Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model
Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes predi...
Saved in:
Published in | Geotextiles and geomembranes Vol. 50; no. 6; pp. 1188 - 1198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Essex
Elsevier Ltd
01.12.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions.
•This study applies machine learning algorithms for prediction of pullout interaction coefficient of geogrids.•Ensemble learning algorithms have been used on 220 laboratory pullout test results.•Laboratory pullout tests have also been conducted and results have been compared with predicted results for verification.•Open-source graphical user interface has been developed for predicting interaction coefficient values. |
---|---|
AbstractList | Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions.
•This study applies machine learning algorithms for prediction of pullout interaction coefficient of geogrids.•Ensemble learning algorithms have been used on 220 laboratory pullout test results.•Laboratory pullout tests have also been conducted and results have been compared with predicted results for verification.•Open-source graphical user interface has been developed for predicting interaction coefficient values. Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions. |
Author | Pant, Aali Ramana, G.V. |
Author_xml | – sequence: 1 givenname: Aali orcidid: 0000-0001-6949-9020 surname: Pant fullname: Pant, Aali email: aalipant@iitj.ac.in organization: Department of Civil and Infrastructure Engineering, Indian Institute of Technology, Jodhpur, India – sequence: 2 givenname: G.V. surname: Ramana fullname: Ramana, G.V. email: ramana@civil.iitd.ac.in organization: Department of Civil Engineering, Indian Institute of Technology, Delhi, India |
BookMark | eNqNkE1LxDAQhoMouH78BgueWydJt2kOHkT8AkEPehNCmk6WLG2zJlnZ_fe2rnjwoqeBmfd9Z-Y5IvuDH5CQMwoFBVpdLIsF-oSbHvuCAWMF1AUA3yMzWguZ83ld7pMZsKrKKS3LQ3IU4xIASiHrGXl7Dtg6k5wfMm-z1brr_DplbkgY9K5tPFrrjMMhTZJx2yK4NmbNNsNNCthjtgi6_Zo33sfkhkXW-xa7E3JgdRfx9Lsek9fbm5fr-_zx6e7h-uoxN0zwlLccGLeUadlwbqGZ05pBUworKwNi3hotJSuxkuPNTAspDeVVK8BqCo22jB-T813uKvj3Ncakln4dhnGlYmJeMVoJoKPqcqcywccY0Crjkp5eTEG7TlFQE1C1VD9A1QRUQa1GoKNf_PKvgut12P7DebVz4gjhw2FQccJpRvIBTVKtd39mfAKGi5kG |
CitedBy_id | crossref_primary_10_1680_jgein_23_00172 crossref_primary_10_1016_j_geotexmem_2022_10_007 crossref_primary_10_1007_s11440_023_02082_1 crossref_primary_10_1002_suco_202400886 crossref_primary_10_1007_s40996_024_01401_0 crossref_primary_10_1007_s40515_025_00560_5 crossref_primary_10_1186_s40537_025_01081_1 crossref_primary_10_1016_j_conbuildmat_2024_136933 crossref_primary_10_1002_pen_27170 crossref_primary_10_1038_s41598_024_68360_4 crossref_primary_10_1038_s41598_024_66957_3 crossref_primary_10_1016_j_istruc_2024_106850 crossref_primary_10_1016_j_procs_2023_10_501 crossref_primary_10_1016_j_aej_2024_02_026 crossref_primary_10_1080_0305215X_2024_2397431 crossref_primary_10_2166_ws_2024_189 crossref_primary_10_1007_s41062_024_01606_2 crossref_primary_10_3390_buildings13051353 |
Cites_doi | 10.1016/j.sandf.2017.08.030 10.1680/geot.1990.40.3.513 10.1680/jgein.20.00049 10.1061/(ASCE)MT.1943-5533.0003741 10.1520/GTJ12011 10.1016/S0266-1144(97)83184-6 10.1016/j.conbuildmat.2008.08.002 10.1016/j.geotexmem.2017.01.008 10.1016/j.geotexmem.2019.01.018 10.1016/j.jclepro.2019.05.354 10.1016/j.geotexmem.2019.02.006 10.1016/j.geotexmem.2011.04.004 10.1680/gein.3.0081 10.1016/j.jclepro.2016.02.115 10.1007/s40515-014-0007-2 10.1007/s10706-019-00945-7 10.1139/t93-036 10.1680/gein.6.0153 10.1016/j.proeng.2016.02.034 10.1007/s41062-021-00468-2 10.1016/j.geotexmem.2006.03.001 10.1023/A:1010933404324 10.1061/(ASCE)1090-0241(2007)133:1(37) 10.1520/GTJ102460 10.1080/17486025.2013.805253 10.1061/(ASCE)CP.1943-5487.0000713 10.1016/j.geotexmem.2021.12.005 10.1061/(ASCE)GM.1943-5622.0002029 10.1016/j.geotexmem.2016.01.009 10.5030/jcigsjournal.23.37 10.1680/geot.1989.39.3.511 10.1016/S0266-1144(01)00020-6 10.1016/j.micpro.2021.103830 10.1080/02726351.2019.1571543 10.1016/j.gsf.2020.03.007 10.1061/(ASCE)1090-0241(2001)127:4(353) 10.1016/j.jenvman.2021.112420 10.1061/(ASCE)0733-9410(1994)120:4(661) 10.1680/gein.2.0030 10.1061/(ASCE)GM.1943-5622.0001067 10.1016/j.engstruct.2021.111979 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Dec 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2022 |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1016/j.geotexmem.2022.08.003 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-3584 |
EndPage | 1198 |
ExternalDocumentID | 10_1016_j_geotexmem_2022_08_003 S0266114422000875 |
GroupedDBID | --K --M .-4 ..I .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABQEM ABQYD ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SSM SST SSZ T5K WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c273t-d3023f12a9b33f0b51820b47f96c075dca9924e690472a799c136d70fa10baf23 |
IEDL.DBID | .~1 |
ISSN | 0266-1144 |
IngestDate | Fri Jul 25 05:26:41 EDT 2025 Tue Jul 01 03:25:21 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Fri Feb 23 02:39:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Random forest Extreme gradient boosting Pullout resistance Geogrid Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-d3023f12a9b33f0b51820b47f96c075dca9924e690472a799c136d70fa10baf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6949-9020 |
PQID | 2756216701 |
PQPubID | 2045473 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2756216701 crossref_citationtrail_10_1016_j_geotexmem_2022_08_003 crossref_primary_10_1016_j_geotexmem_2022_08_003 elsevier_sciencedirect_doi_10_1016_j_geotexmem_2022_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Essex |
PublicationPlace_xml | – name: Essex |
PublicationTitle | Geotextiles and geomembranes |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Debnath, Dey (bib13) 2018; 18 Ghazavi, Bavandpouri (bib19) 2022; 50 (bib6) 2013 (bib23) 2014 Vieira, Pereira, Lopes (bib57) 2016; 124 Juran, Knochenmus, Acar, Armar (bib27) 1988 Abdel-Rahman, Ibrahim, Ashmawy (bib1) 2007; 1 Palmeira, Milligan (bib41) 1989; 39 Goodhue, Edil, Benson (bib20) 2001; 127 Mittal, Satapathy, Pal, Agarwal, Goyal, Parwekar (bib36) 2021; 82 Jewell (bib25) 1990; 40 Sharma, Venkateswarlu, Hegde (bib53) 2019; 37 Lopes, Ladeira (bib33) 1996; 3 Huang, Bathurst (bib22) 2009; 32 Kirts, Panagopoulos, Xanthopoulos, Nam (bib29) 2018; 32 Jalal, Xu, Iqbal, Javed, Jamhiri (bib24) 2021; 289 Abdi, Arjomand (bib2) 2011; 29 Lee, Bobet (bib30) 2005; 28 Prasad (bib49) 2016 Lopes, Ladeira (bib32) 1996; 14 Prasad, Ramana (bib50) 2016; 44 Wang, Chan, Lam (bib58) 2009; 23 Moraci, Cardile, Gioffrè, Mandaglio, Calvarano, Carbone (bib38) 2014; 1 Hu, Solanki (bib21) 2021; 21 Abdi, Mirzaeifar (bib3) 2017; 57 Breiman (bib8) 2001; 45 Chen, Guestrin (bib11) 2016 Karnamprabhakara, Balunaini, Arulrajah, Evans (bib28) 2021; 7 FHWA-NHI-00-043 (bib17) 2001 Chen, Guestrin (bib10) 2016 Lentz, Pyatt (bib31) 1988 Duszyńska, Bolt (bib14) 2004; 51 Ren, Ding, Dai, Jiang, De Schutter (bib52) 2021; 33 Zhang, Wu, Zhong, Li, Wang (bib61) 2021; 12 Jewell, Milligan, Sarsby, Dubois (bib26) 1984 Moraci, Recalcati (bib37) 2006; 24 Nayeri, Fakharian (bib39) 2009; 7 Teixeira, Bueno, Zornberg (bib55) 2007; 133 Alagiyawanna, Sugimoto, Sato, Toyota (bib4) 2001; 19 Nguyen, Kuwano, Izawa, Seki (bib40) 2008; 23 Pant, Ramana, Datta (bib45) 2019; 38 Cardile, Gioffrè, Moraci, Calvarano (bib9) 2017; 45 Mirzaalimohammadi, Ghazavi, Roustaei, Lajevardi (bib35) 2019 Pant, Ramana (bib42) 2021; 1–14 Pant, Datta, Ramana (bib43) 2019; 47 Fannin, Raju (bib15) 1993; 30 Pant, Ramana, Datta, Gupta (bib46) 2019; 232 Phan, Hsiao, Nguyen (bib48) 2016; 142 Feng, Wang, Mangalathu, Hu, Wu (bib16) 2021; 235 Chen, McDowell, Thom (bib12) 2013; 8 Wilson-Fahmy, Koerner, Sansone (bib60) 1994; 120 Raja, Shukla (bib51) 2021; 28 Lopes, Lopes (bib34) 1999; 6 Pant, Ramana, Datta, Gupta (bib47) 2019; 232 Bacot, Itlis, Lareal, Paumier, Sanglert (bib7) 1978 Alfaro, Hayashi, Miura, Watanabe (bib5) 1995; 2 Tsiaousi, Travasarou, Drosos, Ugalde, Chacko (bib56) 2018 Ghani, Kumari, Choudhary, Jha (bib18) 2021; 6 Wang, Chen, Liu, Kang, Wang (bib59) 2018; 31 Prasad (10.1016/j.geotexmem.2022.08.003_bib50) 2016; 44 Mittal (10.1016/j.geotexmem.2022.08.003_bib36) 2021; 82 Lopes (10.1016/j.geotexmem.2022.08.003_bib32) 1996; 14 Wang (10.1016/j.geotexmem.2022.08.003_bib58) 2009; 23 Jewell (10.1016/j.geotexmem.2022.08.003_bib26) 1984 Pant (10.1016/j.geotexmem.2022.08.003_bib42) 2021; 1–14 Feng (10.1016/j.geotexmem.2022.08.003_bib16) 2021; 235 Karnamprabhakara (10.1016/j.geotexmem.2022.08.003_bib28) 2021; 7 Phan (10.1016/j.geotexmem.2022.08.003_bib48) 2016; 142 Vieira (10.1016/j.geotexmem.2022.08.003_bib57) 2016; 124 Wang (10.1016/j.geotexmem.2022.08.003_bib59) 2018; 31 Kirts (10.1016/j.geotexmem.2022.08.003_bib29) 2018; 32 Chen (10.1016/j.geotexmem.2022.08.003_bib11) 2016 Jewell (10.1016/j.geotexmem.2022.08.003_bib25) 1990; 40 Lentz (10.1016/j.geotexmem.2022.08.003_bib31) 1988 Debnath (10.1016/j.geotexmem.2022.08.003_bib13) 2018; 18 Nguyen (10.1016/j.geotexmem.2022.08.003_bib40) 2008; 23 Chen (10.1016/j.geotexmem.2022.08.003_bib10) 2016 Zhang (10.1016/j.geotexmem.2022.08.003_bib61) 2021; 12 Prasad (10.1016/j.geotexmem.2022.08.003_bib49) 2016 Tsiaousi (10.1016/j.geotexmem.2022.08.003_bib56) 2018 Pant (10.1016/j.geotexmem.2022.08.003_bib47) 2019; 232 Ren (10.1016/j.geotexmem.2022.08.003_bib52) 2021; 33 Mirzaalimohammadi (10.1016/j.geotexmem.2022.08.003_bib35) 2019 Hu (10.1016/j.geotexmem.2022.08.003_bib21) 2021; 21 Goodhue (10.1016/j.geotexmem.2022.08.003_bib20) 2001; 127 Chen (10.1016/j.geotexmem.2022.08.003_bib12) 2013; 8 Alagiyawanna (10.1016/j.geotexmem.2022.08.003_bib4) 2001; 19 Abdi (10.1016/j.geotexmem.2022.08.003_bib2) 2011; 29 Raja (10.1016/j.geotexmem.2022.08.003_bib51) 2021; 28 Pant (10.1016/j.geotexmem.2022.08.003_bib43) 2019; 47 Pant (10.1016/j.geotexmem.2022.08.003_bib45) 2019; 38 Breiman (10.1016/j.geotexmem.2022.08.003_bib8) 2001; 45 Juran (10.1016/j.geotexmem.2022.08.003_bib27) 1988 FHWA-NHI-00-043 (10.1016/j.geotexmem.2022.08.003_bib17) 2001 Ghani (10.1016/j.geotexmem.2022.08.003_bib18) 2021; 6 Pant (10.1016/j.geotexmem.2022.08.003_bib46) 2019; 232 Alfaro (10.1016/j.geotexmem.2022.08.003_bib5) 1995; 2 Nayeri (10.1016/j.geotexmem.2022.08.003_bib39) 2009; 7 Moraci (10.1016/j.geotexmem.2022.08.003_bib37) 2006; 24 Ghazavi (10.1016/j.geotexmem.2022.08.003_bib19) 2022; 50 Fannin (10.1016/j.geotexmem.2022.08.003_bib15) 1993; 30 Jalal (10.1016/j.geotexmem.2022.08.003_bib24) 2021; 289 Duszyńska (10.1016/j.geotexmem.2022.08.003_bib14) 2004; 51 Lopes (10.1016/j.geotexmem.2022.08.003_bib33) 1996; 3 Teixeira (10.1016/j.geotexmem.2022.08.003_bib55) 2007; 133 Abdel-Rahman (10.1016/j.geotexmem.2022.08.003_bib1) 2007; 1 Moraci (10.1016/j.geotexmem.2022.08.003_bib38) 2014; 1 Huang (10.1016/j.geotexmem.2022.08.003_bib22) 2009; 32 Palmeira (10.1016/j.geotexmem.2022.08.003_bib41) 1989; 39 Wilson-Fahmy (10.1016/j.geotexmem.2022.08.003_bib60) 1994; 120 Bacot (10.1016/j.geotexmem.2022.08.003_bib7) 1978 Cardile (10.1016/j.geotexmem.2022.08.003_bib9) 2017; 45 Abdi (10.1016/j.geotexmem.2022.08.003_bib3) 2017; 57 Sharma (10.1016/j.geotexmem.2022.08.003_bib53) 2019; 37 (10.1016/j.geotexmem.2022.08.003_bib23) 2014 Lee (10.1016/j.geotexmem.2022.08.003_bib30) 2005; 28 Lopes (10.1016/j.geotexmem.2022.08.003_bib34) 1999; 6 |
References_xml | – volume: 133 start-page: 37 year: 2007 end-page: 50 ident: bib55 article-title: Pullout resistance of individual longitudinal and transverse geogrid ribs publication-title: J. Geotech. Geoenviron. Eng. – volume: 47 start-page: 514 year: 2019 end-page: 521 ident: bib43 article-title: Bottom ash as a backfill material in reinforced soil structures publication-title: Geotext. Geomembranes – year: 2001 ident: bib17 article-title: Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design & Construction Guidelines – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib8 article-title: Random forests publication-title: Mach. Learn. – volume: 50 start-page: 357 year: 2022 end-page: 369 ident: bib19 article-title: Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils publication-title: Geotext. Geomembranes – volume: 1 start-page: 415 year: 2007 end-page: 430 ident: bib1 article-title: Utilization of a large-scale testing apparatus in investigating and formulating the soil/geogrid interface characteristics in reinforced soils publication-title: Aust. J. Basic Appl. Sci. – start-page: 1 year: 2014 end-page: 80 ident: bib23 article-title: Guidelines for design and construction of reinforced soil Walls publication-title: Indian Roads Congr. – start-page: 461 year: 2018 end-page: 472 ident: bib56 article-title: Machine learning applications for site characterization based on CPT data publication-title: Geotechnical Earthquake Engineering and Soil Dynamics V – volume: 57 start-page: 1045 year: 2017 end-page: 1058 ident: bib3 article-title: Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test publication-title: Soils Found. – volume: 289 year: 2021 ident: bib24 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manag. – volume: 51 start-page: 135 year: 2004 end-page: 147 ident: bib14 article-title: Pullout tests of geogrids embedded in non-cohesive soil publication-title: Arch. Hydroeng. Environ. Mech. – volume: 120 start-page: 661 year: 1994 end-page: 677 ident: bib60 article-title: Experimental behavior of polymeric geogrids in pullout publication-title: J. Geotech. Eng. – start-page: 157 year: 1978 end-page: 185 ident: bib7 article-title: Study of the soil reinforcement friction coefficient publication-title: Symposium on Earth Reinforcement – volume: 8 start-page: 244 year: 2013 end-page: 253 ident: bib12 article-title: A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling publication-title: Geomechanics Geoengin. – volume: 6 start-page: 261 year: 1999 end-page: 282 ident: bib34 article-title: Soil–geosynthetics interaction: influence of soil particle size and geosynthetics structure publication-title: Geosynth. Int. – volume: 29 start-page: 588 year: 2011 end-page: 595 ident: bib2 article-title: Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand publication-title: Geotext. Geomembranes – volume: 2 start-page: 679 year: 1995 end-page: 698 ident: bib5 article-title: Pullout interaction mechanism of geogrid strip reinforcement publication-title: Geosynth. Int. – start-page: 18 year: 1988 ident: bib27 article-title: Pullout response of geotextiles and geogrids (Synthesis of available experimental data) publication-title: Geosynth. Soil Improv – volume: 82 year: 2021 ident: bib36 article-title: Prediction of coefficient of consolidation in soil using machine learning techniques publication-title: Microprocess. Microsyst. – volume: 19 start-page: 483 year: 2001 end-page: 507 ident: bib4 article-title: Influence of longitudinal and transverse members on geogrid pullout behavior during deformation publication-title: Geotext. Geomembranes – year: 2013 ident: bib6 article-title: Standard test method for measuring geosynthetic pullout resistance in soil 01 – volume: 7 start-page: 1 year: 2021 end-page: 14 ident: bib28 article-title: Axial pullout resistance and interface direct shear properties of geogrids in pond ash publication-title: Int. J. Geosynth. Gr. Eng. – volume: 45 start-page: 169 year: 2017 end-page: 177 ident: bib9 article-title: Modelling interference between the geogrid bearing members under pullout loading conditions publication-title: Geotext. Geomembranes – volume: 3 start-page: 701 year: 1996 end-page: 719 ident: bib33 article-title: Role of Specimen geometry, Soil height, and sleeve length on the pullout behaviour of Geogrids publication-title: Geosynth. Int. – volume: 1–14 year: 2021 ident: bib42 article-title: Novel application of machine learning for estimation of pullout coefficient of geogrid publication-title: Geosynth. Int. – volume: 12 start-page: 469 year: 2021 end-page: 477 ident: bib61 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. – volume: 38 start-page: 605 year: 2019 end-page: 616 ident: bib45 article-title: Stick-slip behavior of dry fly ash publication-title: Part. Sci. Technol. – volume: 40 start-page: 513 year: 1990 end-page: 518 ident: bib25 article-title: Reinforcement bond capacity publication-title: Geotechnique – volume: 39 start-page: 511 year: 1989 end-page: 524 ident: bib41 article-title: Scale and other factors affecting the results of pull-out tests of grids buried in sand publication-title: Geotechnique – volume: 28 start-page: 370 year: 2005 end-page: 379 ident: bib30 article-title: Laboratory evaluation of pullout capacity of reinforced silty sands in drained and undrained conditions publication-title: Geotech. Test J. – volume: 32 year: 2018 ident: bib29 article-title: Soil-compressibility prediction models using machine learning publication-title: J. Comput. Civ. Eng. – volume: 33 start-page: 1 year: 2021 end-page: 13 ident: bib52 article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method publication-title: J. Mater. Civ. Eng. – volume: 18 year: 2018 ident: bib13 article-title: Prediction of bearing capacity of geogrid-reinforced Stone columns using support vector regression publication-title: Int. J. GeoMech. – volume: 23 start-page: 1249 year: 2009 end-page: 1264 ident: bib58 article-title: Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong publication-title: Construct. Build. Mater. – volume: 24 start-page: 220 year: 2006 end-page: 242 ident: bib37 article-title: Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil publication-title: Geotext. Geomembranes – volume: 21 year: 2021 ident: bib21 article-title: Predicting resilient modulus of cementitiously stabilized subgrade soils using neural network, support vector machine, and Gaussian process regression publication-title: Int. J. GeoMech. – volume: 235 year: 2021 ident: bib16 article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements publication-title: Eng. Struct. – volume: 127 start-page: 353 year: 2001 end-page: 362 ident: bib20 article-title: Interaction of foundry sands with geosynthetics publication-title: J. Geotech. Geoenviron. Eng. – volume: 7 start-page: 211 year: 2009 end-page: 223 ident: bib39 article-title: Study on pullout behavior of uniaxial HDPE geogrids under monotonic and cyclic loads publication-title: Int. J. Civ. Eng. – volume: 23 start-page: 37 year: 2008 end-page: 44 ident: bib40 article-title: Effects of transverse ribs on pullout resistance and deformation during the unloading – reloading process publication-title: Geosynth. Eng. J. – volume: 6 start-page: 1 year: 2021 end-page: 15 ident: bib18 article-title: Experimental and computational response of strip footing resting on prestressed geotextile-reinforced industrial waste publication-title: Innov. Infrastruct. Solut. – volume: 232 start-page: 417 year: 2019 end-page: 426 ident: bib47 article-title: Coal combustion residue as structural fill material for reinforced soil structures publication-title: J. Clean. Prod. – volume: 124 start-page: 299 year: 2016 end-page: 311 ident: bib57 article-title: Recycled Construction and Demolition Wastes as filling material for geosynthetic reinforced structures. Interface properties publication-title: J. Clean. Prod. – volume: 1 start-page: 165 year: 2014 end-page: 227 ident: bib38 article-title: Soil geosynthetic interaction: design parameters from experimental and theoretical analysis publication-title: Transp. Infrastruct. Geotechnol. – volume: 28 start-page: 368 year: 2021 end-page: 390 ident: bib51 article-title: Multivariate adaptive regression splines model for reinforced soil foundations publication-title: Geosynth. Int. – volume: 142 start-page: 213 year: 2016 end-page: 220 ident: bib48 article-title: Effects of fines contents on engineering properties of sand-fines mixtures publication-title: Procedia Eng. – volume: 30 start-page: 409 year: 1993 end-page: 417 ident: bib15 article-title: On the pullout resistance of geosynthetics publication-title: Can. Geotech. J. – volume: 32 year: 2009 ident: bib22 article-title: Evaluation of soil-geogrid pullout models using a statistical approach publication-title: Geotech. Test J. – start-page: 785 year: 2016 end-page: 794 ident: bib10 article-title: A scalable tree boosting system publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2016 ident: bib49 article-title: Use of Copper and Imperial Smelting Furnace Slags as Structural Fills in Reinforced Soil Structures – volume: 232 start-page: 417 year: 2019 end-page: 426 ident: bib46 article-title: Coal combustion residue as structural fill material for reinforced soil structures publication-title: J. Clean. Prod. – volume: 44 start-page: 406 year: 2016 end-page: 428 ident: bib50 article-title: Imperial smelting furnace (zinc) slag as a structural fill in reinforced soil structures publication-title: Geotext. Geomembranes – year: 1988 ident: bib31 article-title: Pull-out resistance of geogrids in sand publication-title: Transport. Res. Rec. – volume: 37 start-page: 4845 year: 2019 end-page: 4864 ident: bib53 article-title: Application of machine learning techniques for predicting the dynamic response of geogrid reinforced foundation beds publication-title: Geotech. Geol. Eng. – start-page: 785 year: 2016 end-page: 794 ident: bib11 article-title: XGBoost: a scalable tree boosting system publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2019 ident: bib35 article-title: Pullout response of strengthened geosynthetic interacting with fine sand publication-title: GEOtext – volume: 14 start-page: 543 year: 1996 end-page: 554 ident: bib32 article-title: Influence of the confinement, soil density and displacement rate on soil-geogrid interaction publication-title: Geotext. Geomembranes – volume: 31 year: 2018 ident: bib59 article-title: Soil–geogrid interaction at various influencing factors by pullout tests with applications of FBG sensors publication-title: J. Mater. Civ. Eng. – start-page: 18 year: 1984 end-page: 29 ident: bib26 article-title: Interaction between soil and geogrids publication-title: Proceedings of the Symposium on Polymer Grid Reinforcement – volume: 57 start-page: 1045 year: 2017 ident: 10.1016/j.geotexmem.2022.08.003_bib3 article-title: Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test publication-title: Soils Found. doi: 10.1016/j.sandf.2017.08.030 – volume: 40 start-page: 513 year: 1990 ident: 10.1016/j.geotexmem.2022.08.003_bib25 article-title: Reinforcement bond capacity publication-title: Geotechnique doi: 10.1680/geot.1990.40.3.513 – volume: 28 start-page: 368 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib51 article-title: Multivariate adaptive regression splines model for reinforced soil foundations publication-title: Geosynth. Int. doi: 10.1680/jgein.20.00049 – volume: 33 start-page: 1 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib52 article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003741 – start-page: 157 year: 1978 ident: 10.1016/j.geotexmem.2022.08.003_bib7 article-title: Study of the soil reinforcement friction coefficient – volume: 28 start-page: 370 year: 2005 ident: 10.1016/j.geotexmem.2022.08.003_bib30 article-title: Laboratory evaluation of pullout capacity of reinforced silty sands in drained and undrained conditions publication-title: Geotech. Test J. doi: 10.1520/GTJ12011 – volume: 14 start-page: 543 year: 1996 ident: 10.1016/j.geotexmem.2022.08.003_bib32 article-title: Influence of the confinement, soil density and displacement rate on soil-geogrid interaction publication-title: Geotext. Geomembranes doi: 10.1016/S0266-1144(97)83184-6 – start-page: 461 year: 2018 ident: 10.1016/j.geotexmem.2022.08.003_bib56 article-title: Machine learning applications for site characterization based on CPT data – volume: 23 start-page: 1249 year: 2009 ident: 10.1016/j.geotexmem.2022.08.003_bib58 article-title: Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2008.08.002 – year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib49 – volume: 45 start-page: 169 year: 2017 ident: 10.1016/j.geotexmem.2022.08.003_bib9 article-title: Modelling interference between the geogrid bearing members under pullout loading conditions publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2017.01.008 – volume: 1 start-page: 415 year: 2007 ident: 10.1016/j.geotexmem.2022.08.003_bib1 article-title: Utilization of a large-scale testing apparatus in investigating and formulating the soil/geogrid interface characteristics in reinforced soils publication-title: Aust. J. Basic Appl. Sci. – volume: 47 start-page: 514 year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib43 article-title: Bottom ash as a backfill material in reinforced soil structures publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2019.01.018 – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib28 article-title: Axial pullout resistance and interface direct shear properties of geogrids in pond ash publication-title: Int. J. Geosynth. Gr. Eng. – volume: 232 start-page: 417 year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib47 article-title: Coal combustion residue as structural fill material for reinforced soil structures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.354 – year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib35 article-title: Pullout response of strengthened geosynthetic interacting with fine sand publication-title: GEOtext doi: 10.1016/j.geotexmem.2019.02.006 – volume: 29 start-page: 588 year: 2011 ident: 10.1016/j.geotexmem.2022.08.003_bib2 article-title: Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2011.04.004 – volume: 3 start-page: 701 year: 1996 ident: 10.1016/j.geotexmem.2022.08.003_bib33 article-title: Role of Specimen geometry, Soil height, and sleeve length on the pullout behaviour of Geogrids publication-title: Geosynth. Int. doi: 10.1680/gein.3.0081 – volume: 124 start-page: 299 year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib57 article-title: Recycled Construction and Demolition Wastes as filling material for geosynthetic reinforced structures. Interface properties publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.02.115 – volume: 1 start-page: 165 year: 2014 ident: 10.1016/j.geotexmem.2022.08.003_bib38 article-title: Soil geosynthetic interaction: design parameters from experimental and theoretical analysis publication-title: Transp. Infrastruct. Geotechnol. doi: 10.1007/s40515-014-0007-2 – start-page: 785 year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib11 article-title: XGBoost: a scalable tree boosting system – volume: 51 start-page: 135 year: 2004 ident: 10.1016/j.geotexmem.2022.08.003_bib14 article-title: Pullout tests of geogrids embedded in non-cohesive soil publication-title: Arch. Hydroeng. Environ. Mech. – volume: 31 year: 2018 ident: 10.1016/j.geotexmem.2022.08.003_bib59 article-title: Soil–geogrid interaction at various influencing factors by pullout tests with applications of FBG sensors publication-title: J. Mater. Civ. Eng. – volume: 37 start-page: 4845 year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib53 article-title: Application of machine learning techniques for predicting the dynamic response of geogrid reinforced foundation beds publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-019-00945-7 – volume: 30 start-page: 409 year: 1993 ident: 10.1016/j.geotexmem.2022.08.003_bib15 article-title: On the pullout resistance of geosynthetics publication-title: Can. Geotech. J. doi: 10.1139/t93-036 – volume: 6 start-page: 261 year: 1999 ident: 10.1016/j.geotexmem.2022.08.003_bib34 article-title: Soil–geosynthetics interaction: influence of soil particle size and geosynthetics structure publication-title: Geosynth. Int. doi: 10.1680/gein.6.0153 – volume: 142 start-page: 213 year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib48 article-title: Effects of fines contents on engineering properties of sand-fines mixtures publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.02.034 – volume: 6 start-page: 1 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib18 article-title: Experimental and computational response of strip footing resting on prestressed geotextile-reinforced industrial waste publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-021-00468-2 – volume: 24 start-page: 220 year: 2006 ident: 10.1016/j.geotexmem.2022.08.003_bib37 article-title: Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2006.03.001 – start-page: 785 year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib10 article-title: A scalable tree boosting system – start-page: 18 year: 1984 ident: 10.1016/j.geotexmem.2022.08.003_bib26 article-title: Interaction between soil and geogrids – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geotexmem.2022.08.003_bib8 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 133 start-page: 37 year: 2007 ident: 10.1016/j.geotexmem.2022.08.003_bib55 article-title: Pullout resistance of individual longitudinal and transverse geogrid ribs publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2007)133:1(37) – volume: 32 year: 2009 ident: 10.1016/j.geotexmem.2022.08.003_bib22 article-title: Evaluation of soil-geogrid pullout models using a statistical approach publication-title: Geotech. Test J. doi: 10.1520/GTJ102460 – volume: 8 start-page: 244 year: 2013 ident: 10.1016/j.geotexmem.2022.08.003_bib12 article-title: A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling publication-title: Geomechanics Geoengin. doi: 10.1080/17486025.2013.805253 – start-page: 18 year: 1988 ident: 10.1016/j.geotexmem.2022.08.003_bib27 article-title: Pullout response of geotextiles and geogrids (Synthesis of available experimental data) – volume: 232 start-page: 417 year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib46 article-title: Coal combustion residue as structural fill material for reinforced soil structures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.354 – volume: 32 year: 2018 ident: 10.1016/j.geotexmem.2022.08.003_bib29 article-title: Soil-compressibility prediction models using machine learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000713 – volume: 50 start-page: 357 year: 2022 ident: 10.1016/j.geotexmem.2022.08.003_bib19 article-title: Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2021.12.005 – volume: 21 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib21 article-title: Predicting resilient modulus of cementitiously stabilized subgrade soils using neural network, support vector machine, and Gaussian process regression publication-title: Int. J. GeoMech. doi: 10.1061/(ASCE)GM.1943-5622.0002029 – volume: 44 start-page: 406 year: 2016 ident: 10.1016/j.geotexmem.2022.08.003_bib50 article-title: Imperial smelting furnace (zinc) slag as a structural fill in reinforced soil structures publication-title: Geotext. Geomembranes doi: 10.1016/j.geotexmem.2016.01.009 – volume: 23 start-page: 37 year: 2008 ident: 10.1016/j.geotexmem.2022.08.003_bib40 article-title: Effects of transverse ribs on pullout resistance and deformation during the unloading – reloading process publication-title: Geosynth. Eng. J. doi: 10.5030/jcigsjournal.23.37 – year: 2001 ident: 10.1016/j.geotexmem.2022.08.003_bib17 – volume: 7 start-page: 211 year: 2009 ident: 10.1016/j.geotexmem.2022.08.003_bib39 article-title: Study on pullout behavior of uniaxial HDPE geogrids under monotonic and cyclic loads publication-title: Int. J. Civ. Eng. – volume: 39 start-page: 511 year: 1989 ident: 10.1016/j.geotexmem.2022.08.003_bib41 article-title: Scale and other factors affecting the results of pull-out tests of grids buried in sand publication-title: Geotechnique doi: 10.1680/geot.1989.39.3.511 – volume: 19 start-page: 483 year: 2001 ident: 10.1016/j.geotexmem.2022.08.003_bib4 article-title: Influence of longitudinal and transverse members on geogrid pullout behavior during deformation publication-title: Geotext. Geomembranes doi: 10.1016/S0266-1144(01)00020-6 – volume: 82 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib36 article-title: Prediction of coefficient of consolidation in soil using machine learning techniques publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2021.103830 – volume: 38 start-page: 605 year: 2019 ident: 10.1016/j.geotexmem.2022.08.003_bib45 article-title: Stick-slip behavior of dry fly ash publication-title: Part. Sci. Technol. doi: 10.1080/02726351.2019.1571543 – volume: 12 start-page: 469 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib61 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – volume: 127 start-page: 353 year: 2001 ident: 10.1016/j.geotexmem.2022.08.003_bib20 article-title: Interaction of foundry sands with geosynthetics publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2001)127:4(353) – start-page: 1 year: 2014 ident: 10.1016/j.geotexmem.2022.08.003_bib23 article-title: Guidelines for design and construction of reinforced soil Walls publication-title: Indian Roads Congr. – volume: 289 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib24 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112420 – volume: 1–14 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib42 article-title: Novel application of machine learning for estimation of pullout coefficient of geogrid publication-title: Geosynth. Int. – volume: 120 start-page: 661 year: 1994 ident: 10.1016/j.geotexmem.2022.08.003_bib60 article-title: Experimental behavior of polymeric geogrids in pullout publication-title: J. Geotech. Eng. doi: 10.1061/(ASCE)0733-9410(1994)120:4(661) – volume: 2 start-page: 679 year: 1995 ident: 10.1016/j.geotexmem.2022.08.003_bib5 article-title: Pullout interaction mechanism of geogrid strip reinforcement publication-title: Geosynth. Int. doi: 10.1680/gein.2.0030 – year: 1988 ident: 10.1016/j.geotexmem.2022.08.003_bib31 article-title: Pull-out resistance of geogrids in sand publication-title: Transport. Res. Rec. – volume: 18 year: 2018 ident: 10.1016/j.geotexmem.2022.08.003_bib13 article-title: Prediction of bearing capacity of geogrid-reinforced Stone columns using support vector regression publication-title: Int. J. GeoMech. doi: 10.1061/(ASCE)GM.1943-5622.0001067 – volume: 235 year: 2021 ident: 10.1016/j.geotexmem.2022.08.003_bib16 article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.111979 |
SSID | ssj0004798 |
Score | 2.4519656 |
Snippet | Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1188 |
SubjectTerms | Algorithms Coefficients Extreme gradient boosting Geogrid Geogrids Graphical user interface Laboratory tests Machine learning Mathematical models Model accuracy Normal stress Predictions Pull out tests Pullout resistance Random forest Testing |
Title | Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model |
URI | https://dx.doi.org/10.1016/j.geotexmem.2022.08.003 https://www.proquest.com/docview/2756216701 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB66TtRsu8EaJBTYiJknAwadauIxhlBEaiF_92-7oNRQ8cPLK0y_Je936w730fQhdc-6pNSOwpxRIv6ETUC4UBgE0SaR4TwYxD-Q54fxjcjdqjCuqVszAAqyxifx7TXbQurrQKa7Zmk0nrkUBusf0Ag2kTW3bDBHsg4JRffn7DPALh9HBhsQer1zBeY5Nm5v3NwEg6Y47Ls1TP-puhfsVql4Bu9tFeUTnibv5wB6hipjW0XQ4WL2po9we34CF6fpjDNxiwO04TPLOtZrrMMNBDzPNhBqxT4wgkbN6BJWPQQ5_EC6w-sA3Z8MchHs8dJCzDthhfAEIaO-mcIzS8uX7q9b1CSsHTtj7JvBi0gRLKolD5fkJUG3jbVSCSkGtbNMQ6Cm0jZmyrHAgWiTDU1OexIElEiYoS5h-j6jSdmhOEVUhVQDW3PvYDGwGUYSGPfGOo9YPusDripfmkLnjGQe7iVZaAshe5srsEu0sQwiR-HZHVxllOtbF5y1XpH7l2aqRNCJs3N0qPyuLFXUhgw2eUC0JP_3PvM7QDv3LcSwNVs_nSnNvqJVNNdzybaKt7e98ffAFNevB5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHNSDUdSIzz14bdjdli31ZowEBImJkHAw2XS3W4JRSqAm-u_d6QNfBw9e207TzG7n0X7zfQAXQruqSWnkKMVjx2uFzAl8gwCbONQioj43Gcp3IDoj73bcHK_BdTkLg7DKIvbnMT2L1sWRRuHNxnw6bTxQzC22H-A4bWLL7nWoIjtVswLVq26vM_gcj_QzSVy83kGDbzCviUlS8_ZicCqd84zOsxTQ-p2kfoTrLAe1d2C7KB7JVf58u7BmZjXYKGeLlzXY-kIvuAeP9wv8DYOuJ0lM5rbbTF5TggwRi3yegejEZBwSNvXgJROURJ9GS6LeiY3a-O2QTBYZKiwlth5fIkiaZOo5-zBq3wyvO06hpuBoW6KkToTyQDHjYaBcN6aqidTtyvPjQGhbN0Q6DGwvZmy37Pk89INAM1dEPo1DRlUYc_cAKrNkZg6BqIApj2lhl9n1bBBQhgcidI1hdil0i9dBlO6TuqAaR8WLZ1liyp7kyu8S_S5RC5O6daArw3nOtvG3yWW5PvLbxpE2J_xtfFKuqCze3aVEQnzOhE_Z0X_ufQ4bneFdX_a7g94xbOKZHAZzApV08WpObTGTqrNis34AibrzKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+pullout+interaction+coefficient+of+geogrids+by+extreme+gradient+boosting+model&rft.jtitle=Geotextiles+and+geomembranes&rft.au=Pant%2C+Aali&rft.au=Ramana%2C+G.V.&rft.date=2022-12-01&rft.issn=0266-1144&rft.volume=50&rft.issue=6&rft.spage=1188&rft.epage=1198&rft_id=info:doi/10.1016%2Fj.geotexmem.2022.08.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geotexmem_2022_08_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-1144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-1144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-1144&client=summon |