Ultra-short-term forecasting of agricultural intelligent greenhouse power load based on ISDS and MDUS-LSTM

The agricultural smart greenhouse electric load differs significantly from the traditional building electric load. It is more susceptible to the influence of meteorological conditions, featuring poor regularity and significant random fluctuations, so load forecasting faces new challenges. To address...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2661; no. 1; pp. 12010 - 12020
Main Authors Yu, Binbin, Xin, Xiaoming, Kong, Weizheng, Wu, Hengtian, Wu, Xiaoyu, Sun, Bo
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The agricultural smart greenhouse electric load differs significantly from the traditional building electric load. It is more susceptible to the influence of meteorological conditions, featuring poor regularity and significant random fluctuations, so load forecasting faces new challenges. To address this challenge, this paper focuses on a variety of meteorological and historical similar feature extraction, innovates model updating strategies, and proposes a new ultra-short-term forecasting method for agricultural smart greenhouse electric loads. Firstly, an improved similar day selection (ISDS) method is designed. This method considers both trend similarity and magnitude similarity of time series. It sets weights according to the degree of influence of different meteorological features on load, thus improving the learning efficiency of the model. Next, a model dynamic update strategy (MDUS) is designed. This strategy consists of initial training of forecasting model parameters based on historical similar daily loads and online updating of forecasting model parameters based on adjacent daily load data. Then, the forecasting model is trained online and fine-tuned with the parameters based on the adjacent daily load data. The dynamically updated forecasting model is used to achieve ultra-short-term forecasting of the electric load to improve the forecasting accuracy and adaptability of the model. Finally, the effectiveness of the proposed method is verified by actual electrical load data, real-time meteorological data, and NWP data collected in an agricultural smart greenhouse in Shouguang, China.
AbstractList The agricultural smart greenhouse electric load differs significantly from the traditional building electric load. It is more susceptible to the influence of meteorological conditions, featuring poor regularity and significant random fluctuations, so load forecasting faces new challenges. To address this challenge, this paper focuses on a variety of meteorological and historical similar feature extraction, innovates model updating strategies, and proposes a new ultra-short-term forecasting method for agricultural smart greenhouse electric loads. Firstly, an improved similar day selection (ISDS) method is designed. This method considers both trend similarity and magnitude similarity of time series. It sets weights according to the degree of influence of different meteorological features on load, thus improving the learning efficiency of the model. Next, a model dynamic update strategy (MDUS) is designed. This strategy consists of initial training of forecasting model parameters based on historical similar daily loads and online updating of forecasting model parameters based on adjacent daily load data. Then, the forecasting model is trained online and fine-tuned with the parameters based on the adjacent daily load data. The dynamically updated forecasting model is used to achieve ultra-short-term forecasting of the electric load to improve the forecasting accuracy and adaptability of the model. Finally, the effectiveness of the proposed method is verified by actual electrical load data, real-time meteorological data, and NWP data collected in an agricultural smart greenhouse in Shouguang, China.
Author Xin, Xiaoming
Wu, Hengtian
Wu, Xiaoyu
Sun, Bo
Yu, Binbin
Kong, Weizheng
Author_xml – sequence: 1
  givenname: Binbin
  surname: Yu
  fullname: Yu, Binbin
  organization: Control Science and Engineering College, Shandong University . , . China
– sequence: 2
  givenname: Xiaoming
  surname: Xin
  fullname: Xin, Xiaoming
  organization: Control Science and Engineering College, Shandong University . , . China
– sequence: 3
  givenname: Weizheng
  surname: Kong
  fullname: Kong, Weizheng
  organization: State Grid Energy Research Institute Co., Ltd . , . China
– sequence: 4
  givenname: Hengtian
  surname: Wu
  fullname: Wu, Hengtian
  organization: State Grid Energy Research Institute Co., Ltd . , . China
– sequence: 5
  givenname: Xiaoyu
  surname: Wu
  fullname: Wu, Xiaoyu
  organization: State Grid Energy Research Institute Co., Ltd . , . China
– sequence: 6
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  organization: Control Science and Engineering College, Shandong University . , . China
BookMark eNqFkN1KxDAQhYMoqKvPYMA7oe4k7abJpaz_rCjUvQ7ZdrJ2qUlNWsS3t2VFEQTnZgbmO3OYc0h2nXdIyAmDcwZSTlme8UTMlJhyIdiUTYFxYLBDDr43u9-zlPvkMMYNQDpUfkA2y6YLJokvPnRJh-GVWh-wNLGr3Zp6S8061GXfdH0wDa1dh01Tr9F1dB0Q3YvvI9LWv2OgjTcVXZmIFfWO3hWXBTWuog-XyyJZFM8PR2TPmibi8VefkOX11fP8Nlk83tzNLxZJyfMMEsF5piBdITJWCgNYAajUsvE7xUs1y6RdKVkJaTOjqhlKqZgR1loJKeN5OiGn27tt8G89xk5vfB_cYKm5AhAS8hkMVL6lyuBjDGh1G-pXEz40Az0Gq8fI9BifHq0109tgB-XZVln79uf0_dO8-A3qtrIDnP4B_2fxCb-ViMY
Cites_doi 10.1016/j.apenergy.2021.116452
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2661/1/012010
DatabaseName Institute of Physics - IOP eJournals - Open Access
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: IOP Publishing
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2661_1_012010
JPCS_2661_1_012010
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2740-6224903bee11c6a0ed0093f1266192c9548fb98d68f4a9d5e8891a6fff8031273
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Thu Oct 10 16:28:56 EDT 2024
Thu Nov 21 21:56:45 EST 2024
Tue Aug 20 22:17:08 EDT 2024
Sun Aug 18 15:00:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2740-6224903bee11c6a0ed0093f1266192c9548fb98d68f4a9d5e8891a6fff8031273
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2661/1/012010
PQID 2900680750
PQPubID 4998668
PageCount 11
ParticipantIDs proquest_journals_2900680750
crossref_primary_10_1088_1742_6596_2661_1_012010
iop_journals_10_1088_1742_6596_2661_1_012010
PublicationCentury 2000
PublicationDate 20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Xing (JPCS_2661_1_012010bib4) 2011; 11
Chengwen (JPCS_2661_1_012010bib9) 2020; 44
Fei (JPCS_2661_1_012010bib22) 2021
Zhixing (JPCS_2661_1_012010bib12) 2020; 29
Liang (JPCS_2661_1_012010bib17) 2021; 285
Jinji (JPCS_2661_1_012010bib5) 2018; 37
Zhuo (JPCS_2661_1_012010bib8) 2018; 47
Gang (JPCS_2661_1_012010bib11) 2014
Zewen (JPCS_2661_1_012010bib21) 2020; 32
Herui (JPCS_2661_1_012010bib7) 2016; 43
Bing (JPCS_2661_1_012010bib14) 2019; 43
Jianwen (JPCS_2661_1_012010bib1) 2008; 36
Ruixiao (JPCS_2661_1_012010bib18) 2020
Shanshan (JPCS_2661_1_012010bib3) 2022; 31
Chenxi (JPCS_2661_1_012010bib6) 2015
Zhenyu (JPCS_2661_1_012010bib16) 2021; 24
Yuansheng (JPCS_2661_1_012010bib10) 2020; 4
Chuanjun (JPCS_2661_1_012010bib13) 2021; 40
Yh (JPCS_2661_1_012010bib19) 2001
Chenxi (JPCS_2661_1_012010bib20) 2022; 34
Zhen (JPCS_2661_1_012010bib2) 2021; 39
Jixiang (JPCS_2661_1_012010bib15) 2019
References_xml – volume: 11
  start-page: 4
  year: 2011
  ident: JPCS_2661_1_012010bib4
  article-title: Nonlinear Flow Load Prediction Based on Adaptive Auto-regression Model [J]
  publication-title: Science Technology and Engineering
  contributor:
    fullname: Xing
– volume: 24
  start-page: 8
  year: 2021
  ident: JPCS_2661_1_012010bib16
  article-title: Short-term electric power Load Prediction based on LSTM neural network [J]
  publication-title: Electric Power Big Data
  contributor:
    fullname: Zhenyu
– volume: 4
  year: 2020
  ident: JPCS_2661_1_012010bib10
  article-title: SVM short-time Power Load Prediction Based on Time Series [J]
  publication-title: Modern Information Technology
  contributor:
    fullname: Yuansheng
– start-page: 5
  year: 2014
  ident: JPCS_2661_1_012010bib11
  article-title: Bp-ann method for short-term load forecasting of power grid and its application [J]
  publication-title: Power Construction
  contributor:
    fullname: Gang
– volume: 34
  start-page: 8
  year: 2022
  ident: JPCS_2661_1_012010bib20
  article-title: Short-term load forecasting based on similar-day and multi-integrated combinations [J]
  publication-title: Proceedings of the Chinese Society of Universities for Electric Power System and Automation
  contributor:
    fullname: Chenxi
– year: 2021
  ident: JPCS_2661_1_012010bib22
  article-title: Remaining life prediction of lithium batteries based on sequential Bayesian updating [J]
  publication-title: Computer Integrated Manufacturing Systems
  contributor:
    fullname: Fei
– volume: 43
  start-page: 8
  year: 2016
  ident: JPCS_2661_1_012010bib7
  article-title: SARIMA Mid-term Power load Prediction based on HP Filter [J]
  publication-title: Journal of North China Electric Power University: Natural Science Edition
  contributor:
    fullname: Herui
– volume: 37
  start-page: 7
  year: 2018
  ident: JPCS_2661_1_012010bib5
  article-title: Daily Load Prediction of Power Grid Based on ARMA and ANN Model Combination Crossover Method [J]
  publication-title: Zhejiang Electric Power
  contributor:
    fullname: Jinji
– start-page: 7
  year: 2019
  ident: JPCS_2661_1_012010bib15
  article-title: Short-term Load Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model [J]
  publication-title: Automation of Electric Power Systems
  contributor:
    fullname: Jixiang
– start-page: 1805
  year: 2001
  ident: JPCS_2661_1_012010bib19
  article-title: Short-term electric load forecasting using ANN based trends combination model
  publication-title: (2001) PROCEEDINGS OF THE 2001 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING, VOLS I AND II 2001
  contributor:
    fullname: Yh
– volume: 32
  start-page: 8
  year: 2020
  ident: JPCS_2661_1_012010bib21
  article-title: Multifactor short-term load forecasting model based on PCA-DBILSTM [J]
  publication-title: Proceedings of the Chinese Society of Universities for Electric Power System and Automation
  contributor:
    fullname: Zewen
– volume: 40
  year: 2021
  ident: JPCS_2661_1_012010bib13
  article-title: Short-term Power Load Prediction based on LSTM Recurrent Neural Network [J]
  publication-title: Electric Power Engineering Technology
  contributor:
    fullname: Chuanjun
– volume: 39
  start-page: 5
  year: 2021
  ident: JPCS_2661_1_012010bib2
  article-title: Short-term power load forecasting based on VMD-LSTM-MLR [J]
  publication-title: Water And Power Energy Science
  contributor:
    fullname: Zhen
– volume: 31
  start-page: 6
  year: 2022
  ident: JPCS_2661_1_012010bib3
  article-title: Prediction of Ultra-short-term Power Load based on CNN-BilstM-ATTENTION [J]
  publication-title: Journal of Yunnan Minzu University: Natural Science
  contributor:
    fullname: Shanshan
– year: 2015
  ident: JPCS_2661_1_012010bib6
  article-title: Short-term Power Load Forecasting Based on ARIMA Model [J]
  publication-title: Jilin Electric Power
  contributor:
    fullname: Chenxi
– volume: 36
  start-page: 3
  year: 2008
  ident: JPCS_2661_1_012010bib1
  article-title: Research on load forecasting method of rural power system [J]
  publication-title: Journal of Anhui Agricultural Sciences
  contributor:
    fullname: Jianwen
– start-page: 181
  year: 2020
  ident: JPCS_2661_1_012010bib18
  article-title: Short-term load prediction by multilayer long and short-term memory neural network considering temperature fuzzification [J]
  publication-title: Power Automation Equipment
  contributor:
    fullname: Ruixiao
– volume: 44
  start-page: 8
  year: 2020
  ident: JPCS_2661_1_012010bib9
  article-title: Load Prediction Method based on CNN-GRU Hybrid Neural Network [J]
  publication-title: Power Grid Technology
  contributor:
    fullname: Chengwen
– volume: 285
  start-page: 116452
  year: 2021
  ident: JPCS_2661_1_012010bib17
  article-title: A review of machine learning in building load prediction [J]
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.116452
  contributor:
    fullname: Liang
– volume: 29
  start-page: 6
  year: 2020
  ident: JPCS_2661_1_012010bib12
  article-title: Short-term Power Load Prediction based on K-MEANS and CNN [J]
  publication-title: Application of Computer Systems
  contributor:
    fullname: Zhixing
– volume: 47
  start-page: 3
  year: 2018
  ident: JPCS_2661_1_012010bib8
  article-title: Short-term Power Load Forecasting Method based on Deep Learning LSTM Network [J]
  publication-title: Electronic Technique (Shanghai)
  contributor:
    fullname: Zhuo
– volume: 43
  year: 2019
  ident: JPCS_2661_1_012010bib14
  article-title: CNN-GRU short-term power load forecasting method based on attention mechanism [J]
  publication-title: Power Grid Technology
  contributor:
    fullname: Bing
SSID ssj0033337
Score 2.3971395
Snippet The agricultural smart greenhouse electric load differs significantly from the traditional building electric load. It is more susceptible to the influence of...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 12010
SubjectTerms Electrical loads
Feature extraction
Forecasting
Greenhouses
Mathematical models
Meteorological data
Model updating
Parameters
Physics
Similarity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EXwRP3E6JaCPhrXZliVPIur8wInQDfYW2iaZymjrOv9_7_rhFEH72B6EXpL73V1-uSPkrOdhX6uuYJF0nHWFi5gyijMFphDwVUWRw9TA8EncjbsPk96kSrjlFa2ytomFoTZpjDnyNldFmwgAuIvsnWHXKDxdrVporJI1n_cFUvrk4La2xB14-uWFSM4AaWXN74Kgr3qnRBsRqu238RIpXqP9hk6rr2n2y0QXuDPYIpuVw0gvyxneJis22SHrBXEzznfJ23i2mIcsfwE3mqGZpeCF2jjMkc5MU0fD6fyrvAZ9_SrAuaBTZNy8QOBvaYat0ugsDQ1FVDM0Teh9cB3QMDF0eD0O2GMwGu6R8eBmdHXHqv4JLIZYE6JCgGfldSJrfT8WoWcN5i-cj3-seIyl3lykpBHSdUNlelZK5YfCOSdhq4Nfs08aSZrYA0KlH3MDcMqFARdA9bCcMQRymI9wcYd7TeLVetNZWSZDF8fbUmpUtUZVaxxY-7pUdZOcg351tWXy_8VPf4g_PF8FPyV0ZlyTtOrpWooul87h35-PyAZ2ky_ZKi3SWMw_7DH4HIvopFhYn0VhyyM
  priority: 102
  providerName: ProQuest
Title Ultra-short-term forecasting of agricultural intelligent greenhouse power load based on ISDS and MDUS-LSTM
URI https://iopscience.iop.org/article/10.1088/1742-6596/2661/1/012010
https://www.proquest.com/docview/2900680750
Volume 2661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RVkhceCMCJVoJjmziR7zdPULb0FakjXAjelvZ-2ihlR3FzoVfz4wfhYAQQvhg-bDP8Xrm2_U3MwBvkoDyWk0Ez6WP-ET4nCurIq5QFaJ9VXnu6WhgdiqOFpOTi-TiZ1-Yctmp_hE-toGCWxF2hDg5xqYjLhIlxmRcxuGY_D_Jy2onllIQre_4bN5r4xivvdYpkipJ2XO8_tzQhoXawlH8pqYb2zN9AKYfdUs5uR6t63xkvv0S0PH_pvUQ7nfQlL1razyCO654DHcbiqipnsDXxU29ynh1hYCdk0JniHedySoiTrPSs-xydRvIg325DfVZs0vi9lyV68qxJSVlYzdlZhnZT8vKgh2nBynLCstmB4uUf0zPZ09hMT083z_iXaYGbnBXi_tPBAIqiHPnwtCILHCWTkp8SDNRkaGgcj5X0grpJ5myiZNShZnw3ktUKoignsF2URbuOTAZmsii4Y6ERbChEgqcjFtGOvnwJo6CAQT929HLNiCHbn6kS6lJhJpEqKljHepWhAN4i0LX3cdZ_b34643iJ_P9dLOEXlo_gN1-UfwoGqkmlwmisBf_1udLuEd57FuezC5s16u1e4Vop86HsCWnH4aw8_7wdP5pSJYnGTZLHO9n8efvX0HvwQ
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,38865,38890,43600,43805,53841,53867
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9OEX0RP3F-BvTRsLbravIkos5tbiJ0A99C2yTbZLR1nf-_d_2YiqB9bI-WXpL73V0u9yPksmUhr5XrsZAbh7meCZlQwmECTCHgqwhDg6mBwbPXGbm919ZrmXDLyrLKyibmhlolEebIG47IaSIA4G7Sd4asUbi7WlJo1Mia24RX40nx9mNliZtwXRcHIh0GSMur-i4I-sp7wmsgQjXsBh4ixWO039CpNk3SXyY6x532NtkqHUZ6W4zwDlnR8S5Zzws3o2yPvI1mi3nAsgm40QzNLAUvVEdBhuXMNDE0GM-X7TXodNmAc0HHWHEzgcBf0xSp0ugsCRRFVFM0iWnXv_dpECs6uB_5rO8PB_tk1H4Y3nVYyZ_AIog1ISoEeBZWM9TatiMvsLTC_IWx8Y-FE2GrNxMKrjxu3EColuZc2IFnjOGw1MGvOSCrcRLrQ0K5HTkK4NTxFLgAooXtjCGQw3yEiZqOVSdWpTeZFm0yZL69zblEVUtUtcQPS1sWqq6TK9CvLJdM9r_4xQ_x3sud_1NCpsrUyUk1XF-iX1Pn6O_H52SjMxz0Zb_7_HRMNpFZvqhcOSGri_mHPgX_YxGe5ZPsE9pVzgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6x6CEuiFWU1RLviMnSxthHRKnYykMKFdysJLZZhJKqKf-fmSQtqp4QIqccJrYzsef7xhnPAPyNfKpr1RE8lS7kHeFSrowKuUJTiPiq0tTR1kD_TlwOOtdP0dMc9KZnYYphY_pP8LZOFFyrsAmIkx42HXIRKeERuHiBR-c_A98bGjcPi7iABTlh_9qPE4vcxuu0PhhJD0o5ifP6vrEZlJrHkfxnqiv86a3CSkMc2Vk9zDWYs_k6_KkCOLNyA94G7-NRwssXpNOczC1DNmqzpKSwZlY4ljyPpmk22Os0EeeYPVPkzUvxUVo2pJJp7L1IDCN0M6zI2VXcjVmSG9bvDmJ-Gz_0N2HQu3g4v-RNHQWeoc-J3iHCtPLbqbVBkInEt4b2MVxAb6zCjFK-uVRJI6TrJMpEVkoVJMI5J3HJI7_ZgoW8yO02MBlkoUFYDYVBKqAiSmuMDh3tS7isHfot8Cd608M6XYaufnNLqUnVmlStqWMd6FrVLThG_epm6ZQ_ix_NiF_fn8ezEhonQgv2Jp_rSzRUVaUR5Eg7v-vzEJbuuz19e3V3swvLVHC-DmjZg4Xx6MPuIy0ZpwfVnPsEKMLPWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-short-term+forecasting+of+agricultural+intelligent+greenhouse+power+load+based+on+ISDS+and+MDUS-LSTM&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Yu%2C+Binbin&rft.au=Xin%2C+Xiaoming&rft.au=Kong%2C+Weizheng&rft.au=Wu%2C+Hengtian&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2661&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2661%2F1%2F012010&rft.externalDocID=JPCS_2661_1_012010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon