Fouling and cleaning of plate heat exchangers: Dairy application

[Display omitted] •Dynamic, distributed model of plate heat exchangers captures thermo-hydraulic behavior and seamlessly integrates fouling and CIP models.•Flexible, modular definition of equipment, fluids, operation, heating and cleaning procedures.•Mechanisms and kinetics for fouling, cleaning and...

Full description

Saved in:
Bibliographic Details
Published inFood and bioproducts processing Vol. 126; pp. 32 - 41
Main Authors Sharma, A., Macchietto, S.
Format Journal Article
LanguageEnglish
Published Rugby Elsevier B.V 01.03.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0960-3085
1744-3571
DOI10.1016/j.fbp.2020.12.005

Cover

Abstract [Display omitted] •Dynamic, distributed model of plate heat exchangers captures thermo-hydraulic behavior and seamlessly integrates fouling and CIP models.•Flexible, modular definition of equipment, fluids, operation, heating and cleaning procedures.•Mechanisms and kinetics for fouling, cleaning and deposit growth/removal reflect local conditions and predict spatial distributions.•Validated against experimental data with excellent results; balances predictive accuracy and computational feasibility.•Case study demonstrates ability to improve overall heating-cleaning cycle productivity and economics. Plate heat exchangers (PHEs) used in milk thermal treatments are subject to rapid fouling, while Cleaning-in-Place (CIP) produces large amounts of wastes. Up to 80% of production costs in the dairy industry have been attributed to the effects of fouling and cleaning. In spite of decades of research, a detailed model for simulation, monitoring, control and optimisation of full heating and cleaning cycles for PHEs is still not available. Mechanistic simulation models based on differential equations typically address only fouling but not cleaning. More detailed models based on Computational Fluid Dynamics (CFD) are computationally very expensive and impractical to use for optimization, scheduling and control of complete PHEs. Here, a dynamic 2D model of PHEs is presented that enables optimizing milk thermal treatment operations, taking into account both fouling and cleaning. The model balances predictive accuracy and computational feasibility. It integrates: (i) various mechanisms and kinetics for fouling and cleaning; (ii) a detailed moving boundary model of deposit growth that captures its spatial distribution; (iii) a dynamic thermo-hydraulic model of mass and heat transfer in a single PHE channel; (iv) the flexible assembly of channels into a variety of PHE configurations, and (v) the flexible definition of heating-cleaning cycles. The fouling model has been validated for two PHE configurations against experimental data, with excellent results. Alternative fouling mechanism (due to aggregate proteins or denatured proteins, and with/without deposit re-entrainment) have been explored. Results show that the fouling observed in the two arrangements is best fitted by distinct fouling models, and that the performance of the two PHE arrangements is quite different. Dynamic cleaning models have been integrated with the deposit moving boundary model and validated. This has enabled for the first time the seamless, detailed simulation of individual and multiple heating-cleaning cycles, where each phase starts from the detailed deposit distribution at the end of the previous phase. The models detail enables the introduction of sophisticated condition-based logic in the operation of each phase and overall cycle. Using such condition-based logic it is shown that cleaning time could potentially be reduced by ∼50%. Finally, it is shown that the heating/cleaning cycle can be optimized for maximum productivity, balancing fouling and cleaning trade-offs. This is demonstrated for one of the PHE arrangements.
AbstractList Plate heat exchangers (PHEs) used in milk thermal treatments are subject to rapid fouling, while Cleaning-in-Place (CIP) produces large amounts of wastes. Up to 80% of production costs in the dairy industry have been attributed to the effects of fouling and cleaning. In spite of decades of research, a detailed model for simulation, monitoring, control and optimisation of full heating and cleaning cycles for PHEs is still not available. Mechanistic simulation models based on differential equations typically address only fouling but not cleaning. More detailed models based on Computational Fluid Dynamics (CFD) are computationally very expensive and impractical to use for optimization, scheduling and control of complete PHEs. Here, a dynamic 2D model of PHEs is presented that enables optimizing milk thermal treatment operations, taking into account both fouling and cleaning. The model balances predictive accuracy and computational feasibility. It integrates: (i) various mechanisms and kinetics for fouling and cleaning; (ii) a detailed moving boundary model of deposit growth that captures its spatial distribution; (iii) a dynamic thermo-hydraulic model of mass and heat transfer in a single PHE channel; (iv) the flexible assembly of channels into a variety of PHE configurations, and (v) the flexible definition of heating-cleaning cycles. The fouling model has been validated for two PHE configurations against experimental data, with excellent results. Alternative fouling mechanism (due to aggregate proteins or denatured proteins, and with/without deposit re-entrainment) have been explored. Results show that the fouling observed in the two arrangements is best fitted by distinct fouling models, and that the performance of the two PHE arrangements is quite different. Dynamic cleaning models have been integrated with the deposit moving boundary model and validated. This has enabled for the first time the seamless, detailed simulation of individual and multiple heating-cleaning cycles, where each phase starts from the detailed deposit distribution at the end of the previous phase. The models detail enables the introduction of sophisticated condition-based logic in the operation of each phase and overall cycle. Using such condition-based logic it is shown that cleaning time could potentially be reduced by ∼50%. Finally, it is shown that the heating/cleaning cycle can be optimized for maximum productivity, balancing fouling and cleaning trade-offs. This is demonstrated for one of the PHE arrangements.
[Display omitted] •Dynamic, distributed model of plate heat exchangers captures thermo-hydraulic behavior and seamlessly integrates fouling and CIP models.•Flexible, modular definition of equipment, fluids, operation, heating and cleaning procedures.•Mechanisms and kinetics for fouling, cleaning and deposit growth/removal reflect local conditions and predict spatial distributions.•Validated against experimental data with excellent results; balances predictive accuracy and computational feasibility.•Case study demonstrates ability to improve overall heating-cleaning cycle productivity and economics. Plate heat exchangers (PHEs) used in milk thermal treatments are subject to rapid fouling, while Cleaning-in-Place (CIP) produces large amounts of wastes. Up to 80% of production costs in the dairy industry have been attributed to the effects of fouling and cleaning. In spite of decades of research, a detailed model for simulation, monitoring, control and optimisation of full heating and cleaning cycles for PHEs is still not available. Mechanistic simulation models based on differential equations typically address only fouling but not cleaning. More detailed models based on Computational Fluid Dynamics (CFD) are computationally very expensive and impractical to use for optimization, scheduling and control of complete PHEs. Here, a dynamic 2D model of PHEs is presented that enables optimizing milk thermal treatment operations, taking into account both fouling and cleaning. The model balances predictive accuracy and computational feasibility. It integrates: (i) various mechanisms and kinetics for fouling and cleaning; (ii) a detailed moving boundary model of deposit growth that captures its spatial distribution; (iii) a dynamic thermo-hydraulic model of mass and heat transfer in a single PHE channel; (iv) the flexible assembly of channels into a variety of PHE configurations, and (v) the flexible definition of heating-cleaning cycles. The fouling model has been validated for two PHE configurations against experimental data, with excellent results. Alternative fouling mechanism (due to aggregate proteins or denatured proteins, and with/without deposit re-entrainment) have been explored. Results show that the fouling observed in the two arrangements is best fitted by distinct fouling models, and that the performance of the two PHE arrangements is quite different. Dynamic cleaning models have been integrated with the deposit moving boundary model and validated. This has enabled for the first time the seamless, detailed simulation of individual and multiple heating-cleaning cycles, where each phase starts from the detailed deposit distribution at the end of the previous phase. The models detail enables the introduction of sophisticated condition-based logic in the operation of each phase and overall cycle. Using such condition-based logic it is shown that cleaning time could potentially be reduced by ∼50%. Finally, it is shown that the heating/cleaning cycle can be optimized for maximum productivity, balancing fouling and cleaning trade-offs. This is demonstrated for one of the PHE arrangements.
Author Macchietto, S.
Sharma, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Sharma
  fullname: Sharma, A.
– sequence: 2
  givenname: S.
  orcidid: 0000-0001-6096-8126
  surname: Macchietto
  fullname: Macchietto, S.
  email: s.macchietto@imperial.ac.uk
BookMark eNp9kD1PHDEQQC1EJA7ID0i3Ek2aPWb8uUeaRCR8SEhpoLaMdxZ8WuzF3kPw7-PLUVFQWSO9Nxq_Q7YfUyTGviEsEVCfrpfD_bTkwOvMlwBqjy3QSNkKZXCfLWCloRXQqQN2WMoaALBDtWA_L9JmDPGhcbFv_Eguboc0NNPoZmoeyc0NvfpHFx8ol7Pmtwv5rXHTNAbv5pDiMfsyuLHQ1_f3iN1d_Lk9v2pv_l5en_-6aT03Ym4JJAL0QoBGo72XZuWJO6mMU6pHHJwm34PSK9ELrklrRHSd0OZeC0OdOGLfd3unnJ43VGb7FIqncXSR0qZYrrgUgNjxip58QNdpk2O9rlKSS2lEh5UyO8rnVEqmwfow___SnF0YLYLdlrVrW8vabVmL3Nay1cQP5pTDk8tvnzo_dg7VRi-Bsi0-UPTUh0x-tn0Kn9j_ABvvkDs
CitedBy_id crossref_primary_10_1002_cben_202200012
crossref_primary_10_1016_j_idairyj_2021_105236
crossref_primary_10_1016_j_fbp_2023_12_003
crossref_primary_10_1080_01457632_2022_2113458
crossref_primary_10_1016_j_fbp_2021_04_011
crossref_primary_10_1515_revce_2020_0094
crossref_primary_10_1007_s43153_021_00196_1
crossref_primary_10_3390_en16176264
crossref_primary_10_1021_acssuschemeng_2c01194
crossref_primary_10_1111_jfpe_14325
crossref_primary_10_1016_j_fbp_2022_07_011
crossref_primary_10_1002_jsde_12768
crossref_primary_10_1016_j_fbp_2022_05_009
crossref_primary_10_1063_5_0208973
crossref_primary_10_1016_j_jfoodeng_2024_112081
crossref_primary_10_1002_htj_23070
Cites_doi 10.1016/j.foodcont.2019.106729
10.1016/j.jfoodeng.2014.03.025
10.1016/B978-0-444-64235-6.50292-8
10.1016/j.jfoodeng.2005.03.064
10.1016/j.idairyj.2015.08.001
10.1111/j.1471-0307.1992.tb01715.x
10.1016/j.ijheatmasstransfer.2018.10.057
10.1002/aic.10149
10.1016/j.jfoodeng.2014.09.020
10.1002/aic.690440917
10.1205/096030802321154862
10.1080/10408398.2012.752343
10.1111/j.1541-4337.2006.tb00080.x
10.1016/S0098-1354(98)00072-6
10.1016/j.ijheatmasstransfer.2020.120112
10.1016/j.fbp.2018.12.005
10.1016/j.ces.2018.12.021
10.1016/j.jfoodeng.2020.110272
10.1016/j.fbp.2018.11.007
10.1016/j.lwt.2019.02.057
10.1016/j.cofs.2018.10.002
10.1016/j.fbp.2020.05.003
10.1002/aic.15036
10.1016/S0924-2244(97)01089-3
10.1017/S0022029900019038
10.3168/jds.2016-10957
10.1017/S0022029900032878
10.1016/0300-9467(85)80048-4
10.1016/S0017-9310(03)00040-1
10.1016/j.ijheatmasstransfer.2020.119488
10.1051/dst:2008033
10.1016/j.foostr.2019.100118
10.1016/j.ijheatmasstransfer.2009.03.074
10.1021/acssuschemeng.8b05835
10.1111/j.1471-0307.1989.tb01703.x
10.1002/btpr.5420010210
10.1016/S0009-2509(99)00429-7
10.1016/0260-8774(93)90038-L
ContentType Journal Article
Copyright 2020 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Mar 2021
Copyright_xml – notice: 2020 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Mar 2021
DBID AAYXX
CITATION
7ST
7T7
8FD
C1K
F1W
FR3
H98
L.G
P64
SOI
7S9
L.6
DOI 10.1016/j.fbp.2020.12.005
DatabaseName CrossRef
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1744-3571
EndPage 41
ExternalDocumentID 10_1016_j_fbp_2020_12_005
S0960308520305708
GroupedDBID --K
--M
-QF
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABDBF
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSA
SSG
SSU
SSZ
T5K
UNMZH
VH1
XFK
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7T7
8FD
C1K
EFKBS
F1W
FR3
H98
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c273t-e04100d3306176cc479ce2a457a55d11fa6ecd05693d326e66111a8367b637e83
IEDL.DBID AIKHN
ISSN 0960-3085
IngestDate Fri Sep 05 06:15:57 EDT 2025
Wed Aug 13 06:40:10 EDT 2025
Tue Jul 01 02:00:46 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Fri Feb 23 02:41:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Plate heat exchangers
Experimental validation
Energy and water minimization
Fouling and cleaning cycles
Milk processing
Heat treatment optimisation
Dynamic model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-e04100d3306176cc479ce2a457a55d11fa6ecd05693d326e66111a8367b637e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6096-8126
PQID 2542447381
PQPubID 2047563
PageCount 10
ParticipantIDs proquest_miscellaneous_2524301182
proquest_journals_2542447381
crossref_citationtrail_10_1016_j_fbp_2020_12_005
crossref_primary_10_1016_j_fbp_2020_12_005
elsevier_sciencedirect_doi_10_1016_j_fbp_2020_12_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Food and bioproducts processing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Diaz-Bejarano, Coletti, Macchietto (bib0070) 2016; 62
Lanchas-Fuentes, Diaz-Bejarano, Coletti, Macchietto (bib0185) 2016
Dović, Palm, Švaić (bib0080) 2009; 52
Bird, Fryer (bib0015) 1991; 69
Gut, Pinto (bib0140) 2003; 46
Georgiadis, Macchietto (bib0105) 2000; 55
Fryer, Slater (bib0095) 1985; 31
Rosa, Guimarães, Arce (bib0215) 2019; 129
Tuladhar, Paterson, Wilson (bib0240) 2002; 80
Darko, Lozano Santamaria, Bouvier, Delaplace, Macchietto (bib0050) 2021
Gu, Bouvier, Tonda, Delaplace (bib0125) 2019; 106
gPROMS (bib0120) 2018
Lalande, Tissier, Corrieu (bib0180) 1985; 1
Georgiadis, Rotstein, Macchietto (bib0110) 1998; 22
Guerrero-Navarro, Ríos-Castillo, Ripolles Avila, Hascoët, Felipe, Rodriguez Jerez (bib0135) 2019; 106
Sadeghinezhad, Kazi, Dahari, Safaei, Sadri, Badarudin (bib0220) 2014; 55
Georgiadis, Rotstein, Macchietto (bib0115) 1998; 44
Pan, Chen, Mercadé-Prieto, Xiao (bib0210) 2019; 197
Loveday (bib0200) 2016; 52
Guan, Macchietto (bib0130) 2018; 43 Part B
Tang, Li, Wang, He, Tao (bib0235) 2020; 152
Bouvier, Moreau, Ronse, Six, Petit, Delaplace (bib0030) 2014; 136
Donato, Guyomarc’H (bib0075) 2009; 89
Joppa, Köhler, Kricke, Majschak, Fröhlich, Rüdiger (bib0155) 2019; 113
Kwaka, Maa, Huang (bib0170) 2020; 135
Sharma, Macchietto (bib0225) 2019; 46
Escrig Escrig, Simeone, Woolley, Rangappa, Rady, Watson (bib0085) 2020; 123
Fryer (bib0090) 1989; 42
Khaldi, Blanpain-Avet, Guérin, Ronse, Bouvier, André, Bornaz, Croguennec, Jeantet, Delaplace (bib0165) 2015; 147
Sundar, Rajagopal, Zhao, Kuntumalla, Meng, Chang, Shao, Ferreira, Miljkovic, Sinha, Salapak (bib0230) 2020; 159
LeClercq-Perlat, Lalande (bib0190) 1991; 31
Chandrakash (bib0045) 2012
Jun, Puri (bib0160) 2006; 75
Madau, Furesi, Pulina (bib0205) 2017
Leite, Croguennec, Halabi, Ferreira Da Costa (bib0195) 2021; 292
Zouaghi, Frémiot, André, Grunlan, Gruescu, Delaplace, Duquesne, Jimenez (bib0265) 2019; 7
Wilson (bib0250) 2018; 23
Bansal, Chen (bib0005) 2006; 5
Van Asselt, Vissers, Smith, De Jong (bib0245) 2005
Delplace, Leuliet, Tissier (bib0065) 1994; 72
Belmar-Beiny, Gotham, Paterson, Fryer, Pritchard (bib0010) 1993; 19
Bird, Fryer (bib0020) 1992
(bib0255) 2019; 113
Blanpain-Avet, André, Khaldi, Bouvier, Petit, Six, Jeantet, Croguennec, Delaplace (bib0025) 2016; 99
Burton (bib0035) 1968; 35
Xin, Chen, Ozkan (bib0260) 2004; 50
Hagsten, Altskär, Gustafsson, Lorén, Trägårdh, Innings, Hamberg, Paulsson, Nylander (bib0150) 2019; 21
Cavero (bib0040) 2013
Georgiadis (bib0100) 1997
Hagsten (bib0145) 2016
De Jong (bib0055) 1997; 8
De Jong, Bournan, Van der Linden (bib0060) 1992; 45
Lalande, Tissier, Corrieu (bib0175) 1984; 51
Guerrero-Navarro (10.1016/j.fbp.2020.12.005_bib0135) 2019; 106
Delplace (10.1016/j.fbp.2020.12.005_bib0065) 1994; 72
Jun (10.1016/j.fbp.2020.12.005_bib0160) 2006; 75
Cavero (10.1016/j.fbp.2020.12.005_bib0040) 2013
Gu (10.1016/j.fbp.2020.12.005_bib0125) 2019; 106
Sundar (10.1016/j.fbp.2020.12.005_bib0230) 2020; 159
LeClercq-Perlat (10.1016/j.fbp.2020.12.005_bib0190) 1991; 31
Fryer (10.1016/j.fbp.2020.12.005_bib0095) 1985; 31
Blanpain-Avet (10.1016/j.fbp.2020.12.005_bib0025) 2016; 99
Sharma (10.1016/j.fbp.2020.12.005_bib0225) 2019; 46
Diaz-Bejarano (10.1016/j.fbp.2020.12.005_bib0070) 2016; 62
Van Asselt (10.1016/j.fbp.2020.12.005_bib0245) 2005
Pan (10.1016/j.fbp.2020.12.005_bib0210) 2019; 197
Kwaka (10.1016/j.fbp.2020.12.005_bib0170) 2020; 135
Gut (10.1016/j.fbp.2020.12.005_bib0140) 2003; 46
Loveday (10.1016/j.fbp.2020.12.005_bib0200) 2016; 52
Donato (10.1016/j.fbp.2020.12.005_bib0075) 2009; 89
Darko (10.1016/j.fbp.2020.12.005_bib0050) 2021
Hagsten (10.1016/j.fbp.2020.12.005_bib0150) 2019; 21
Georgiadis (10.1016/j.fbp.2020.12.005_bib0105) 2000; 55
Escrig Escrig (10.1016/j.fbp.2020.12.005_bib0085) 2020; 123
Rosa (10.1016/j.fbp.2020.12.005_bib0215) 2019; 129
Tuladhar (10.1016/j.fbp.2020.12.005_bib0240) 2002; 80
Bird (10.1016/j.fbp.2020.12.005_bib0020) 1992
Georgiadis (10.1016/j.fbp.2020.12.005_bib0110) 1998; 22
Burton (10.1016/j.fbp.2020.12.005_bib0035) 1968; 35
Fryer (10.1016/j.fbp.2020.12.005_bib0090) 1989; 42
Khaldi (10.1016/j.fbp.2020.12.005_bib0165) 2015; 147
Zouaghi (10.1016/j.fbp.2020.12.005_bib0265) 2019; 7
Dović (10.1016/j.fbp.2020.12.005_bib0080) 2009; 52
(10.1016/j.fbp.2020.12.005_bib0255) 2019; 113
Bouvier (10.1016/j.fbp.2020.12.005_bib0030) 2014; 136
Madau (10.1016/j.fbp.2020.12.005_bib0205) 2017
Lalande (10.1016/j.fbp.2020.12.005_bib0175) 1984; 51
Guan (10.1016/j.fbp.2020.12.005_bib0130) 2018; 43 Part B
Leite (10.1016/j.fbp.2020.12.005_bib0195) 2021; 292
Chandrakash (10.1016/j.fbp.2020.12.005_bib0045) 2012
Lanchas-Fuentes (10.1016/j.fbp.2020.12.005_bib0185) 2016
Bansal (10.1016/j.fbp.2020.12.005_bib0005) 2006; 5
De Jong (10.1016/j.fbp.2020.12.005_bib0055) 1997; 8
Georgiadis (10.1016/j.fbp.2020.12.005_bib0100) 1997
Bird (10.1016/j.fbp.2020.12.005_bib0015) 1991; 69
Xin (10.1016/j.fbp.2020.12.005_bib0260) 2004; 50
Tang (10.1016/j.fbp.2020.12.005_bib0235) 2020; 152
Sadeghinezhad (10.1016/j.fbp.2020.12.005_bib0220) 2014; 55
Joppa (10.1016/j.fbp.2020.12.005_bib0155) 2019; 113
Hagsten (10.1016/j.fbp.2020.12.005_bib0145) 2016
Wilson (10.1016/j.fbp.2020.12.005_bib0250) 2018; 23
Georgiadis (10.1016/j.fbp.2020.12.005_bib0115) 1998; 44
Belmar-Beiny (10.1016/j.fbp.2020.12.005_bib0010) 1993; 19
Lalande (10.1016/j.fbp.2020.12.005_bib0180) 1985; 1
gPROMS (10.1016/j.fbp.2020.12.005_bib0120) 2018
De Jong (10.1016/j.fbp.2020.12.005_bib0060) 1992; 45
References_xml – volume: 7
  start-page: 9133
  year: 2019
  end-page: 9142
  ident: bib0265
  article-title: Investigating the effect of an antifouling surface modification on the environmental impact of a pasteurization process: an LCA study
  publication-title: ACS Sustain. Chem. Eng.
– volume: 1
  start-page: 131
  year: 1985
  end-page: 139
  ident: bib0180
  article-title: Fouling of heat transfer surfaces related to b-lactoglobulin denaturation during heat processing of milk
  publication-title: Biotechnol. Prog.
– volume: 23
  start-page: 105
  year: 2018
  end-page: 112
  ident: bib0250
  article-title: Fouling during food processing—progress in tackling this inconvenient truth, 2018
  publication-title: Curr. Opin. Food Sci.
– volume: 135
  year: 2020
  ident: bib0170
  article-title: Extracting nonstationary features for process data analytics and application in fouling detection
  publication-title: Comput. Chem. Eng.
– volume: 31
  start-page: 74
  year: 1991
  end-page: 93
  ident: bib0190
  article-title: A review on the modelling of the removal of porous contaminant deposited on heat transfer surfaces
  publication-title: Int. Chem. Eng.
– volume: 55
  start-page: 1605
  year: 2000
  end-page: 1619
  ident: bib0105
  article-title: Dynamic modelling and simulation of plate heat exchangers under milk fouling
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 27
  year: 2006
  end-page: 33
  ident: bib0005
  article-title: A critical review of milk fouling in heat exchangers
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 159
  year: 2020
  ident: bib0230
  article-title: Fouling modeling and prediction approach for heat exchangers using deep learning
  publication-title: Int. J. Heat Mass Transf.
– volume: 89
  start-page: 3
  year: 2009
  end-page: 29
  ident: bib0075
  article-title: Formation and properties of the whey protein/jcasein complexes in heated skim milk—a review
  publication-title: Dairy Sci. Technol.
– volume: 46
  start-page: 2571
  year: 2003
  end-page: 2585
  ident: bib0140
  article-title: Modeling of plate heat exchangers with generalized configurations
  publication-title: Int. J. Heat Mass Transf.
– volume: 69
  start-page: 13
  year: 1991
  end-page: 21
  ident: bib0015
  article-title: Experimental studies of cleaning of surfaces fouled by whey proteins
  publication-title: Food Bioprod. Process.
– volume: 106
  start-page: 44
  year: 2019
  end-page: 49
  ident: bib0135
  article-title: Development of a dairy fouling model to assess the efficacy of cleaning procedures using alkaline and enzymatic products
  publication-title: LWT
– volume: 147
  start-page: 68
  year: 2015
  end-page: 78
  ident: bib0165
  article-title: Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger
  publication-title: J. Food Eng.
– volume: 22
  start-page: S331
  year: 1998
  end-page: S338
  ident: bib0110
  article-title: Modelling and simulation of complex plate heat exchanger arrangements under milk fouling
  publication-title: Comput. Chem. Eng.
– volume: 46
  start-page: 1483
  year: 2019
  end-page: 1488
  ident: bib0225
  article-title: Fouling and cleaning of plate heat exchangers for milk pasteurisation: a moving boundary model
  publication-title: Computer Aided Chemical Engineering
– volume: 106
  year: 2019
  ident: bib0125
  article-title: A mathematical model for the prediction of the whey protein fouling mass in a pilot scale plate heat exchanger
  publication-title: Food Control
– volume: 80
  start-page: 332
  year: 2002
  end-page: 339
  ident: bib0240
  article-title: Thermal conductivity of whey protein films undergoing swelling: measurement by dynamic gauging
  publication-title: Food Bioprod. Process.
– volume: 152
  year: 2020
  ident: bib0235
  article-title: Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms
  publication-title: Int. J. Heat Mass Transf.
– volume: 19
  start-page: 119
  year: 1993
  end-page: 139
  ident: bib0010
  article-title: The effect of Reynolds number and fluid temperature in whey protein fouling
  publication-title: J. Food Eng.
– volume: 35
  start-page: 317
  year: 1968
  end-page: 330
  ident: bib0035
  article-title: Deposits from milk in heat treatment plants—a review and discussion
  publication-title: J. Dairy Res.
– volume: 51
  start-page: 557
  year: 1984
  end-page: 568
  ident: bib0175
  article-title: Fouling of a plate heat exchanger used in ultra-high-temperature sterilization of milk
  publication-title: J. Dairy Res.
– volume: 45
  start-page: 3
  year: 1992
  end-page: 8
  ident: bib0060
  article-title: Fouling of heat treatment equipment in relation to the denaturation of β-lactoglobulin
  publication-title: J Soc Dairy Techno
– year: 2016
  ident: bib0145
  article-title: Cleaning of Ultra-high Temperature Milk Fouling-Structural and Compositional Changes
  publication-title: PhD Thesis
– volume: 292
  year: 2021
  ident: bib0195
  article-title: Comparing different methods for estimating kinetic parameters of whey protein heat-induced denaturation in infant milk formulas
  publication-title: J. Food Eng.
– volume: 52
  start-page: 92
  year: 2016
  end-page: 100
  ident: bib0200
  article-title: b-Lactoglobulin heat denaturation: a critical assessment of kinetic modelling
  publication-title: Int. Dairy J.
– volume: 50
  start-page: 1961
  year: 2004
  end-page: 1973
  ident: bib0260
  article-title: Removal of a model protein foulant from metal surfaces
  publication-title: AIChE J.
– volume: 75
  start-page: 364
  year: 2006
  end-page: 374
  ident: bib0160
  article-title: A 2D dynamic model for fouling performance of plate heat exchangers
  publication-title: J. Food Eng.
– volume: 197
  start-page: 306
  year: 2019
  end-page: 316
  ident: bib0210
  article-title: Numerical simulation of milk fouling: taking fouling layer domain and localized surface reaction kinetics into account
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 97
  year: 1985
  end-page: 107
  ident: bib0095
  article-title: A direct simulation procedure for chemical reaction fouling in heat exchangers
  publication-title: Chem. Eng. J.
– volume: 113
  start-page: 1
  year: 2019
  end-page: 176
  ident: bib0255
  article-title: Fouling and cleaning in food processing
  publication-title: Food Bioprod. Process.
– volume: 44
  start-page: 2099
  year: 1998
  end-page: 2111
  ident: bib0115
  article-title: Optimal design and operation of heat exchanger arrangements under milk fouling
  publication-title: AIChE J.
– start-page: 325
  year: 1992
  end-page: 330
  ident: bib0020
  article-title: An analytical model for cleaning of food process plant. Food engineering in a computer climate
  publication-title: ICHEME Symposium Series
– year: 2021
  ident: bib0050
  article-title: Thermal treatment in dairy processes: validation of protein deposition models
  publication-title: Proceedings of the 31st European Symposium on Computer Aided Process Engineering, 6–9 June 2021, Istanbul, Turkey
– volume: 21
  start-page: 100118
  year: 2019
  ident: bib0150
  article-title: Structural and compositional changes during UHT fouling removal—Possible mechanisms of the cleaning process
  publication-title: Food Structure
– volume: 8
  start-page: 4011
  year: 1997
  end-page: 4405
  ident: bib0055
  article-title: Impact and control of fouling in milk processing
  publication-title: Trends Food Sci. Technol.
– volume: 52
  start-page: 4553
  year: 2009
  end-page: 4563
  ident: bib0080
  article-title: Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry
  publication-title: Int. J. Heat Mass Transf.
– year: 1997
  ident: bib0100
  article-title: Detailed Modelling and Simulation of Plate Heat Exchangers Under Milk Fouling
– volume: 113
  start-page: 168
  year: 2019
  end-page: 176
  ident: bib0155
  article-title: Simulation of jet cleaning: Diffusion model for swellable soils
  publication-title: Food Bioprod. Process.
– start-page: 5
  year: 2017
  end-page: 17
  ident: bib0205
  article-title: Technical efficiency and total factor productivity changes in European dairy farm sectors
  publication-title: Agric. Food Econ.
– year: 2016
  ident: bib0185
  article-title: Condition-based chemical cleaning of crude oil fouling deposits—a conceptual model
  publication-title: Zdravko Kravanja (Editor), 26th European Symposium on Computer Aided Process Engineering–Part B, 1905–1910
– volume: 123
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0085
  article-title: Ultrasonic measurements and machine learning for monitoring the removal of surface fouling during clean-in-place processes
  publication-title: Food Bioprod. Process.
– volume: 43 Part B
  start-page: 1679
  year: 2018
  end-page: 1684
  ident: bib0130
  article-title: A novel dynamic model of plate heat exchangers subject to fouling
  publication-title: Comput. Aided Chem. Eng.
– year: 2018
  ident: bib0120
  article-title: Process Systems Enterprise Limited
– year: 2013
  ident: bib0040
  article-title: Análise Dinâmica de um Processo Contínuo de Pasteurização em Trocadores de Calor a Placas
– volume: 136
  start-page: 56
  year: 2014
  end-page: 63
  ident: bib0030
  article-title: A CFD model as a tool to simulate
  publication-title: J. Food Eng.
– volume: 62
  start-page: 90
  year: 2016
  end-page: 107
  ident: bib0070
  article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles
  publication-title: AIChE J.
– volume: 72
  start-page: 163
  year: 1994
  end-page: 169
  ident: bib0065
  article-title: Fouling experiments of a plate heat exchangers by whey proteins solutions
  publication-title: Trans IChemE: C
– year: 2005
  ident: bib0245
  article-title: In line control of fouling
  publication-title: 6th International Conf. on Heat Exchanger Fouling and Cleaning
– volume: 55
  start-page: 1724
  year: 2014
  end-page: 1743
  ident: bib0220
  article-title: A comprehensive review of milk fouling on heated surfaces
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 42
  start-page: 23
  year: 1989
  end-page: 29
  ident: bib0090
  article-title: The uses of fouling models in the design of food process plant
  publication-title: Int. J. Dairy Technol.
– volume: 129
  start-page: 1075
  year: 2019
  end-page: 1085
  ident: bib0215
  article-title: Experimental measurements and simulation of the fouling phenomena of natural proteins
  publication-title: Int. J. Heat Mass Transf.
– volume: 99
  start-page: 9611
  year: 2016
  end-page: 9630
  ident: bib0025
  article-title: Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles
  publication-title: J. Dairy Sci.
– year: 2012
  ident: bib0045
  article-title: A New Risk Analysis of Cleaning in Place Milk Processing
– volume: 135
  year: 2020
  ident: 10.1016/j.fbp.2020.12.005_bib0170
  article-title: Extracting nonstationary features for process data analytics and application in fouling detection
  publication-title: Comput. Chem. Eng.
– volume: 69
  start-page: 13
  year: 1991
  ident: 10.1016/j.fbp.2020.12.005_bib0015
  article-title: Experimental studies of cleaning of surfaces fouled by whey proteins
  publication-title: Food Bioprod. Process.
– volume: 106
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0125
  article-title: A mathematical model for the prediction of the whey protein fouling mass in a pilot scale plate heat exchanger
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.106729
– volume: 136
  start-page: 56
  year: 2014
  ident: 10.1016/j.fbp.2020.12.005_bib0030
  article-title: A CFD model as a tool to simulate β-lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.03.025
– volume: 43 Part B
  start-page: 1679
  year: 2018
  ident: 10.1016/j.fbp.2020.12.005_bib0130
  article-title: A novel dynamic model of plate heat exchangers subject to fouling
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-64235-6.50292-8
– volume: 75
  start-page: 364
  issue: 3
  year: 2006
  ident: 10.1016/j.fbp.2020.12.005_bib0160
  article-title: A 2D dynamic model for fouling performance of plate heat exchangers
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2005.03.064
– volume: 52
  start-page: 92
  year: 2016
  ident: 10.1016/j.fbp.2020.12.005_bib0200
  article-title: b-Lactoglobulin heat denaturation: a critical assessment of kinetic modelling
  publication-title: Int. Dairy J.
  doi: 10.1016/j.idairyj.2015.08.001
– volume: 45
  start-page: 3
  year: 1992
  ident: 10.1016/j.fbp.2020.12.005_bib0060
  article-title: Fouling of heat treatment equipment in relation to the denaturation of β-lactoglobulin
  publication-title: J Soc Dairy Techno
  doi: 10.1111/j.1471-0307.1992.tb01715.x
– volume: 129
  start-page: 1075
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0215
  article-title: Experimental measurements and simulation of the fouling phenomena of natural proteins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.057
– volume: 50
  start-page: 1961
  issue: 8
  year: 2004
  ident: 10.1016/j.fbp.2020.12.005_bib0260
  article-title: Removal of a model protein foulant from metal surfaces
  publication-title: AIChE J.
  doi: 10.1002/aic.10149
– volume: 147
  start-page: 68
  year: 2015
  ident: 10.1016/j.fbp.2020.12.005_bib0165
  article-title: Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.09.020
– year: 2021
  ident: 10.1016/j.fbp.2020.12.005_bib0050
  article-title: Thermal treatment in dairy processes: validation of protein deposition models
– year: 2016
  ident: 10.1016/j.fbp.2020.12.005_bib0185
  article-title: Condition-based chemical cleaning of crude oil fouling deposits—a conceptual model
– year: 1997
  ident: 10.1016/j.fbp.2020.12.005_bib0100
– year: 2005
  ident: 10.1016/j.fbp.2020.12.005_bib0245
  article-title: In line control of fouling
– volume: 44
  start-page: 2099
  issue: 9
  year: 1998
  ident: 10.1016/j.fbp.2020.12.005_bib0115
  article-title: Optimal design and operation of heat exchanger arrangements under milk fouling
  publication-title: AIChE J.
  doi: 10.1002/aic.690440917
– year: 2018
  ident: 10.1016/j.fbp.2020.12.005_bib0120
– volume: 80
  start-page: 332
  issue: 4
  year: 2002
  ident: 10.1016/j.fbp.2020.12.005_bib0240
  article-title: Thermal conductivity of whey protein films undergoing swelling: measurement by dynamic gauging
  publication-title: Food Bioprod. Process.
  doi: 10.1205/096030802321154862
– volume: 55
  start-page: 1724
  issue: 12
  year: 2014
  ident: 10.1016/j.fbp.2020.12.005_bib0220
  article-title: A comprehensive review of milk fouling on heated surfaces
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2012.752343
– volume: 5
  start-page: 27
  issue: 2
  year: 2006
  ident: 10.1016/j.fbp.2020.12.005_bib0005
  article-title: A critical review of milk fouling in heat exchangers
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/j.1541-4337.2006.tb00080.x
– volume: 72
  start-page: 163
  year: 1994
  ident: 10.1016/j.fbp.2020.12.005_bib0065
  article-title: Fouling experiments of a plate heat exchangers by whey proteins solutions
  publication-title: Trans IChemE: C
– volume: 22
  start-page: S331
  year: 1998
  ident: 10.1016/j.fbp.2020.12.005_bib0110
  article-title: Modelling and simulation of complex plate heat exchanger arrangements under milk fouling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00072-6
– volume: 159
  year: 2020
  ident: 10.1016/j.fbp.2020.12.005_bib0230
  article-title: Fouling modeling and prediction approach for heat exchangers using deep learning
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120112
– volume: 113
  start-page: 1
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0255
  article-title: Fouling and cleaning in food processing
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2018.12.005
– volume: 197
  start-page: 306
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0210
  article-title: Numerical simulation of milk fouling: taking fouling layer domain and localized surface reaction kinetics into account
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.12.021
– year: 2016
  ident: 10.1016/j.fbp.2020.12.005_bib0145
  article-title: Cleaning of Ultra-high Temperature Milk Fouling-Structural and Compositional Changes
– volume: 292
  year: 2021
  ident: 10.1016/j.fbp.2020.12.005_bib0195
  article-title: Comparing different methods for estimating kinetic parameters of whey protein heat-induced denaturation in infant milk formulas
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110272
– volume: 113
  start-page: 168
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0155
  article-title: Simulation of jet cleaning: Diffusion model for swellable soils
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2018.11.007
– volume: 106
  start-page: 44
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0135
  article-title: Development of a dairy fouling model to assess the efficacy of cleaning procedures using alkaline and enzymatic products
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.02.057
– volume: 23
  start-page: 105
  year: 2018
  ident: 10.1016/j.fbp.2020.12.005_bib0250
  article-title: Fouling during food processing—progress in tackling this inconvenient truth, 2018
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2018.10.002
– year: 2012
  ident: 10.1016/j.fbp.2020.12.005_bib0045
– volume: 123
  start-page: 1
  year: 2020
  ident: 10.1016/j.fbp.2020.12.005_bib0085
  article-title: Ultrasonic measurements and machine learning for monitoring the removal of surface fouling during clean-in-place processes
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2020.05.003
– volume: 62
  start-page: 90
  issue: 1
  year: 2016
  ident: 10.1016/j.fbp.2020.12.005_bib0070
  article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles
  publication-title: AIChE J.
  doi: 10.1002/aic.15036
– volume: 8
  start-page: 4011
  issue: 12
  year: 1997
  ident: 10.1016/j.fbp.2020.12.005_bib0055
  article-title: Impact and control of fouling in milk processing
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/S0924-2244(97)01089-3
– volume: 35
  start-page: 317
  year: 1968
  ident: 10.1016/j.fbp.2020.12.005_bib0035
  article-title: Deposits from milk in heat treatment plants—a review and discussion
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029900019038
– volume: 99
  start-page: 9611
  issue: 12
  year: 2016
  ident: 10.1016/j.fbp.2020.12.005_bib0025
  article-title: Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-10957
– volume: 51
  start-page: 557
  year: 1984
  ident: 10.1016/j.fbp.2020.12.005_bib0175
  article-title: Fouling of a plate heat exchanger used in ultra-high-temperature sterilization of milk
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029900032878
– volume: 31
  start-page: 97
  issue: 2
  year: 1985
  ident: 10.1016/j.fbp.2020.12.005_bib0095
  article-title: A direct simulation procedure for chemical reaction fouling in heat exchangers
  publication-title: Chem. Eng. J.
  doi: 10.1016/0300-9467(85)80048-4
– volume: 46
  start-page: 2571
  year: 2003
  ident: 10.1016/j.fbp.2020.12.005_bib0140
  article-title: Modeling of plate heat exchangers with generalized configurations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00040-1
– volume: 152
  year: 2020
  ident: 10.1016/j.fbp.2020.12.005_bib0235
  article-title: Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119488
– start-page: 5
  year: 2017
  ident: 10.1016/j.fbp.2020.12.005_bib0205
  article-title: Technical efficiency and total factor productivity changes in European dairy farm sectors
  publication-title: Agric. Food Econ.
– volume: 89
  start-page: 3
  year: 2009
  ident: 10.1016/j.fbp.2020.12.005_bib0075
  article-title: Formation and properties of the whey protein/jcasein complexes in heated skim milk—a review
  publication-title: Dairy Sci. Technol.
  doi: 10.1051/dst:2008033
– start-page: 325
  year: 1992
  ident: 10.1016/j.fbp.2020.12.005_bib0020
  article-title: An analytical model for cleaning of food process plant. Food engineering in a computer climate
  publication-title: ICHEME Symposium Series
– year: 2013
  ident: 10.1016/j.fbp.2020.12.005_bib0040
– volume: 21
  start-page: 100118
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0150
  article-title: Structural and compositional changes during UHT fouling removal—Possible mechanisms of the cleaning process
  publication-title: Food Structure
  doi: 10.1016/j.foostr.2019.100118
– volume: 31
  start-page: 74
  year: 1991
  ident: 10.1016/j.fbp.2020.12.005_bib0190
  article-title: A review on the modelling of the removal of porous contaminant deposited on heat transfer surfaces
  publication-title: Int. Chem. Eng.
– volume: 46
  start-page: 1483
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0225
  article-title: Fouling and cleaning of plate heat exchangers for milk pasteurisation: a moving boundary model
– volume: 52
  start-page: 4553
  issue: 19-20
  year: 2009
  ident: 10.1016/j.fbp.2020.12.005_bib0080
  article-title: Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.03.074
– volume: 7
  start-page: 9133
  issue: 10
  year: 2019
  ident: 10.1016/j.fbp.2020.12.005_bib0265
  article-title: Investigating the effect of an antifouling surface modification on the environmental impact of a pasteurization process: an LCA study
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05835
– volume: 42
  start-page: 23
  year: 1989
  ident: 10.1016/j.fbp.2020.12.005_bib0090
  article-title: The uses of fouling models in the design of food process plant
  publication-title: Int. J. Dairy Technol.
  doi: 10.1111/j.1471-0307.1989.tb01703.x
– volume: 1
  start-page: 131
  year: 1985
  ident: 10.1016/j.fbp.2020.12.005_bib0180
  article-title: Fouling of heat transfer surfaces related to b-lactoglobulin denaturation during heat processing of milk
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.5420010210
– volume: 55
  start-page: 1605
  issue: 9
  year: 2000
  ident: 10.1016/j.fbp.2020.12.005_bib0105
  article-title: Dynamic modelling and simulation of plate heat exchangers under milk fouling
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00429-7
– volume: 19
  start-page: 119
  year: 1993
  ident: 10.1016/j.fbp.2020.12.005_bib0010
  article-title: The effect of Reynolds number and fluid temperature in whey protein fouling
  publication-title: J. Food Eng.
  doi: 10.1016/0260-8774(93)90038-L
SSID ssj0001815
Score 2.345325
Snippet [Display omitted] •Dynamic, distributed model of plate heat exchangers captures thermo-hydraulic behavior and seamlessly integrates fouling and CIP...
Plate heat exchangers (PHEs) used in milk thermal treatments are subject to rapid fouling, while Cleaning-in-Place (CIP) produces large amounts of wastes. Up...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms biobased products
Cleaning
cleaning in place
Computational fluid dynamics
Computer applications
Configurations
Cycles
Dairy industry
Differential equations
Distribution
Dynamic model
Energy and water minimization
Entrainment
Experimental validation
Feasibility studies
Fluid dynamics
fluid mechanics
Fouling
Fouling and cleaning cycles
Heat exchangers
Heat transfer
Heat treatment
Heat treatment optimisation
Heating
Hydraulic models
Hydrodynamics
Kinetics
Mathematical models
Milk
Milk processing
Model accuracy
Operating costs
Optimization
Plate heat exchangers
Production costs
Proteins
Reentrainment
Simulation
Spatial distribution
Thermal energy
Two dimensional models
Title Fouling and cleaning of plate heat exchangers: Dairy application
URI https://dx.doi.org/10.1016/j.fbp.2020.12.005
https://www.proquest.com/docview/2542447381
https://www.proquest.com/docview/2524301182
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9i5bDtMG1s0zoY8iROSFnjjzgJJxCjKlTjAEPjZjm2gzqhtKJFggt_-95LnYpNiMNOkRI_OXqxf-8Xvy-AnSDzwoUyTVQldKK8VoktipDkXgknrS1Ve-D241SPLtTJZXa5BoddLgyFVUbsX2J6i9bxziBqczCbTAbnRL4lMgZBazanhN91IUud9WD94Hg8Ol0BMhqxNpIRxyck0Dk32zCvuqKqlSJtDwWpid3T5ukfoG6tz_AtvIm0kR0s3-wdrIVmA152WcXzDXj9qLDge9gfUqPz5orZxjMUsHT6waY1m10jt2QEwCzcxaTf-R77bic39-yRM_sDXAyPfh6OktgrIXFIQBZJSBVPUy8lURLtnMpLavWlstxmmee8tjo4j2ynlB4ZW0CzzLktpM4rLfNQyI_Qa6ZN-ASsrDkij66q1FnlkKFkla0LX_LKB5xB9SHtVGRcLCRO_SyuTRcx9tugVg1p1XBhUKt92F2JzJZVNJ4brDq9m7-WgkGUf05sq_tGJu7DucHfX-QvOdKSPnxdPcYdRG4R24TpLY0RimCuEJ__b-ZNeCUo0qWNTNuC3uLmNnxBqrKotuHFtwe-HRckXcdnv8Z_ACqW5mc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kPagH8YnVqhE8CUt3N9mXJ0Ut9dWLCt5CNslKpWyLraD_3plttqiIB6-7GbLMJt98ybwAjixPUm0z3xN5GHvCxMJTaWq9xIhQc6UyUV243fXj3qO4foqeFuC8zoWhsEqH_TNMr9DaPek4bXbGg0Hnnsg3R8YQ0ppNKOG3KSI87TWgeXZ10-vPARmNWBXJiOM9Eqidm1WYV5FT1crQry4FqYnd7-bpB1BX1qe7CiuONrKz2ZetwYIt12GxziqerMPyl8KCG3DapUbn5TNTpWEooOj2g40KNh4it2QEwMy-u6TfyQm7UIPXD_bFmb0Jj93Lh_Oe53oleBoJyNSzvgh833BOlCTWWiQZtfoSUaKiyARBoWKrDbKdjBtkbBbNchColMdJHvPEpnwLGuWotNvAsiJA5Inz3NdKaGQoUa6K1GRBbizOIFrg1yqS2hUSp34WQ1lHjL1I1KokrcoglKjVFhzPRcazKhp_DRa13uW3pSAR5f8Sa9f_SLp9OJF4_EX-kiAtacHh_DXuIHKLqNKO3mhMKAjm0nDnfzMfwGLv4e5W3l71b3ZhKaSolypKrQ2N6eub3UPaMs333bL8BHyN5rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fouling+and+cleaning+of+plate+heat+exchangers%3A+Dairy+application&rft.jtitle=Food+and+bioproducts+processing&rft.au=Sharma%2C+A&rft.au=Macchietto%2C+S&rft.date=2021-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0960-3085&rft.volume=126&rft.spage=32&rft_id=info:doi/10.1016%2Fj.fbp.2020.12.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3085&client=summon