86 – reference: 16308009 - J Thorac Cardiovasc Surg. 2005 Dec;130(6):1631-8 – reference: 6821896 - Circulation. 1983 Mar;67(3):549-57 – reference: 23478196 - Int J Cardiol. 2013 Oct 3;168(3):2221-7 – reference: 24080908 - J Am Heart Assoc. 2013 Oct;2(5):e000253 – reference: 16820557 - Circulation. 2006 Jul 4;114(1 Suppl):I101-7 – reference: 19586959 - Eur Heart J. 2009 Nov;30(22):2722-32 – reference: 24449819 - Circ Res. 2014 Apr 11;114(8):1292-301 – reference: 3931960 - Clin Physiol. 1985 Oct;5(5):403-15 – reference: 24723652 - Circ Res. 2014 Apr 11;114(8):1222-4 – reference: 16061805 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11474-9 – reference: 21885831 - Circ Res. 2011 Oct 14;109(9):1044-54 |
SSID | ssj0014329 |
Score | 2.574532 |
Snippet | RATIONALE:Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with... Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1302 |
SubjectTerms | Cardiomyopathies - therapy Cell- and Tissue-Based Therapy - methods Cicatrix - pathology Cicatrix - therapy Coronary Artery Bypass Fibrosis - pathology Fibrosis - therapy Follow-Up Studies Humans Injections Magnetic Resonance Imaging Male Mesenchymal Stem Cell Transplantation - methods Middle Aged Myocardial Ischemia - therapy Myocardium - pathology Phenotype Prospective Studies Time Factors Treatment Outcome Ventricular Dysfunction, Left - therapy |
Title | Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion, and Fibrotic Burden When Administered to Patients Undergoing Coronary Artery Bypass Grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) Trial |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24565698 https://www.proquest.com/docview/1515648604 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Zb9NAEICXtkgIhBA34dIg8QBKUxLbdWLeovQIoELUNlJekLXrrNuIJq6cRFX765mZ3bVdKOeLFTmxV87OtzM7nkOI12nqtyPPixrRZjNtBKiQGlEnwcXQR-skSptUYZ2iLT6H_WHwcbQ5Wln9WolaWi7URnJxZV7J_8wqnsN5pSzZf5jZ4qZ4Aj_j_OIRZxiPfzXH3SV3n6Uo1illESXH51PO_9DTOnnk5xR-NcbJo-By2mbi30h5kXnGVcIXc5PNcmTcgaTiONQD__UFzwcVNU6Xc3uOXOwp7q4zqvGqOP2hfnaMB2kL8FLbT7Jlba3WOffYzY8yk9ebZ5z5yzGk52j1nqLZXj_KZepyrkliB3nmcj_r-zhgNp1csElsS1_vVR7zgB6zp7n5KJdGoKcZuLGH5dg9piDBRZJTwMmoHux_2ds-7G8PD8gtwq1LqmZ6b5Intq9Z3ZZDKtzmnySqd64byTHCco7r6iQrtiZbkx1tShlv4VXn9cK5vkuGtp6pE-vK2pVlBPbAZqsfTKpemBYH71gtoa3m8IJGsGn6yRSqxSTIWoY6FUVB74uv1mAhabDeh_0eEtjtd6mY84ZPS2-z-nucltMpizW_uQ5NK-8fSoe7r1bFdQ93UZwLPyoioNBS9iKb1IajvrtyTCqWbe9y2XL7aTt2S9w-yyjCY_6NEzwqZtrhXXHH7q-ga2C5J1b07L64sWcjSB5c65XMQIUZIGaAmQHLDJTMQJUZmMzAMQOOmXUwxEBBzDqg-ILjBQwvQLxAlRdYZOB4gZIXcLyA4QUML-B4eQ8o81ChBUpagGmBLIUKLUC0ANEClhZ6DkcLlLSApQUsLfCmZOUtMCkPxXBn-7DXb9hGKo3EawdNXHjbHtrq0guV9lQa-VEn8mQQKbRetRo3m0maqCCRIWrzRPq6hb-iOn9KR77f0qH_SKzNspl-IkCFXpCGnbFGKzZojwPptVUSdaT0W-NQKlUTgROSOLFdBqjZzUnM3oawFZdiRhURYiNmNbFRXHZqyuz86YJXTgJjVIgkH3KmUXZi2qGF1FovqInHRjSLWzpRrgnvkqzGJun890M-_eXtnomb5ZrwXKwt8qV-gXuVhXrJxH0HExtNZQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autologous+mesenchymal+stem+cells+produce+concordant+improvements+in+regional+function%2C+tissue+perfusion%2C+and+fibrotic+burden+when+administered+to+patients+undergoing+coronary+artery+bypass+grafting%3A+The+Prospective+Randomized+Study+of+Mesenchymal+Stem+Cell+Therapy+in+Patients+Undergoing+Cardiac+Surgery+%28PROMETHEUS%29+trial&rft.jtitle=Circulation+research&rft.au=Karantalis%2C+Vasileios&rft.au=DiFede%2C+Darcy+L&rft.au=Gerstenblith%2C+Gary&rft.au=Pham%2C+Si&rft.date=2014-04-11&rft.eissn=1524-4571&rft.volume=114&rft.issue=8&rft.spage=1302&rft_id=info:doi/10.1161%2FCIRCRESAHA.114.303180&rft_id=info%3Apmid%2F24565698&rft.externalDocID=24565698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |