Growing pains: understanding the impact of likelihood uncertainty on hierarchical Bayesian inference for gravitational-wave astronomy

ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the U...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 526; no. 3; pp. 3495 - 3503
Main Authors Talbot, Colm, Golomb, Jacob
Format Journal Article
LanguageEnglish
Published Oxford University Press 10.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases.
AbstractList Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases.
ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases.
Author Talbot, Colm
Golomb, Jacob
Author_xml – sequence: 1
  givenname: Colm
  orcidid: 0000-0003-2053-5582
  surname: Talbot
  fullname: Talbot, Colm
  email: colm.talbot@ligo.org
– sequence: 2
  givenname: Jacob
  surname: Golomb
  fullname: Golomb, Jacob
BookMark eNqFkEFPAjEQhRuDiYBePffqYaG73S6LNyWKJiRe9LwZ2ilUl3bTFsj-AP-3i-DFxHiaycz73mTegPSss0jIdcpGKZvy8cZ6COMQQWXTojwj_ZQXIun6okf6jHGRlJM0vSCDEN4ZYznPij75nHu3N3ZFGzA23NKtVeg7D6sOw7hGajYNyEidprX5wNqsnVOdTKKPHRJb6ixdG_Tg5dpIqOk9tBgMWGqsRo-dkmrn6crDzkSIxlmokz3skEKI3lm3aS_JuYY64NWpDsnb48Pr7ClZvMyfZ3eLRGYTHhNcTkqVi1Iusxx4qkqeZakWsmDdXmVaTKdaYKYmoMpc8FwiFstSIFNCa1UUfEhGR1_pXQgeddV4swHfVimrDiFW3yFWPyF2QP4LkKcfogdT_43dHDG3bf478QWLH48F
CitedBy_id crossref_primary_10_1103_PhysRevD_108_103009
crossref_primary_10_1088_1361_6382_ad4509
crossref_primary_10_1103_PhysRevX_14_021005
crossref_primary_10_1103_PhysRevD_110_023040
crossref_primary_10_1051_0004_6361_202451374
crossref_primary_10_1103_PhysRevD_111_044048
crossref_primary_10_1051_0004_6361_202347007
crossref_primary_10_1088_1361_6382_ad9c0e
crossref_primary_10_3847_1538_4357_ad1604
crossref_primary_10_3847_1538_4357_ad4709
crossref_primary_10_1103_PhysRevD_108_124060
crossref_primary_10_1103_PhysRevD_111_063043
crossref_primary_10_1103_PhysRevD_109_064056
crossref_primary_10_1103_PhysRevD_109_103006
crossref_primary_10_1103_PhysRevD_110_123041
crossref_primary_10_1103_PhysRevD_111_L061305
crossref_primary_10_3847_1538_4357_ad499b
crossref_primary_10_1103_PhysRevLett_133_051401
crossref_primary_10_3847_1538_4357_ad83b5
crossref_primary_10_1103_PhysRevD_109_104036
Cites_doi 10.1093/jssam/smac029
10.3847/2041-8213/abe949
10.3847/2041-8213/aad800
10.5281/zenodo.6368595
10.1103/PhysRevD.47.2198
10.1103/PhysRevD.100.043012
10.3847/2515-5172/ab1d5f
10.1103/PhysRevD.103.063016
10.5281/zenodo.5654673
10.1103/PhysRevD.94.044031
10.1088/0264-9381/32/7/074001
10.5281/zenodo.5546663
10.1038/s41586-020-2649-2
10.1103/PhysRevD.85.122006
10.1103/PhysRevD.74.041501
10.3847/1538-4357/acb5ed
10.48550/arXiv.2306.09234
10.1103/PhysRevD.104.123030
10.1088/0264-9381/32/2/024001
10.48550/arXiv.2302.07289
10.1093/mnras/stz896
10.5281/zenodo.5546676
10.1103/PhysRevX.11.021053
10.3847/1538-4357/ac43bc
10.1103/PhysRevD.96.023012
10.3847/2041-8213/ab3800
10.48550/arXiv.2307.02765
10.1214/16-STS598
10.3847/1538-4357/ac3667
10.1103/PhysRevD.104.044062
10.3847/1538-4357/ac366d
10.1103/PhysRevD.91.023005
10.3847/1538-4357/aab34c
10.3847/1538-4357/ac27ac
10.1103/PhysRevX.9.031040
10.1017/pasa.2019.2
10.1103/PhysRevD.102.122004
10.3847/1538-4357/ac4bc0
10.1103/PhysRevResearch.2.023151
10.1103/PhysRevD.106.043009
10.1103/PhysRevD.100.043030
10.1007/978-981-15-4702-7_45-1
10.3847/1538-4365/ab06fc
10.3847/1538-4357/aca591
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
DBID AAYXX
CITATION
DOI 10.1093/mnras/stad2968
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3503
ExternalDocumentID 10_1093_mnras_stad2968
10.1093/mnras/stad2968
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
ID FETCH-LOGICAL-c273t-eb78d458cb24a31d83221f5c60c27d2f599f5e2d7ad84534cee6b85e0d5ffd663
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 03:32:40 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Wed Apr 02 07:03:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords methods: statistical
gravitational waves
methods: data analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-eb78d458cb24a31d83221f5c60c27d2f599f5e2d7ad84534cee6b85e0d5ffd663
ORCID 0000-0003-2053-5582
PageCount 9
ParticipantIDs crossref_primary_10_1093_mnras_stad2968
crossref_citationtrail_10_1093_mnras_stad2968
oup_primary_10_1093_mnras_stad2968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-10
PublicationDateYYYYMMDD 2023-10-10
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-10
  day: 10
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liu (2024092801080644400_bib26) 2022
Ashton (2024092801080644400_bib7) 2019; 241
Harris (2024092801080644400_bib22) 2020; 585
Essick (2024092801080644400_bib15) 2022
Abbott (2024092801080644400_bib46) 2021
Vitale (2024092801080644400_bib50) 2021; 103
Elliott (2024092801080644400_bib13) 2017; 32
Olsen (2024092801080644400_bib33) 2022; 106
Talbot (2024092801080644400_bib39) 2017; 96
Kish (2024092801080644400_bib23) 1995
Finn (2024092801080644400_bib18) 1993; 47
Okuta (2024092801080644400_bib31) 2017
The LIGO Scientific Collaboration (2024092801080644400_bib43) 2021
Nitz (2024092801080644400_bib30) 2023
Barbary (2024092801080644400_bib8) 2016
Essick (2024092801080644400_bib14) 2023
Veske (2024092801080644400_bib49) 2021; 922
Campanelli (2024092801080644400_bib10) 2006; 74
Talbot (2024092801080644400_bib41) 2022; 927
Abbott (2024092801080644400_bib4) 2021; 913
The LIGO Scientific Collaboration (2024092801080644400_bib47) 2022
The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration (2024092801080644400_bib45) 2021
Talbot (2024092801080644400_bib38) 2021
Loredo (2024092801080644400_bib27) 2004
Allen (2024092801080644400_bib6) 2012; 85
Abbott (2024092801080644400_bib2) 2019; 882
Callister (2024092801080644400_bib9) 2023
Weizmann Kiendrebeogo (2024092801080644400_bib52) 2023
Farr (2024092801080644400_bib17) 2015; 91
The LIGO Scientific Collaboration (2024092801080644400_bib44) 2021
Oliphant (2024092801080644400_bib32) 2006
Abbott (2024092801080644400_bib3) 2021; 11
Wysocki (2024092801080644400_bib53) 2019; 100
Thrane (2024092801080644400_bib48) 2019; 36
Acernese (2024092801080644400_bib5) 2015; 32
Payne (2024092801080644400_bib34) 2020; 102
Pürrer (2024092801080644400_bib36) 2020; 2
Edelman (2024092801080644400_bib12) 2023; 946
Fishbach (2024092801080644400_bib19) 2018; 863
Golomb (2024092801080644400_bib20) 2022
Petrov (2024092801080644400_bib35) 2022; 924
Farr (2024092801080644400_bib16) 2019; 3
Smith (2024092801080644400_bib37) 2016; 94
Morisaki (2024092801080644400_bib29) 2021; 104
Leslie (2024092801080644400_bib25) 2021; 104
Vitale (2024092801080644400_bib51) 2022
LIGO Scientific Collaboration (2024092801080644400_bib24) 2015; 32
Talbot (2024092801080644400_bib42) 2019; 100
Mandel (2024092801080644400_bib28) 2019; 486
Golomb (2024092801080644400_bib21) 2022; 926
Edelman (2024092801080644400_bib11) 2022; 924
Talbot (2024092801080644400_bib40) 2018; 856
Abbott (2024092801080644400_bib1) 2019; 9
References_xml – start-page: smac029
  year: 2022
  ident: 2024092801080644400_bib26
  publication-title: J. Surv. Stat. Meth.
  doi: 10.1093/jssam/smac029
– volume: 913
  start-page: L7
  year: 2021
  ident: 2024092801080644400_bib4
  publication-title: ApJ
  doi: 10.3847/2041-8213/abe949
– volume: 863
  start-page: L41
  year: 2018
  ident: 2024092801080644400_bib19
  publication-title: ApJ
  doi: 10.3847/2041-8213/aad800
– volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – Data Behind the Figures
  year: 2022
  ident: 2024092801080644400_bib47
  doi: 10.5281/zenodo.6368595
– volume: 47
  start-page: 2198
  year: 1993
  ident: 2024092801080644400_bib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.2198
– volume: 100
  start-page: 043012
  year: 2019
  ident: 2024092801080644400_bib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.043012
– volume: 3
  start-page: 66
  year: 2019
  ident: 2024092801080644400_bib16
  publication-title: Res. Notes Am. Astron. Soc.
  doi: 10.3847/2515-5172/ab1d5f
– volume-title: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)
  year: 2017
  ident: 2024092801080644400_bib31
– volume: 103
  start-page: 063016
  year: 2021
  ident: 2024092801080644400_bib50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.063016
– volume-title: GWPopulation pipe, 2022-12-13
  year: 2021
  ident: 2024092801080644400_bib38
  doi: 10.5281/zenodo.5654673
– volume: 94
  start-page: 044031
  year: 2016
  ident: 2024092801080644400_bib37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044031
– volume: 32
  start-page: 074001
  year: 2015
  ident: 2024092801080644400_bib24
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/7/074001
– volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – Parameter Estimation Data Release
  year: 2021
  ident: 2024092801080644400_bib44
  doi: 10.5281/zenodo.5546663
– volume-title: Nestle, Jan 29, 2019
  year: 2016
  ident: 2024092801080644400_bib8
– volume-title: Survey Sampling
  year: 1995
  ident: 2024092801080644400_bib23
– volume: 585
  start-page: 357
  year: 2020
  ident: 2024092801080644400_bib22
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 85
  start-page: 122006
  year: 2012
  ident: 2024092801080644400_bib6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.122006
– volume: 74
  start-page: 041501
  year: 2006
  ident: 2024092801080644400_bib10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.041501
– volume: 946
  start-page: 16
  year: 2023
  ident: 2024092801080644400_bib12
  publication-title: ApJ
  doi: 10.3847/1538-4357/acb5ed
– start-page: 195
  volume-title: bayesian inference and maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
  year: 2004
  ident: 2024092801080644400_bib27
– year: 2023
  ident: 2024092801080644400_bib52
  doi: 10.48550/arXiv.2306.09234
– volume: 104
  start-page: 123030
  year: 2021
  ident: 2024092801080644400_bib25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.123030
– volume: 32
  start-page: 024001
  year: 2015
  ident: 2024092801080644400_bib5
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– year: 2023
  ident: 2024092801080644400_bib9
  doi: 10.48550/arXiv.2302.07289
– year: 2022
  ident: 2024092801080644400_bib20
– volume: 486
  start-page: 1086
  year: 2019
  ident: 2024092801080644400_bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/stz896
– volume-title: A Guide to NumPy, Vol. 1
  year: 2006
  ident: 2024092801080644400_bib32
– volume-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run – O3 Search Sensitivity Estimates
  year: 2021
  ident: 2024092801080644400_bib43
  doi: 10.5281/zenodo.5546676
– volume: 11
  start-page: 021053
  year: 2021
  ident: 2024092801080644400_bib3
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.11.021053
– volume: 926
  start-page: 79
  year: 2022
  ident: 2024092801080644400_bib21
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac43bc
– volume: 96
  start-page: 023012
  year: 2017
  ident: 2024092801080644400_bib39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.023012
– volume: 882
  start-page: L24
  year: 2019
  ident: 2024092801080644400_bib2
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab3800
– year: 2023
  ident: 2024092801080644400_bib14
  doi: 10.48550/arXiv.2307.02765
– volume: 32
  start-page: 249
  year: 2017
  ident: 2024092801080644400_bib13
  publication-title: Stat. Sci.
  doi: 10.1214/16-STS598
– volume: 924
  start-page: 101
  year: 2022
  ident: 2024092801080644400_bib11
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3667
– volume: 104
  start-page: 044062
  year: 2021
  ident: 2024092801080644400_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.044062
– volume: 924
  start-page: 54
  year: 2022
  ident: 2024092801080644400_bib35
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac366d
– volume: 91
  start-page: 023005
  year: 2015
  ident: 2024092801080644400_bib17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.023005
– volume: 856
  start-page: 173
  year: 2018
  ident: 2024092801080644400_bib40
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab34c
– volume: 922
  start-page: 258
  year: 2021
  ident: 2024092801080644400_bib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac27ac
– volume: 9
  start-page: 031040
  year: 2019
  ident: 2024092801080644400_bib1
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.031040
– volume: 36
  start-page: e010
  year: 2019
  ident: 2024092801080644400_bib48
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2019.2
– volume: 102
  start-page: 122004
  year: 2020
  ident: 2024092801080644400_bib34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.122004
– year: 2022
  ident: 2024092801080644400_bib15
– volume: 927
  start-page: 76
  year: 2022
  ident: 2024092801080644400_bib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4bc0
– volume: 2
  start-page: 023151
  year: 2020
  ident: 2024092801080644400_bib36
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023151
– volume-title: Phys. Rev. X 13, 011048
  year: 2021
  ident: 2024092801080644400_bib46
– year: 2021
  ident: 2024092801080644400_bib45
– volume: 106
  start-page: 043009
  year: 2022
  ident: 2024092801080644400_bib33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.043009
– volume: 100
  start-page: 043030
  year: 2019
  ident: 2024092801080644400_bib42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.043030
– start-page: 45
  volume-title: Handbook of Gravitational Wave Astronomy
  year: 2022
  ident: 2024092801080644400_bib51
  doi: 10.1007/978-981-15-4702-7_45-1
– volume: 241
  start-page: 27
  year: 2019
  ident: 2024092801080644400_bib7
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab06fc
– start-page: 59
  volume-title: ApJ
  year: 2023
  ident: 2024092801080644400_bib30
  doi: 10.3847/1538-4357/aca591
SSID ssj0004326
Score 2.6076767
Snippet ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and...
Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 3495
Title Growing pains: understanding the impact of likelihood uncertainty on hierarchical Bayesian inference for gravitational-wave astronomy
Volume 526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kJy-iVWl9MYjoaWlem4e3WqxFqF5a6K1ssrtQTJPSpEp_gP_b2TxqFUVvWXYSlkyS-WYn3zeEXAkl8QtgRTQ0VEAd5XEauGZEGQ4DJQyPM01OHj65g7HzOGGTSiw6-6GEH9idebLkWQexkrACV9N6MQJrlfzR8-STAWkXjdUKAUZMAcyNPOP307-EH01p24om_X2yV8FA6JZ-OyA7MmmSVjfTG9PpfA3XUByX-w5Zk7SHCG7TZbEHjpO9eIZIsxgdkvcHTKUxAsECs_zsFlbbfBVAgAclFRJSBfHsRcYzLWWMZlH5O0C-hjQB3RO7qCqg0-COr6VmV8Ks5gMCglvQvYoqTW8e0zf-KoHXSz4i4_79qDegVXcFGiFkyakMPV84zI9Cy-G2KfSrbSoWuQbOC0sx9BWTlvC48B1mOxhN3dBn0hBMKYFA5Zg0kjSRLQK2o0wRKjdCbOZYlsAUzgokZ9JHt-MF2oTWN30aVcvUHTDiaVkCt6eFk6a1k9rkZmO_KEU3frW8RB_-YXTyH6NTsqs7yeuwZBpnpJEvV_Ic8UYeXhSP2gdJYdtm
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growing+pains%3A+understanding+the+impact+of+likelihood+uncertainty+on+hierarchical+Bayesian+inference+for+gravitational-wave+astronomy&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Talbot%2C+Colm&rft.au=Golomb%2C+Jacob&rft.date=2023-10-10&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=3&rft.spage=3495&rft.epage=3503&rft_id=info:doi/10.1093%2Fmnras%2Fstad2968&rft.externalDocID=10.1093%2Fmnras%2Fstad2968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon