Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model

Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes predi...

Full description

Saved in:
Bibliographic Details
Published inGeotextiles and geomembranes Vol. 50; no. 6; pp. 1188 - 1198
Main Authors Pant, Aali, Ramana, G.V.
Format Journal Article
LanguageEnglish
Published Essex Elsevier Ltd 01.12.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions. •This study applies machine learning algorithms for prediction of pullout interaction coefficient of geogrids.•Ensemble learning algorithms have been used on 220 laboratory pullout test results.•Laboratory pullout tests have also been conducted and results have been compared with predicted results for verification.•Open-source graphical user interface has been developed for predicting interaction coefficient values.
AbstractList Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions. •This study applies machine learning algorithms for prediction of pullout interaction coefficient of geogrids.•Ensemble learning algorithms have been used on 220 laboratory pullout test results.•Laboratory pullout tests have also been conducted and results have been compared with predicted results for verification.•Open-source graphical user interface has been developed for predicting interaction coefficient values.
Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout interaction coefficient which is critical in fixing the embedment length of geogrids in mechanically stabilized earth walls. This paper proposes prediction of pullout interaction coefficient using data driven machine learning regression algorithms. The study primarily focusses on using extreme gradient boosting (XGBoost) method for prediction. A data set containing 220 test results from the literature has been used for training and testing. Predicted results of XGBoost have been compared with the results of random forest (RF) ensemble learning based algorithm. The predictions of XGBoost model indicates 85% accuracy and that of RF model shows 77% accuracy, indicating significantly superior and robust prediction through XGBoost above RF model. The importance analysis indicates that normal stress is the most significant factor that influences the pullout interaction coefficients. Subsequently pullout tests have been performed on geogrid embedded in four different fill materials at three normal stresses. The proposed XGBoost model gives 90% accuracy in prediction of pullout interaction coefficient compared to laboratory test results. Finally, an open-source graphical user interface based on the XGBoost model has been created for preliminary estimation of the pullout interaction coefficient of geogrid at different test conditions.
Author Pant, Aali
Ramana, G.V.
Author_xml – sequence: 1
  givenname: Aali
  orcidid: 0000-0001-6949-9020
  surname: Pant
  fullname: Pant, Aali
  email: aalipant@iitj.ac.in
  organization: Department of Civil and Infrastructure Engineering, Indian Institute of Technology, Jodhpur, India
– sequence: 2
  givenname: G.V.
  surname: Ramana
  fullname: Ramana, G.V.
  email: ramana@civil.iitd.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology, Delhi, India
BookMark eNqNkE1LxDAQhoMouH78BgueWydJt2kOHkT8AkEPehNCmk6WLG2zJlnZ_fe2rnjwoqeBmfd9Z-Y5IvuDH5CQMwoFBVpdLIsF-oSbHvuCAWMF1AUA3yMzWguZ83ld7pMZsKrKKS3LQ3IU4xIASiHrGXl7Dtg6k5wfMm-z1brr_DplbkgY9K5tPFrrjMMhTZJx2yK4NmbNNsNNCthjtgi6_Zo33sfkhkXW-xa7E3JgdRfx9Lsek9fbm5fr-_zx6e7h-uoxN0zwlLccGLeUadlwbqGZ05pBUworKwNi3hotJSuxkuPNTAspDeVVK8BqCo22jB-T813uKvj3Ncakln4dhnGlYmJeMVoJoKPqcqcywccY0Crjkp5eTEG7TlFQE1C1VD9A1QRUQa1GoKNf_PKvgut12P7DebVz4gjhw2FQccJpRvIBTVKtd39mfAKGi5kG
CitedBy_id crossref_primary_10_1680_jgein_23_00172
crossref_primary_10_1016_j_geotexmem_2022_10_007
crossref_primary_10_1007_s11440_023_02082_1
crossref_primary_10_1002_suco_202400886
crossref_primary_10_1007_s40996_024_01401_0
crossref_primary_10_1007_s40515_025_00560_5
crossref_primary_10_1186_s40537_025_01081_1
crossref_primary_10_1016_j_conbuildmat_2024_136933
crossref_primary_10_1002_pen_27170
crossref_primary_10_1038_s41598_024_68360_4
crossref_primary_10_1038_s41598_024_66957_3
crossref_primary_10_1016_j_istruc_2024_106850
crossref_primary_10_1016_j_procs_2023_10_501
crossref_primary_10_1016_j_aej_2024_02_026
crossref_primary_10_1080_0305215X_2024_2397431
crossref_primary_10_2166_ws_2024_189
crossref_primary_10_1007_s41062_024_01606_2
crossref_primary_10_3390_buildings13051353
Cites_doi 10.1016/j.sandf.2017.08.030
10.1680/geot.1990.40.3.513
10.1680/jgein.20.00049
10.1061/(ASCE)MT.1943-5533.0003741
10.1520/GTJ12011
10.1016/S0266-1144(97)83184-6
10.1016/j.conbuildmat.2008.08.002
10.1016/j.geotexmem.2017.01.008
10.1016/j.geotexmem.2019.01.018
10.1016/j.jclepro.2019.05.354
10.1016/j.geotexmem.2019.02.006
10.1016/j.geotexmem.2011.04.004
10.1680/gein.3.0081
10.1016/j.jclepro.2016.02.115
10.1007/s40515-014-0007-2
10.1007/s10706-019-00945-7
10.1139/t93-036
10.1680/gein.6.0153
10.1016/j.proeng.2016.02.034
10.1007/s41062-021-00468-2
10.1016/j.geotexmem.2006.03.001
10.1023/A:1010933404324
10.1061/(ASCE)1090-0241(2007)133:1(37)
10.1520/GTJ102460
10.1080/17486025.2013.805253
10.1061/(ASCE)CP.1943-5487.0000713
10.1016/j.geotexmem.2021.12.005
10.1061/(ASCE)GM.1943-5622.0002029
10.1016/j.geotexmem.2016.01.009
10.5030/jcigsjournal.23.37
10.1680/geot.1989.39.3.511
10.1016/S0266-1144(01)00020-6
10.1016/j.micpro.2021.103830
10.1080/02726351.2019.1571543
10.1016/j.gsf.2020.03.007
10.1061/(ASCE)1090-0241(2001)127:4(353)
10.1016/j.jenvman.2021.112420
10.1061/(ASCE)0733-9410(1994)120:4(661)
10.1680/gein.2.0030
10.1061/(ASCE)GM.1943-5622.0001067
10.1016/j.engstruct.2021.111979
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Dec 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2022
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.geotexmem.2022.08.003
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3584
EndPage 1198
ExternalDocumentID 10_1016_j_geotexmem_2022_08_003
S0266114422000875
GroupedDBID --K
--M
.-4
..I
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SSM
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c273t-d3023f12a9b33f0b51820b47f96c075dca9924e690472a799c136d70fa10baf23
IEDL.DBID .~1
ISSN 0266-1144
IngestDate Fri Jul 25 05:26:41 EDT 2025
Tue Jul 01 03:25:21 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Fri Feb 23 02:39:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Random forest
Extreme gradient boosting
Pullout resistance
Geogrid
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-d3023f12a9b33f0b51820b47f96c075dca9924e690472a799c136d70fa10baf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6949-9020
PQID 2756216701
PQPubID 2045473
PageCount 11
ParticipantIDs proquest_journals_2756216701
crossref_citationtrail_10_1016_j_geotexmem_2022_08_003
crossref_primary_10_1016_j_geotexmem_2022_08_003
elsevier_sciencedirect_doi_10_1016_j_geotexmem_2022_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Essex
PublicationPlace_xml – name: Essex
PublicationTitle Geotextiles and geomembranes
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Debnath, Dey (bib13) 2018; 18
Ghazavi, Bavandpouri (bib19) 2022; 50
(bib6) 2013
(bib23) 2014
Vieira, Pereira, Lopes (bib57) 2016; 124
Juran, Knochenmus, Acar, Armar (bib27) 1988
Abdel-Rahman, Ibrahim, Ashmawy (bib1) 2007; 1
Palmeira, Milligan (bib41) 1989; 39
Goodhue, Edil, Benson (bib20) 2001; 127
Mittal, Satapathy, Pal, Agarwal, Goyal, Parwekar (bib36) 2021; 82
Jewell (bib25) 1990; 40
Sharma, Venkateswarlu, Hegde (bib53) 2019; 37
Lopes, Ladeira (bib33) 1996; 3
Huang, Bathurst (bib22) 2009; 32
Kirts, Panagopoulos, Xanthopoulos, Nam (bib29) 2018; 32
Jalal, Xu, Iqbal, Javed, Jamhiri (bib24) 2021; 289
Abdi, Arjomand (bib2) 2011; 29
Lee, Bobet (bib30) 2005; 28
Prasad (bib49) 2016
Lopes, Ladeira (bib32) 1996; 14
Prasad, Ramana (bib50) 2016; 44
Wang, Chan, Lam (bib58) 2009; 23
Moraci, Cardile, Gioffrè, Mandaglio, Calvarano, Carbone (bib38) 2014; 1
Hu, Solanki (bib21) 2021; 21
Abdi, Mirzaeifar (bib3) 2017; 57
Breiman (bib8) 2001; 45
Chen, Guestrin (bib11) 2016
Karnamprabhakara, Balunaini, Arulrajah, Evans (bib28) 2021; 7
FHWA-NHI-00-043 (bib17) 2001
Chen, Guestrin (bib10) 2016
Lentz, Pyatt (bib31) 1988
Duszyńska, Bolt (bib14) 2004; 51
Ren, Ding, Dai, Jiang, De Schutter (bib52) 2021; 33
Zhang, Wu, Zhong, Li, Wang (bib61) 2021; 12
Jewell, Milligan, Sarsby, Dubois (bib26) 1984
Moraci, Recalcati (bib37) 2006; 24
Nayeri, Fakharian (bib39) 2009; 7
Teixeira, Bueno, Zornberg (bib55) 2007; 133
Alagiyawanna, Sugimoto, Sato, Toyota (bib4) 2001; 19
Nguyen, Kuwano, Izawa, Seki (bib40) 2008; 23
Pant, Ramana, Datta (bib45) 2019; 38
Cardile, Gioffrè, Moraci, Calvarano (bib9) 2017; 45
Mirzaalimohammadi, Ghazavi, Roustaei, Lajevardi (bib35) 2019
Pant, Ramana (bib42) 2021; 1–14
Pant, Datta, Ramana (bib43) 2019; 47
Fannin, Raju (bib15) 1993; 30
Pant, Ramana, Datta, Gupta (bib46) 2019; 232
Phan, Hsiao, Nguyen (bib48) 2016; 142
Feng, Wang, Mangalathu, Hu, Wu (bib16) 2021; 235
Chen, McDowell, Thom (bib12) 2013; 8
Wilson-Fahmy, Koerner, Sansone (bib60) 1994; 120
Raja, Shukla (bib51) 2021; 28
Lopes, Lopes (bib34) 1999; 6
Pant, Ramana, Datta, Gupta (bib47) 2019; 232
Bacot, Itlis, Lareal, Paumier, Sanglert (bib7) 1978
Alfaro, Hayashi, Miura, Watanabe (bib5) 1995; 2
Tsiaousi, Travasarou, Drosos, Ugalde, Chacko (bib56) 2018
Ghani, Kumari, Choudhary, Jha (bib18) 2021; 6
Wang, Chen, Liu, Kang, Wang (bib59) 2018; 31
Prasad (10.1016/j.geotexmem.2022.08.003_bib50) 2016; 44
Mittal (10.1016/j.geotexmem.2022.08.003_bib36) 2021; 82
Lopes (10.1016/j.geotexmem.2022.08.003_bib32) 1996; 14
Wang (10.1016/j.geotexmem.2022.08.003_bib58) 2009; 23
Jewell (10.1016/j.geotexmem.2022.08.003_bib26) 1984
Pant (10.1016/j.geotexmem.2022.08.003_bib42) 2021; 1–14
Feng (10.1016/j.geotexmem.2022.08.003_bib16) 2021; 235
Karnamprabhakara (10.1016/j.geotexmem.2022.08.003_bib28) 2021; 7
Phan (10.1016/j.geotexmem.2022.08.003_bib48) 2016; 142
Vieira (10.1016/j.geotexmem.2022.08.003_bib57) 2016; 124
Wang (10.1016/j.geotexmem.2022.08.003_bib59) 2018; 31
Kirts (10.1016/j.geotexmem.2022.08.003_bib29) 2018; 32
Chen (10.1016/j.geotexmem.2022.08.003_bib11) 2016
Jewell (10.1016/j.geotexmem.2022.08.003_bib25) 1990; 40
Lentz (10.1016/j.geotexmem.2022.08.003_bib31) 1988
Debnath (10.1016/j.geotexmem.2022.08.003_bib13) 2018; 18
Nguyen (10.1016/j.geotexmem.2022.08.003_bib40) 2008; 23
Chen (10.1016/j.geotexmem.2022.08.003_bib10) 2016
Zhang (10.1016/j.geotexmem.2022.08.003_bib61) 2021; 12
Prasad (10.1016/j.geotexmem.2022.08.003_bib49) 2016
Tsiaousi (10.1016/j.geotexmem.2022.08.003_bib56) 2018
Pant (10.1016/j.geotexmem.2022.08.003_bib47) 2019; 232
Ren (10.1016/j.geotexmem.2022.08.003_bib52) 2021; 33
Mirzaalimohammadi (10.1016/j.geotexmem.2022.08.003_bib35) 2019
Hu (10.1016/j.geotexmem.2022.08.003_bib21) 2021; 21
Goodhue (10.1016/j.geotexmem.2022.08.003_bib20) 2001; 127
Chen (10.1016/j.geotexmem.2022.08.003_bib12) 2013; 8
Alagiyawanna (10.1016/j.geotexmem.2022.08.003_bib4) 2001; 19
Abdi (10.1016/j.geotexmem.2022.08.003_bib2) 2011; 29
Raja (10.1016/j.geotexmem.2022.08.003_bib51) 2021; 28
Pant (10.1016/j.geotexmem.2022.08.003_bib43) 2019; 47
Pant (10.1016/j.geotexmem.2022.08.003_bib45) 2019; 38
Breiman (10.1016/j.geotexmem.2022.08.003_bib8) 2001; 45
Juran (10.1016/j.geotexmem.2022.08.003_bib27) 1988
FHWA-NHI-00-043 (10.1016/j.geotexmem.2022.08.003_bib17) 2001
Ghani (10.1016/j.geotexmem.2022.08.003_bib18) 2021; 6
Pant (10.1016/j.geotexmem.2022.08.003_bib46) 2019; 232
Alfaro (10.1016/j.geotexmem.2022.08.003_bib5) 1995; 2
Nayeri (10.1016/j.geotexmem.2022.08.003_bib39) 2009; 7
Moraci (10.1016/j.geotexmem.2022.08.003_bib37) 2006; 24
Ghazavi (10.1016/j.geotexmem.2022.08.003_bib19) 2022; 50
Fannin (10.1016/j.geotexmem.2022.08.003_bib15) 1993; 30
Jalal (10.1016/j.geotexmem.2022.08.003_bib24) 2021; 289
Duszyńska (10.1016/j.geotexmem.2022.08.003_bib14) 2004; 51
Lopes (10.1016/j.geotexmem.2022.08.003_bib33) 1996; 3
Teixeira (10.1016/j.geotexmem.2022.08.003_bib55) 2007; 133
Abdel-Rahman (10.1016/j.geotexmem.2022.08.003_bib1) 2007; 1
Moraci (10.1016/j.geotexmem.2022.08.003_bib38) 2014; 1
Huang (10.1016/j.geotexmem.2022.08.003_bib22) 2009; 32
Palmeira (10.1016/j.geotexmem.2022.08.003_bib41) 1989; 39
Wilson-Fahmy (10.1016/j.geotexmem.2022.08.003_bib60) 1994; 120
Bacot (10.1016/j.geotexmem.2022.08.003_bib7) 1978
Cardile (10.1016/j.geotexmem.2022.08.003_bib9) 2017; 45
Abdi (10.1016/j.geotexmem.2022.08.003_bib3) 2017; 57
Sharma (10.1016/j.geotexmem.2022.08.003_bib53) 2019; 37
(10.1016/j.geotexmem.2022.08.003_bib23) 2014
Lee (10.1016/j.geotexmem.2022.08.003_bib30) 2005; 28
Lopes (10.1016/j.geotexmem.2022.08.003_bib34) 1999; 6
References_xml – volume: 133
  start-page: 37
  year: 2007
  end-page: 50
  ident: bib55
  article-title: Pullout resistance of individual longitudinal and transverse geogrid ribs
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 47
  start-page: 514
  year: 2019
  end-page: 521
  ident: bib43
  article-title: Bottom ash as a backfill material in reinforced soil structures
  publication-title: Geotext. Geomembranes
– year: 2001
  ident: bib17
  article-title: Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design & Construction Guidelines
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib8
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 50
  start-page: 357
  year: 2022
  end-page: 369
  ident: bib19
  article-title: Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils
  publication-title: Geotext. Geomembranes
– volume: 1
  start-page: 415
  year: 2007
  end-page: 430
  ident: bib1
  article-title: Utilization of a large-scale testing apparatus in investigating and formulating the soil/geogrid interface characteristics in reinforced soils
  publication-title: Aust. J. Basic Appl. Sci.
– start-page: 1
  year: 2014
  end-page: 80
  ident: bib23
  article-title: Guidelines for design and construction of reinforced soil Walls
  publication-title: Indian Roads Congr.
– start-page: 461
  year: 2018
  end-page: 472
  ident: bib56
  article-title: Machine learning applications for site characterization based on CPT data
  publication-title: Geotechnical Earthquake Engineering and Soil Dynamics V
– volume: 57
  start-page: 1045
  year: 2017
  end-page: 1058
  ident: bib3
  article-title: Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test
  publication-title: Soils Found.
– volume: 289
  year: 2021
  ident: bib24
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP
  publication-title: J. Environ. Manag.
– volume: 51
  start-page: 135
  year: 2004
  end-page: 147
  ident: bib14
  article-title: Pullout tests of geogrids embedded in non-cohesive soil
  publication-title: Arch. Hydroeng. Environ. Mech.
– volume: 120
  start-page: 661
  year: 1994
  end-page: 677
  ident: bib60
  article-title: Experimental behavior of polymeric geogrids in pullout
  publication-title: J. Geotech. Eng.
– start-page: 157
  year: 1978
  end-page: 185
  ident: bib7
  article-title: Study of the soil reinforcement friction coefficient
  publication-title: Symposium on Earth Reinforcement
– volume: 8
  start-page: 244
  year: 2013
  end-page: 253
  ident: bib12
  article-title: A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling
  publication-title: Geomechanics Geoengin.
– volume: 6
  start-page: 261
  year: 1999
  end-page: 282
  ident: bib34
  article-title: Soil–geosynthetics interaction: influence of soil particle size and geosynthetics structure
  publication-title: Geosynth. Int.
– volume: 29
  start-page: 588
  year: 2011
  end-page: 595
  ident: bib2
  article-title: Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand
  publication-title: Geotext. Geomembranes
– volume: 2
  start-page: 679
  year: 1995
  end-page: 698
  ident: bib5
  article-title: Pullout interaction mechanism of geogrid strip reinforcement
  publication-title: Geosynth. Int.
– start-page: 18
  year: 1988
  ident: bib27
  article-title: Pullout response of geotextiles and geogrids (Synthesis of available experimental data)
  publication-title: Geosynth. Soil Improv
– volume: 82
  year: 2021
  ident: bib36
  article-title: Prediction of coefficient of consolidation in soil using machine learning techniques
  publication-title: Microprocess. Microsyst.
– volume: 19
  start-page: 483
  year: 2001
  end-page: 507
  ident: bib4
  article-title: Influence of longitudinal and transverse members on geogrid pullout behavior during deformation
  publication-title: Geotext. Geomembranes
– year: 2013
  ident: bib6
  article-title: Standard test method for measuring geosynthetic pullout resistance in soil 01
– volume: 7
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib28
  article-title: Axial pullout resistance and interface direct shear properties of geogrids in pond ash
  publication-title: Int. J. Geosynth. Gr. Eng.
– volume: 45
  start-page: 169
  year: 2017
  end-page: 177
  ident: bib9
  article-title: Modelling interference between the geogrid bearing members under pullout loading conditions
  publication-title: Geotext. Geomembranes
– volume: 3
  start-page: 701
  year: 1996
  end-page: 719
  ident: bib33
  article-title: Role of Specimen geometry, Soil height, and sleeve length on the pullout behaviour of Geogrids
  publication-title: Geosynth. Int.
– volume: 1–14
  year: 2021
  ident: bib42
  article-title: Novel application of machine learning for estimation of pullout coefficient of geogrid
  publication-title: Geosynth. Int.
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: bib61
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 38
  start-page: 605
  year: 2019
  end-page: 616
  ident: bib45
  article-title: Stick-slip behavior of dry fly ash
  publication-title: Part. Sci. Technol.
– volume: 40
  start-page: 513
  year: 1990
  end-page: 518
  ident: bib25
  article-title: Reinforcement bond capacity
  publication-title: Geotechnique
– volume: 39
  start-page: 511
  year: 1989
  end-page: 524
  ident: bib41
  article-title: Scale and other factors affecting the results of pull-out tests of grids buried in sand
  publication-title: Geotechnique
– volume: 28
  start-page: 370
  year: 2005
  end-page: 379
  ident: bib30
  article-title: Laboratory evaluation of pullout capacity of reinforced silty sands in drained and undrained conditions
  publication-title: Geotech. Test J.
– volume: 32
  year: 2018
  ident: bib29
  article-title: Soil-compressibility prediction models using machine learning
  publication-title: J. Comput. Civ. Eng.
– volume: 33
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib52
  article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method
  publication-title: J. Mater. Civ. Eng.
– volume: 18
  year: 2018
  ident: bib13
  article-title: Prediction of bearing capacity of geogrid-reinforced Stone columns using support vector regression
  publication-title: Int. J. GeoMech.
– volume: 23
  start-page: 1249
  year: 2009
  end-page: 1264
  ident: bib58
  article-title: Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong
  publication-title: Construct. Build. Mater.
– volume: 24
  start-page: 220
  year: 2006
  end-page: 242
  ident: bib37
  article-title: Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil
  publication-title: Geotext. Geomembranes
– volume: 21
  year: 2021
  ident: bib21
  article-title: Predicting resilient modulus of cementitiously stabilized subgrade soils using neural network, support vector machine, and Gaussian process regression
  publication-title: Int. J. GeoMech.
– volume: 235
  year: 2021
  ident: bib16
  article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements
  publication-title: Eng. Struct.
– volume: 127
  start-page: 353
  year: 2001
  end-page: 362
  ident: bib20
  article-title: Interaction of foundry sands with geosynthetics
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 7
  start-page: 211
  year: 2009
  end-page: 223
  ident: bib39
  article-title: Study on pullout behavior of uniaxial HDPE geogrids under monotonic and cyclic loads
  publication-title: Int. J. Civ. Eng.
– volume: 23
  start-page: 37
  year: 2008
  end-page: 44
  ident: bib40
  article-title: Effects of transverse ribs on pullout resistance and deformation during the unloading – reloading process
  publication-title: Geosynth. Eng. J.
– volume: 6
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib18
  article-title: Experimental and computational response of strip footing resting on prestressed geotextile-reinforced industrial waste
  publication-title: Innov. Infrastruct. Solut.
– volume: 232
  start-page: 417
  year: 2019
  end-page: 426
  ident: bib47
  article-title: Coal combustion residue as structural fill material for reinforced soil structures
  publication-title: J. Clean. Prod.
– volume: 124
  start-page: 299
  year: 2016
  end-page: 311
  ident: bib57
  article-title: Recycled Construction and Demolition Wastes as filling material for geosynthetic reinforced structures. Interface properties
  publication-title: J. Clean. Prod.
– volume: 1
  start-page: 165
  year: 2014
  end-page: 227
  ident: bib38
  article-title: Soil geosynthetic interaction: design parameters from experimental and theoretical analysis
  publication-title: Transp. Infrastruct. Geotechnol.
– volume: 28
  start-page: 368
  year: 2021
  end-page: 390
  ident: bib51
  article-title: Multivariate adaptive regression splines model for reinforced soil foundations
  publication-title: Geosynth. Int.
– volume: 142
  start-page: 213
  year: 2016
  end-page: 220
  ident: bib48
  article-title: Effects of fines contents on engineering properties of sand-fines mixtures
  publication-title: Procedia Eng.
– volume: 30
  start-page: 409
  year: 1993
  end-page: 417
  ident: bib15
  article-title: On the pullout resistance of geosynthetics
  publication-title: Can. Geotech. J.
– volume: 32
  year: 2009
  ident: bib22
  article-title: Evaluation of soil-geogrid pullout models using a statistical approach
  publication-title: Geotech. Test J.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib10
  article-title: A scalable tree boosting system
  publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2016
  ident: bib49
  article-title: Use of Copper and Imperial Smelting Furnace Slags as Structural Fills in Reinforced Soil Structures
– volume: 232
  start-page: 417
  year: 2019
  end-page: 426
  ident: bib46
  article-title: Coal combustion residue as structural fill material for reinforced soil structures
  publication-title: J. Clean. Prod.
– volume: 44
  start-page: 406
  year: 2016
  end-page: 428
  ident: bib50
  article-title: Imperial smelting furnace (zinc) slag as a structural fill in reinforced soil structures
  publication-title: Geotext. Geomembranes
– year: 1988
  ident: bib31
  article-title: Pull-out resistance of geogrids in sand
  publication-title: Transport. Res. Rec.
– volume: 37
  start-page: 4845
  year: 2019
  end-page: 4864
  ident: bib53
  article-title: Application of machine learning techniques for predicting the dynamic response of geogrid reinforced foundation beds
  publication-title: Geotech. Geol. Eng.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib11
  article-title: XGBoost: a scalable tree boosting system
  publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2019
  ident: bib35
  article-title: Pullout response of strengthened geosynthetic interacting with fine sand
  publication-title: GEOtext
– volume: 14
  start-page: 543
  year: 1996
  end-page: 554
  ident: bib32
  article-title: Influence of the confinement, soil density and displacement rate on soil-geogrid interaction
  publication-title: Geotext. Geomembranes
– volume: 31
  year: 2018
  ident: bib59
  article-title: Soil–geogrid interaction at various influencing factors by pullout tests with applications of FBG sensors
  publication-title: J. Mater. Civ. Eng.
– start-page: 18
  year: 1984
  end-page: 29
  ident: bib26
  article-title: Interaction between soil and geogrids
  publication-title: Proceedings of the Symposium on Polymer Grid Reinforcement
– volume: 57
  start-page: 1045
  year: 2017
  ident: 10.1016/j.geotexmem.2022.08.003_bib3
  article-title: Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2017.08.030
– volume: 40
  start-page: 513
  year: 1990
  ident: 10.1016/j.geotexmem.2022.08.003_bib25
  article-title: Reinforcement bond capacity
  publication-title: Geotechnique
  doi: 10.1680/geot.1990.40.3.513
– volume: 28
  start-page: 368
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib51
  article-title: Multivariate adaptive regression splines model for reinforced soil foundations
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.20.00049
– volume: 33
  start-page: 1
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib52
  article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003741
– start-page: 157
  year: 1978
  ident: 10.1016/j.geotexmem.2022.08.003_bib7
  article-title: Study of the soil reinforcement friction coefficient
– volume: 28
  start-page: 370
  year: 2005
  ident: 10.1016/j.geotexmem.2022.08.003_bib30
  article-title: Laboratory evaluation of pullout capacity of reinforced silty sands in drained and undrained conditions
  publication-title: Geotech. Test J.
  doi: 10.1520/GTJ12011
– volume: 14
  start-page: 543
  year: 1996
  ident: 10.1016/j.geotexmem.2022.08.003_bib32
  article-title: Influence of the confinement, soil density and displacement rate on soil-geogrid interaction
  publication-title: Geotext. Geomembranes
  doi: 10.1016/S0266-1144(97)83184-6
– start-page: 461
  year: 2018
  ident: 10.1016/j.geotexmem.2022.08.003_bib56
  article-title: Machine learning applications for site characterization based on CPT data
– volume: 23
  start-page: 1249
  year: 2009
  ident: 10.1016/j.geotexmem.2022.08.003_bib58
  article-title: Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.08.002
– year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib49
– volume: 45
  start-page: 169
  year: 2017
  ident: 10.1016/j.geotexmem.2022.08.003_bib9
  article-title: Modelling interference between the geogrid bearing members under pullout loading conditions
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2017.01.008
– volume: 1
  start-page: 415
  year: 2007
  ident: 10.1016/j.geotexmem.2022.08.003_bib1
  article-title: Utilization of a large-scale testing apparatus in investigating and formulating the soil/geogrid interface characteristics in reinforced soils
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 47
  start-page: 514
  year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib43
  article-title: Bottom ash as a backfill material in reinforced soil structures
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2019.01.018
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib28
  article-title: Axial pullout resistance and interface direct shear properties of geogrids in pond ash
  publication-title: Int. J. Geosynth. Gr. Eng.
– volume: 232
  start-page: 417
  year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib47
  article-title: Coal combustion residue as structural fill material for reinforced soil structures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.354
– year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib35
  article-title: Pullout response of strengthened geosynthetic interacting with fine sand
  publication-title: GEOtext
  doi: 10.1016/j.geotexmem.2019.02.006
– volume: 29
  start-page: 588
  year: 2011
  ident: 10.1016/j.geotexmem.2022.08.003_bib2
  article-title: Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2011.04.004
– volume: 3
  start-page: 701
  year: 1996
  ident: 10.1016/j.geotexmem.2022.08.003_bib33
  article-title: Role of Specimen geometry, Soil height, and sleeve length on the pullout behaviour of Geogrids
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.3.0081
– volume: 124
  start-page: 299
  year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib57
  article-title: Recycled Construction and Demolition Wastes as filling material for geosynthetic reinforced structures. Interface properties
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.02.115
– volume: 1
  start-page: 165
  year: 2014
  ident: 10.1016/j.geotexmem.2022.08.003_bib38
  article-title: Soil geosynthetic interaction: design parameters from experimental and theoretical analysis
  publication-title: Transp. Infrastruct. Geotechnol.
  doi: 10.1007/s40515-014-0007-2
– start-page: 785
  year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib11
  article-title: XGBoost: a scalable tree boosting system
– volume: 51
  start-page: 135
  year: 2004
  ident: 10.1016/j.geotexmem.2022.08.003_bib14
  article-title: Pullout tests of geogrids embedded in non-cohesive soil
  publication-title: Arch. Hydroeng. Environ. Mech.
– volume: 31
  year: 2018
  ident: 10.1016/j.geotexmem.2022.08.003_bib59
  article-title: Soil–geogrid interaction at various influencing factors by pullout tests with applications of FBG sensors
  publication-title: J. Mater. Civ. Eng.
– volume: 37
  start-page: 4845
  year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib53
  article-title: Application of machine learning techniques for predicting the dynamic response of geogrid reinforced foundation beds
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-019-00945-7
– volume: 30
  start-page: 409
  year: 1993
  ident: 10.1016/j.geotexmem.2022.08.003_bib15
  article-title: On the pullout resistance of geosynthetics
  publication-title: Can. Geotech. J.
  doi: 10.1139/t93-036
– volume: 6
  start-page: 261
  year: 1999
  ident: 10.1016/j.geotexmem.2022.08.003_bib34
  article-title: Soil–geosynthetics interaction: influence of soil particle size and geosynthetics structure
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.6.0153
– volume: 142
  start-page: 213
  year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib48
  article-title: Effects of fines contents on engineering properties of sand-fines mixtures
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.02.034
– volume: 6
  start-page: 1
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib18
  article-title: Experimental and computational response of strip footing resting on prestressed geotextile-reinforced industrial waste
  publication-title: Innov. Infrastruct. Solut.
  doi: 10.1007/s41062-021-00468-2
– volume: 24
  start-page: 220
  year: 2006
  ident: 10.1016/j.geotexmem.2022.08.003_bib37
  article-title: Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2006.03.001
– start-page: 785
  year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib10
  article-title: A scalable tree boosting system
– start-page: 18
  year: 1984
  ident: 10.1016/j.geotexmem.2022.08.003_bib26
  article-title: Interaction between soil and geogrids
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geotexmem.2022.08.003_bib8
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 133
  start-page: 37
  year: 2007
  ident: 10.1016/j.geotexmem.2022.08.003_bib55
  article-title: Pullout resistance of individual longitudinal and transverse geogrid ribs
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2007)133:1(37)
– volume: 32
  year: 2009
  ident: 10.1016/j.geotexmem.2022.08.003_bib22
  article-title: Evaluation of soil-geogrid pullout models using a statistical approach
  publication-title: Geotech. Test J.
  doi: 10.1520/GTJ102460
– volume: 8
  start-page: 244
  year: 2013
  ident: 10.1016/j.geotexmem.2022.08.003_bib12
  article-title: A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling
  publication-title: Geomechanics Geoengin.
  doi: 10.1080/17486025.2013.805253
– start-page: 18
  year: 1988
  ident: 10.1016/j.geotexmem.2022.08.003_bib27
  article-title: Pullout response of geotextiles and geogrids (Synthesis of available experimental data)
– volume: 232
  start-page: 417
  year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib46
  article-title: Coal combustion residue as structural fill material for reinforced soil structures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.354
– volume: 32
  year: 2018
  ident: 10.1016/j.geotexmem.2022.08.003_bib29
  article-title: Soil-compressibility prediction models using machine learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000713
– volume: 50
  start-page: 357
  year: 2022
  ident: 10.1016/j.geotexmem.2022.08.003_bib19
  article-title: Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2021.12.005
– volume: 21
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib21
  article-title: Predicting resilient modulus of cementitiously stabilized subgrade soils using neural network, support vector machine, and Gaussian process regression
  publication-title: Int. J. GeoMech.
  doi: 10.1061/(ASCE)GM.1943-5622.0002029
– volume: 44
  start-page: 406
  year: 2016
  ident: 10.1016/j.geotexmem.2022.08.003_bib50
  article-title: Imperial smelting furnace (zinc) slag as a structural fill in reinforced soil structures
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2016.01.009
– volume: 23
  start-page: 37
  year: 2008
  ident: 10.1016/j.geotexmem.2022.08.003_bib40
  article-title: Effects of transverse ribs on pullout resistance and deformation during the unloading – reloading process
  publication-title: Geosynth. Eng. J.
  doi: 10.5030/jcigsjournal.23.37
– year: 2001
  ident: 10.1016/j.geotexmem.2022.08.003_bib17
– volume: 7
  start-page: 211
  year: 2009
  ident: 10.1016/j.geotexmem.2022.08.003_bib39
  article-title: Study on pullout behavior of uniaxial HDPE geogrids under monotonic and cyclic loads
  publication-title: Int. J. Civ. Eng.
– volume: 39
  start-page: 511
  year: 1989
  ident: 10.1016/j.geotexmem.2022.08.003_bib41
  article-title: Scale and other factors affecting the results of pull-out tests of grids buried in sand
  publication-title: Geotechnique
  doi: 10.1680/geot.1989.39.3.511
– volume: 19
  start-page: 483
  year: 2001
  ident: 10.1016/j.geotexmem.2022.08.003_bib4
  article-title: Influence of longitudinal and transverse members on geogrid pullout behavior during deformation
  publication-title: Geotext. Geomembranes
  doi: 10.1016/S0266-1144(01)00020-6
– volume: 82
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib36
  article-title: Prediction of coefficient of consolidation in soil using machine learning techniques
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2021.103830
– volume: 38
  start-page: 605
  year: 2019
  ident: 10.1016/j.geotexmem.2022.08.003_bib45
  article-title: Stick-slip behavior of dry fly ash
  publication-title: Part. Sci. Technol.
  doi: 10.1080/02726351.2019.1571543
– volume: 12
  start-page: 469
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib61
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 127
  start-page: 353
  year: 2001
  ident: 10.1016/j.geotexmem.2022.08.003_bib20
  article-title: Interaction of foundry sands with geosynthetics
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2001)127:4(353)
– start-page: 1
  year: 2014
  ident: 10.1016/j.geotexmem.2022.08.003_bib23
  article-title: Guidelines for design and construction of reinforced soil Walls
  publication-title: Indian Roads Congr.
– volume: 289
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib24
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112420
– volume: 1–14
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib42
  article-title: Novel application of machine learning for estimation of pullout coefficient of geogrid
  publication-title: Geosynth. Int.
– volume: 120
  start-page: 661
  year: 1994
  ident: 10.1016/j.geotexmem.2022.08.003_bib60
  article-title: Experimental behavior of polymeric geogrids in pullout
  publication-title: J. Geotech. Eng.
  doi: 10.1061/(ASCE)0733-9410(1994)120:4(661)
– volume: 2
  start-page: 679
  year: 1995
  ident: 10.1016/j.geotexmem.2022.08.003_bib5
  article-title: Pullout interaction mechanism of geogrid strip reinforcement
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.2.0030
– year: 1988
  ident: 10.1016/j.geotexmem.2022.08.003_bib31
  article-title: Pull-out resistance of geogrids in sand
  publication-title: Transport. Res. Rec.
– volume: 18
  year: 2018
  ident: 10.1016/j.geotexmem.2022.08.003_bib13
  article-title: Prediction of bearing capacity of geogrid-reinforced Stone columns using support vector regression
  publication-title: Int. J. GeoMech.
  doi: 10.1061/(ASCE)GM.1943-5622.0001067
– volume: 235
  year: 2021
  ident: 10.1016/j.geotexmem.2022.08.003_bib16
  article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.111979
SSID ssj0004798
Score 2.4519656
Snippet Geogrids embedded in fill materials are checked against pullout failure through standard pullout testing methodology. The test determines the pullout...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1188
SubjectTerms Algorithms
Coefficients
Extreme gradient boosting
Geogrid
Geogrids
Graphical user interface
Laboratory tests
Machine learning
Mathematical models
Model accuracy
Normal stress
Predictions
Pull out tests
Pullout resistance
Random forest
Testing
Title Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model
URI https://dx.doi.org/10.1016/j.geotexmem.2022.08.003
https://www.proquest.com/docview/2756216701
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB66TtRsu8EaJBTYiJknAwadauIxhlBEaiF_92-7oNRQ8cPLK0y_Je936w730fQhdc-6pNSOwpxRIv6ETUC4UBgE0SaR4TwYxD-Q54fxjcjdqjCuqVszAAqyxifx7TXbQurrQKa7Zmk0nrkUBusf0Ag2kTW3bDBHsg4JRffn7DPALh9HBhsQer1zBeY5Nm5v3NwEg6Y47Ls1TP-puhfsVql4Bu9tFeUTnibv5wB6hipjW0XQ4WL2po9we34CF6fpjDNxiwO04TPLOtZrrMMNBDzPNhBqxT4wgkbN6BJWPQQ5_EC6w-sA3Z8MchHs8dJCzDthhfAEIaO-mcIzS8uX7q9b1CSsHTtj7JvBi0gRLKolD5fkJUG3jbVSCSkGtbNMQ6Cm0jZmyrHAgWiTDU1OexIElEiYoS5h-j6jSdmhOEVUhVQDW3PvYDGwGUYSGPfGOo9YPusDripfmkLnjGQe7iVZaAshe5srsEu0sQwiR-HZHVxllOtbF5y1XpH7l2aqRNCJs3N0qPyuLFXUhgw2eUC0JP_3PvM7QDv3LcSwNVs_nSnNvqJVNNdzybaKt7e98ffAFNevB5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHNSDUdSIzz14bdjdli31ZowEBImJkHAw2XS3W4JRSqAm-u_d6QNfBw9e207TzG7n0X7zfQAXQruqSWnkKMVjx2uFzAl8gwCbONQioj43Gcp3IDoj73bcHK_BdTkLg7DKIvbnMT2L1sWRRuHNxnw6bTxQzC22H-A4bWLL7nWoIjtVswLVq26vM_gcj_QzSVy83kGDbzCviUlS8_ZicCqd84zOsxTQ-p2kfoTrLAe1d2C7KB7JVf58u7BmZjXYKGeLlzXY-kIvuAeP9wv8DYOuJ0lM5rbbTF5TggwRi3yegejEZBwSNvXgJROURJ9GS6LeiY3a-O2QTBYZKiwlth5fIkiaZOo5-zBq3wyvO06hpuBoW6KkToTyQDHjYaBcN6aqidTtyvPjQGhbN0Q6DGwvZmy37Pk89INAM1dEPo1DRlUYc_cAKrNkZg6BqIApj2lhl9n1bBBQhgcidI1hdil0i9dBlO6TuqAaR8WLZ1liyp7kyu8S_S5RC5O6daArw3nOtvG3yWW5PvLbxpE2J_xtfFKuqCze3aVEQnzOhE_Z0X_ufQ4bneFdX_a7g94xbOKZHAZzApV08WpObTGTqrNis34AibrzKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+pullout+interaction+coefficient+of+geogrids+by+extreme+gradient+boosting+model&rft.jtitle=Geotextiles+and+geomembranes&rft.au=Pant%2C+Aali&rft.au=Ramana%2C+G.V.&rft.date=2022-12-01&rft.issn=0266-1144&rft.volume=50&rft.issue=6&rft.spage=1188&rft.epage=1198&rft_id=info:doi/10.1016%2Fj.geotexmem.2022.08.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geotexmem_2022_08_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-1144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-1144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-1144&client=summon