Growing pains: understanding the impact of likelihood uncertainty on hierarchical Bayesian inference for gravitational-wave astronomy
ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the U...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 526; no. 3; pp. 3495 - 3503 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
10.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases. |
---|---|
AbstractList | Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases. ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases. |
Author | Talbot, Colm Golomb, Jacob |
Author_xml | – sequence: 1 givenname: Colm orcidid: 0000-0003-2053-5582 surname: Talbot fullname: Talbot, Colm email: colm.talbot@ligo.org – sequence: 2 givenname: Jacob surname: Golomb fullname: Golomb, Jacob |
BookMark | eNqFkEFPAjEQhRuDiYBePffqYaG73S6LNyWKJiRe9LwZ2ilUl3bTFsj-AP-3i-DFxHiaycz73mTegPSss0jIdcpGKZvy8cZ6COMQQWXTojwj_ZQXIun6okf6jHGRlJM0vSCDEN4ZYznPij75nHu3N3ZFGzA23NKtVeg7D6sOw7hGajYNyEidprX5wNqsnVOdTKKPHRJb6ixdG_Tg5dpIqOk9tBgMWGqsRo-dkmrn6crDzkSIxlmokz3skEKI3lm3aS_JuYY64NWpDsnb48Pr7ClZvMyfZ3eLRGYTHhNcTkqVi1Iusxx4qkqeZakWsmDdXmVaTKdaYKYmoMpc8FwiFstSIFNCa1UUfEhGR1_pXQgeddV4swHfVimrDiFW3yFWPyF2QP4LkKcfogdT_43dHDG3bf478QWLH48F |
CitedBy_id | crossref_primary_10_1103_PhysRevD_108_103009 crossref_primary_10_1088_1361_6382_ad4509 crossref_primary_10_1103_PhysRevX_14_021005 crossref_primary_10_1103_PhysRevD_110_023040 crossref_primary_10_1051_0004_6361_202451374 crossref_primary_10_1103_PhysRevD_111_044048 crossref_primary_10_1051_0004_6361_202347007 crossref_primary_10_1088_1361_6382_ad9c0e crossref_primary_10_3847_1538_4357_ad1604 crossref_primary_10_3847_1538_4357_ad4709 crossref_primary_10_1103_PhysRevD_108_124060 crossref_primary_10_1103_PhysRevD_111_063043 crossref_primary_10_1103_PhysRevD_109_064056 crossref_primary_10_1103_PhysRevD_109_103006 crossref_primary_10_1103_PhysRevD_110_123041 crossref_primary_10_1103_PhysRevD_111_L061305 crossref_primary_10_3847_1538_4357_ad499b crossref_primary_10_1103_PhysRevLett_133_051401 crossref_primary_10_3847_1538_4357_ad83b5 crossref_primary_10_1103_PhysRevD_109_104036 |
Cites_doi | 10.1093/jssam/smac029 10.3847/2041-8213/abe949 10.3847/2041-8213/aad800 10.5281/zenodo.6368595 10.1103/PhysRevD.47.2198 10.1103/PhysRevD.100.043012 10.3847/2515-5172/ab1d5f 10.1103/PhysRevD.103.063016 10.5281/zenodo.5654673 10.1103/PhysRevD.94.044031 10.1088/0264-9381/32/7/074001 10.5281/zenodo.5546663 10.1038/s41586-020-2649-2 10.1103/PhysRevD.85.122006 10.1103/PhysRevD.74.041501 10.3847/1538-4357/acb5ed 10.48550/arXiv.2306.09234 10.1103/PhysRevD.104.123030 10.1088/0264-9381/32/2/024001 10.48550/arXiv.2302.07289 10.1093/mnras/stz896 10.5281/zenodo.5546676 10.1103/PhysRevX.11.021053 10.3847/1538-4357/ac43bc 10.1103/PhysRevD.96.023012 10.3847/2041-8213/ab3800 10.48550/arXiv.2307.02765 10.1214/16-STS598 10.3847/1538-4357/ac3667 10.1103/PhysRevD.104.044062 10.3847/1538-4357/ac366d 10.1103/PhysRevD.91.023005 10.3847/1538-4357/aab34c 10.3847/1538-4357/ac27ac 10.1103/PhysRevX.9.031040 10.1017/pasa.2019.2 10.1103/PhysRevD.102.122004 10.3847/1538-4357/ac4bc0 10.1103/PhysRevResearch.2.023151 10.1103/PhysRevD.106.043009 10.1103/PhysRevD.100.043030 10.1007/978-981-15-4702-7_45-1 10.3847/1538-4365/ab06fc 10.3847/1538-4357/aca591 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/mnras/stad2968 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3503 |
ExternalDocumentID | 10_1093_mnras_stad2968 10.1093/mnras/stad2968 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABVLG AHGBF CITATION |
ID | FETCH-LOGICAL-c273t-eb78d458cb24a31d83221f5c60c27d2f599f5e2d7ad84534cee6b85e0d5ffd663 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Tue Jul 01 03:32:40 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Wed Apr 02 07:03:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | methods: statistical gravitational waves methods: data analysis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-eb78d458cb24a31d83221f5c60c27d2f599f5e2d7ad84534cee6b85e0d5ffd663 |
ORCID | 0000-0003-2053-5582 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1093_mnras_stad2968 crossref_citationtrail_10_1093_mnras_stad2968 oup_primary_10_1093_mnras_stad2968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-10 |
PublicationDateYYYYMMDD | 2023-10-10 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Liu (2024092801080644400_bib26) 2022 Ashton (2024092801080644400_bib7) 2019; 241 Harris (2024092801080644400_bib22) 2020; 585 Essick (2024092801080644400_bib15) 2022 Abbott (2024092801080644400_bib46) 2021 Vitale (2024092801080644400_bib50) 2021; 103 Elliott (2024092801080644400_bib13) 2017; 32 Olsen (2024092801080644400_bib33) 2022; 106 Talbot (2024092801080644400_bib39) 2017; 96 Kish (2024092801080644400_bib23) 1995 Finn (2024092801080644400_bib18) 1993; 47 Okuta (2024092801080644400_bib31) 2017 The LIGO Scientific Collaboration (2024092801080644400_bib43) 2021 Nitz (2024092801080644400_bib30) 2023 Barbary (2024092801080644400_bib8) 2016 Essick (2024092801080644400_bib14) 2023 Veske (2024092801080644400_bib49) 2021; 922 Campanelli (2024092801080644400_bib10) 2006; 74 Talbot (2024092801080644400_bib41) 2022; 927 Abbott (2024092801080644400_bib4) 2021; 913 The LIGO Scientific Collaboration (2024092801080644400_bib47) 2022 The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration (2024092801080644400_bib45) 2021 Talbot (2024092801080644400_bib38) 2021 Loredo (2024092801080644400_bib27) 2004 Allen (2024092801080644400_bib6) 2012; 85 Abbott (2024092801080644400_bib2) 2019; 882 Callister (2024092801080644400_bib9) 2023 Weizmann Kiendrebeogo (2024092801080644400_bib52) 2023 Farr (2024092801080644400_bib17) 2015; 91 The LIGO Scientific Collaboration (2024092801080644400_bib44) 2021 Oliphant (2024092801080644400_bib32) 2006 Abbott (2024092801080644400_bib3) 2021; 11 Wysocki (2024092801080644400_bib53) 2019; 100 Thrane (2024092801080644400_bib48) 2019; 36 Acernese (2024092801080644400_bib5) 2015; 32 Payne (2024092801080644400_bib34) 2020; 102 Pürrer (2024092801080644400_bib36) 2020; 2 Edelman (2024092801080644400_bib12) 2023; 946 Fishbach (2024092801080644400_bib19) 2018; 863 Golomb (2024092801080644400_bib20) 2022 Petrov (2024092801080644400_bib35) 2022; 924 Farr (2024092801080644400_bib16) 2019; 3 Smith (2024092801080644400_bib37) 2016; 94 Morisaki (2024092801080644400_bib29) 2021; 104 Leslie (2024092801080644400_bib25) 2021; 104 Vitale (2024092801080644400_bib51) 2022 LIGO Scientific Collaboration (2024092801080644400_bib24) 2015; 32 Talbot (2024092801080644400_bib42) 2019; 100 Mandel (2024092801080644400_bib28) 2019; 486 Golomb (2024092801080644400_bib21) 2022; 926 Edelman (2024092801080644400_bib11) 2022; 924 Talbot (2024092801080644400_bib40) 2018; 856 Abbott (2024092801080644400_bib1) 2019; 9 |
References_xml | – start-page: smac029 year: 2022 ident: 2024092801080644400_bib26 publication-title: J. Surv. Stat. Meth. doi: 10.1093/jssam/smac029 – volume: 913 start-page: L7 year: 2021 ident: 2024092801080644400_bib4 publication-title: ApJ doi: 10.3847/2041-8213/abe949 – volume: 863 start-page: L41 year: 2018 ident: 2024092801080644400_bib19 publication-title: ApJ doi: 10.3847/2041-8213/aad800 – volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – Data Behind the Figures year: 2022 ident: 2024092801080644400_bib47 doi: 10.5281/zenodo.6368595 – volume: 47 start-page: 2198 year: 1993 ident: 2024092801080644400_bib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.2198 – volume: 100 start-page: 043012 year: 2019 ident: 2024092801080644400_bib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.043012 – volume: 3 start-page: 66 year: 2019 ident: 2024092801080644400_bib16 publication-title: Res. Notes Am. Astron. Soc. doi: 10.3847/2515-5172/ab1d5f – volume-title: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) year: 2017 ident: 2024092801080644400_bib31 – volume: 103 start-page: 063016 year: 2021 ident: 2024092801080644400_bib50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.063016 – volume-title: GWPopulation pipe, 2022-12-13 year: 2021 ident: 2024092801080644400_bib38 doi: 10.5281/zenodo.5654673 – volume: 94 start-page: 044031 year: 2016 ident: 2024092801080644400_bib37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.044031 – volume: 32 start-page: 074001 year: 2015 ident: 2024092801080644400_bib24 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/7/074001 – volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – Parameter Estimation Data Release year: 2021 ident: 2024092801080644400_bib44 doi: 10.5281/zenodo.5546663 – volume-title: Nestle, Jan 29, 2019 year: 2016 ident: 2024092801080644400_bib8 – volume-title: Survey Sampling year: 1995 ident: 2024092801080644400_bib23 – volume: 585 start-page: 357 year: 2020 ident: 2024092801080644400_bib22 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 85 start-page: 122006 year: 2012 ident: 2024092801080644400_bib6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.122006 – volume: 74 start-page: 041501 year: 2006 ident: 2024092801080644400_bib10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.041501 – volume: 946 start-page: 16 year: 2023 ident: 2024092801080644400_bib12 publication-title: ApJ doi: 10.3847/1538-4357/acb5ed – start-page: 195 volume-title: bayesian inference and maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering year: 2004 ident: 2024092801080644400_bib27 – year: 2023 ident: 2024092801080644400_bib52 doi: 10.48550/arXiv.2306.09234 – volume: 104 start-page: 123030 year: 2021 ident: 2024092801080644400_bib25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.123030 – volume: 32 start-page: 024001 year: 2015 ident: 2024092801080644400_bib5 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/2/024001 – year: 2023 ident: 2024092801080644400_bib9 doi: 10.48550/arXiv.2302.07289 – year: 2022 ident: 2024092801080644400_bib20 – volume: 486 start-page: 1086 year: 2019 ident: 2024092801080644400_bib28 publication-title: MNRAS doi: 10.1093/mnras/stz896 – volume-title: A Guide to NumPy, Vol. 1 year: 2006 ident: 2024092801080644400_bib32 – volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – O3 Search Sensitivity Estimates year: 2021 ident: 2024092801080644400_bib43 doi: 10.5281/zenodo.5546676 – volume: 11 start-page: 021053 year: 2021 ident: 2024092801080644400_bib3 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.11.021053 – volume: 926 start-page: 79 year: 2022 ident: 2024092801080644400_bib21 publication-title: ApJ doi: 10.3847/1538-4357/ac43bc – volume: 96 start-page: 023012 year: 2017 ident: 2024092801080644400_bib39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.023012 – volume: 882 start-page: L24 year: 2019 ident: 2024092801080644400_bib2 publication-title: ApJ doi: 10.3847/2041-8213/ab3800 – year: 2023 ident: 2024092801080644400_bib14 doi: 10.48550/arXiv.2307.02765 – volume: 32 start-page: 249 year: 2017 ident: 2024092801080644400_bib13 publication-title: Stat. Sci. doi: 10.1214/16-STS598 – volume: 924 start-page: 101 year: 2022 ident: 2024092801080644400_bib11 publication-title: ApJ doi: 10.3847/1538-4357/ac3667 – volume: 104 start-page: 044062 year: 2021 ident: 2024092801080644400_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.044062 – volume: 924 start-page: 54 year: 2022 ident: 2024092801080644400_bib35 publication-title: ApJ doi: 10.3847/1538-4357/ac366d – volume: 91 start-page: 023005 year: 2015 ident: 2024092801080644400_bib17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.023005 – volume: 856 start-page: 173 year: 2018 ident: 2024092801080644400_bib40 publication-title: ApJ doi: 10.3847/1538-4357/aab34c – volume: 922 start-page: 258 year: 2021 ident: 2024092801080644400_bib49 publication-title: ApJ doi: 10.3847/1538-4357/ac27ac – volume: 9 start-page: 031040 year: 2019 ident: 2024092801080644400_bib1 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – volume: 36 start-page: e010 year: 2019 ident: 2024092801080644400_bib48 publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2019.2 – volume: 102 start-page: 122004 year: 2020 ident: 2024092801080644400_bib34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.122004 – year: 2022 ident: 2024092801080644400_bib15 – volume: 927 start-page: 76 year: 2022 ident: 2024092801080644400_bib41 publication-title: ApJ doi: 10.3847/1538-4357/ac4bc0 – volume: 2 start-page: 023151 year: 2020 ident: 2024092801080644400_bib36 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023151 – volume-title: Phys. Rev. X 13, 011048 year: 2021 ident: 2024092801080644400_bib46 – year: 2021 ident: 2024092801080644400_bib45 – volume: 106 start-page: 043009 year: 2022 ident: 2024092801080644400_bib33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.043009 – volume: 100 start-page: 043030 year: 2019 ident: 2024092801080644400_bib42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.043030 – start-page: 45 volume-title: Handbook of Gravitational Wave Astronomy year: 2022 ident: 2024092801080644400_bib51 doi: 10.1007/978-981-15-4702-7_45-1 – volume: 241 start-page: 27 year: 2019 ident: 2024092801080644400_bib7 publication-title: ApJS doi: 10.3847/1538-4365/ab06fc – start-page: 59 volume-title: ApJ year: 2023 ident: 2024092801080644400_bib30 doi: 10.3847/1538-4357/aca591 |
SSID | ssj0004326 |
Score | 2.6076767 |
Snippet | ABSTRACT
Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and... Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3495 |
Title | Growing pains: understanding the impact of likelihood uncertainty on hierarchical Bayesian inference for gravitational-wave astronomy |
Volume | 526 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kJy-iVWl9MYjoaWlem4e3WqxFqF5a6K1ssrtQTJPSpEp_gP_b2TxqFUVvWXYSlkyS-WYn3zeEXAkl8QtgRTQ0VEAd5XEauGZEGQ4DJQyPM01OHj65g7HzOGGTSiw6-6GEH9idebLkWQexkrACV9N6MQJrlfzR8-STAWkXjdUKAUZMAcyNPOP307-EH01p24om_X2yV8FA6JZ-OyA7MmmSVjfTG9PpfA3XUByX-w5Zk7SHCG7TZbEHjpO9eIZIsxgdkvcHTKUxAsECs_zsFlbbfBVAgAclFRJSBfHsRcYzLWWMZlH5O0C-hjQB3RO7qCqg0-COr6VmV8Ks5gMCglvQvYoqTW8e0zf-KoHXSz4i4_79qDegVXcFGiFkyakMPV84zI9Cy-G2KfSrbSoWuQbOC0sx9BWTlvC48B1mOxhN3dBn0hBMKYFA5Zg0kjSRLQK2o0wRKjdCbOZYlsAUzgokZ9JHt-MF2oTWN30aVcvUHTDiaVkCt6eFk6a1k9rkZmO_KEU3frW8RB_-YXTyH6NTsqs7yeuwZBpnpJEvV_Ic8UYeXhSP2gdJYdtm |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growing+pains%3A+understanding+the+impact+of+likelihood+uncertainty+on+hierarchical+Bayesian+inference+for+gravitational-wave+astronomy&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Talbot%2C+Colm&rft.au=Golomb%2C+Jacob&rft.date=2023-10-10&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=3&rft.spage=3495&rft.epage=3503&rft_id=info:doi/10.1093%2Fmnras%2Fstad2968&rft.externalDocID=10.1093%2Fmnras%2Fstad2968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |