A Hybrid-Convolution Spatial–Temporal Recurrent Network For Traffic Flow Prediction

Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existi...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 1; pp. 236 - 252
Main Authors Zhang, Xu, Wen, Shunjie, Yan, Liang, Feng, Jiangfan, Xia, Ying
Format Journal Article
LanguageEnglish
Published Oxford University Press 17.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial–temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial–temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2–8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model.
AbstractList Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial–temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial–temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2–8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model.
Author Feng, Jiangfan
Xia, Ying
Wen, Shunjie
Yan, Liang
Zhang, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  email: zhangx@cqupt.edu.cn
– sequence: 2
  givenname: Shunjie
  surname: Wen
  fullname: Wen, Shunjie
– sequence: 3
  givenname: Liang
  surname: Yan
  fullname: Yan, Liang
– sequence: 4
  givenname: Jiangfan
  surname: Feng
  fullname: Feng, Jiangfan
– sequence: 5
  givenname: Ying
  surname: Xia
  fullname: Xia, Ying
BookMark eNqFkMFOAjEURRuDiYBuXXfrYuC1HabMkhARE6JGYT3ptK9JsUwnnUFk5z_4h36JEliZGFd3c8_NzemRThUqJOSawYBBLoY6bNaVH5bvSjPJzkiXpRkkHDLZIV0ABkmacbggvaZZAwCHPOuS1YTO92V0JpmG6i34betCRV9q1Trlvz4-l7ipQ1SePqPexohVSx-w3YX4Smch0mVU1jpNZz7s6FNE4_Rh4JKcW-UbvDpln6xmt8vpPFk83t1PJ4tEcynaRBsUaWq5RkBtlDJaykwZkLI0go8ESsaNYdnIjtHmuTDAco4cU6PtWJel6JP0uKtjaJqIttCuVYcHbVTOFwyKg5riqKY4qfnBBr-wOrqNivu_gZsjELb1f91vp6R9zw
CitedBy_id crossref_primary_10_1109_TGRS_2023_3325298
crossref_primary_10_1007_s10586_023_03991_2
crossref_primary_10_1155_2023_9604454
crossref_primary_10_1038_s41598_023_47123_7
crossref_primary_10_1109_ACCESS_2023_3337602
crossref_primary_10_1007_s10723_023_09719_1
crossref_primary_10_1007_s10586_024_05061_7
crossref_primary_10_1007_s11082_023_06061_4
crossref_primary_10_1007_s00500_023_09451_8
crossref_primary_10_3390_biomimetics8050441
crossref_primary_10_1007_s10462_024_11028_2
crossref_primary_10_1007_s10462_023_10474_8
crossref_primary_10_1016_j_compeleceng_2024_109679
crossref_primary_10_3390_su152014780
crossref_primary_10_1007_s11071_023_08830_y
crossref_primary_10_1109_ACCESS_2023_3340984
crossref_primary_10_1016_j_ipm_2023_103440
crossref_primary_10_1007_s10723_023_09701_x
crossref_primary_10_1007_s10723_023_09721_7
crossref_primary_10_1007_s10723_023_09723_5
crossref_primary_10_1155_2023_2009635
crossref_primary_10_1007_s10723_023_09706_6
crossref_primary_10_1007_s00500_023_09091_y
crossref_primary_10_1142_S0218126625501518
crossref_primary_10_3390_en16124573
crossref_primary_10_1109_TCE_2023_3320513
crossref_primary_10_1080_15397734_2023_2180032
crossref_primary_10_3390_e25101472
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1016_j_engappai_2024_109215
crossref_primary_10_1007_s10723_023_09671_0
crossref_primary_10_1109_TNSM_2024_3384942
crossref_primary_10_1038_s41598_023_37466_6
crossref_primary_10_3390_technologies11050121
crossref_primary_10_1155_2023_8089395
crossref_primary_10_1007_s42235_023_00367_5
crossref_primary_10_1007_s11276_023_03485_4
crossref_primary_10_1109_TCE_2023_3335155
crossref_primary_10_1186_s13677_023_00571_y
crossref_primary_10_3390_sym15071418
crossref_primary_10_1007_s40435_025_01624_7
crossref_primary_10_1007_s10723_023_09688_5
crossref_primary_10_1016_j_cie_2024_110667
crossref_primary_10_1093_jcde_qwad093
crossref_primary_10_1142_S0218488523500307
crossref_primary_10_3390_s23125562
crossref_primary_10_3390_math12091290
crossref_primary_10_1016_j_conbuildmat_2023_133534
crossref_primary_10_3390_su151914597
crossref_primary_10_1007_s10723_023_09724_4
crossref_primary_10_1177_17298806231171244
crossref_primary_10_3390_electronics12041051
crossref_primary_10_1007_s10723_023_09705_7
crossref_primary_10_1007_s10723_023_09707_5
crossref_primary_10_1016_j_aej_2024_12_074
crossref_primary_10_1038_s41598_024_55173_8
crossref_primary_10_1007_s40996_023_01291_8
crossref_primary_10_1007_s11042_023_15314_z
crossref_primary_10_1016_j_asoc_2023_110664
crossref_primary_10_3390_app13148176
crossref_primary_10_3390_jmse12101875
crossref_primary_10_1007_s11042_023_16382_x
crossref_primary_10_1007_s11042_023_16517_0
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1007_s11276_023_03546_8
crossref_primary_10_3390_su152014893
crossref_primary_10_3390_app142411886
crossref_primary_10_1109_TCE_2023_3325827
Cites_doi 10.1109/TITS.2021.3067024
10.1016/j.ins.2021.08.042
10.1109/TITS.2020.3002718
10.1109/TITS.2019.2906365
10.1109/TKDE.2019.2891537
10.1109/TITS.2020.2997352
10.1109/JIOT.2021.3100068
10.1038/s41586-021-03480-9
10.1109/TITS.2021.3080511
10.1145/3385414
ContentType Journal Article
Copyright The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
Copyright_xml – notice: The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxac171
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 252
ExternalDocumentID 10_1093_comjnl_bxac171
10.1093/comjnl/bxac171
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-cde344f2ce0ecdaadc776ad077bd3253e712dd165f8ef993d0192e2e4dcf8cbb3
ISSN 0010-4620
IngestDate Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 02:55:10 EDT 2025
Mon Jun 30 08:34:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords spatial–temporal analysis
LSTM
hybrid-convolution
traffic flow prediction
attention mechanism
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-cde344f2ce0ecdaadc776ad077bd3253e712dd165f8ef993d0192e2e4dcf8cbb3
PageCount 17
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxac171
crossref_primary_10_1093_comjnl_bxac171
oup_primary_10_1093_comjnl_bxac171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-17
PublicationDateYYYYMMDD 2024-01-17
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-17
  day: 17
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Guo (2024012011485230600_ref26) 2021
Wen (2024012011485230600_ref2) 2021; 11
Zhang (2024012011485230600_ref17) 2016
Liu (2024012011485230600_ref22) 2020; 22
Li (2024012011485230600_ref10) 2021; 9
Li (2024012011485230600_ref24) 2021
Chen (2024012011485230600_ref29) 2021
Zhang (2024012011485230600_ref3) 2021; 23
Fang (2024012011485230600_ref27) 2022; 23
Choi (2024012011485230600_ref8) 2022
Zheng (2024012011485230600_ref16) 2020; 22
Zhang (2024012011485230600_ref28) 2020; 32
Ali (2024012011485230600_ref13) 2021; 577
Yao (2024012011485230600_ref12) 2019
Wang (2024012011485230600_ref14) 2019
Lin (2024012011485230600_ref11) 2021
Chen (2024012011485230600_ref20) 2020; 14
Guo (2024012011485230600_ref19) 2019; 20
Zhang (2024012011485230600_ref25) 2021
Zheng (2024012011485230600_ref4) 2014; 5
Lin (2024012011485230600_ref18) 2019
Zhao (2024012011485230600_ref6) 2022
Li (2024012011485230600_ref5) 2021
Shi (2024012011485230600_ref15) 2015; 28
Ji (2024012011485230600_ref7) 2022
Zhang (2024012011485230600_ref9) 2017
Guo (2024012011485230600_ref23) 2021; 9
Yao (2024012011485230600_ref21) 2018
Woo (2024012011485230600_ref30) 2018
Schläpfer (2024012011485230600_ref1) 2021; 593
References_xml – volume: 23
  start-page: 7142
  year: 2022
  ident: 2024012011485230600_ref27
  article-title: MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3067024
– start-page: 3
  volume-title: Proc. of the European conference on computer vision (ECCV)
  year: 2018
  ident: 2024012011485230600_ref30
– start-page: 1
  volume-title: Proc. of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems
  year: 2016
  ident: 2024012011485230600_ref17
– volume: 577
  start-page: 852
  year: 2021
  ident: 2024012011485230600_ref13
  article-title: Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.08.042
– volume: 5
  start-page: 1
  year: 2014
  ident: 2024012011485230600_ref4
  article-title: Urban computing: concepts, methodologies, and applications
  publication-title: ACM Trans. Intell. Syst.
– start-page: 4048
  volume-title: Proc. of the AAAI conference on artificial intelligence
  year: 2022
  ident: 2024012011485230600_ref7
– start-page: 133
  volume-title: Proc. of the 29th International Conference on Advances in Geographic Information Systems
  year: 2021
  ident: 2024012011485230600_ref24
– year: 2021
  ident: 2024012011485230600_ref11
  article-title: A data-driven base station sleeping strategy based on traffic prediction
  publication-title: IEEE. trans. Intell. Transp. Syst.
– start-page: 1655
  volume-title: Proc. of Thirty-first AAAI conference on artificial intelligence
  year: 2017
  ident: 2024012011485230600_ref9
  article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction
– volume: 22
  start-page: 7169
  year: 2020
  ident: 2024012011485230600_ref22
  article-title: Dynamic spatial-temporal representation learning for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3002718
– volume: 20
  start-page: 3913
  year: 2019
  ident: 2024012011485230600_ref19
  article-title: Deep spatial-temporal 3d convolutional neural networks for traffic data forecasting
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2019.2906365
– start-page: 5668
  volume-title: Proc. of the AAAI conference on artificial intelligence
  year: 2019
  ident: 2024012011485230600_ref12
– volume-title: Proc. of 7th International Conference on Learning Representations (ICLR)
  year: 2019
  ident: 2024012011485230600_ref14
– volume: 28
  start-page: 802
  year: 2015
  ident: 2024012011485230600_ref15
  article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in neural information processing systems
– volume: 32
  start-page: 468
  year: 2020
  ident: 2024012011485230600_ref28
  article-title: Flow prediction in spatio-temporal networks based on multitask deep learning
  publication-title: IEEE Trans. Knowl. Eng.
  doi: 10.1109/TKDE.2019.2891537
– year: 2022
  ident: 2024012011485230600_ref6
  article-title: STCGAT: Spatial-temporal causal networks for complex urban road traffic flow prediction
– start-page: 1
  volume-title: Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution
  year: 2021
  ident: 2024012011485230600_ref5
– volume: 22
  start-page: 6910
  year: 2020
  ident: 2024012011485230600_ref16
  article-title: A hybrid deep learning model with attention-based conv-lstm networks for short-term traffic flow prediction
  publication-title: IEEE trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2997352
– volume: 9
  start-page: 3215
  year: 2021
  ident: 2024012011485230600_ref23
  article-title: ASTCN: An attentive spatial temporal convolutional network for flow prediction
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3100068
– year: 2021
  ident: 2024012011485230600_ref26
  article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting
  publication-title: IEEE Trans Knowl Eng.
– start-page: 1020
  volume-title: Proc. of the AAAI conference on artificial intelligence
  year: 2019
  ident: 2024012011485230600_ref18
– volume-title: Exploring context modeling techniques on the spatiotemporal crowd flow prediction
  year: 2021
  ident: 2024012011485230600_ref29
– volume: 593
  start-page: 522
  year: 2021
  ident: 2024012011485230600_ref1
  article-title: The universal visitation law of human mobility
  publication-title: Nature
  doi: 10.1038/s41586-021-03480-9
– start-page: 15008
  volume-title: Proc. of the AAAI Conference on Artificial Intelligence
  year: 2021
  ident: 2024012011485230600_ref25
– start-page: 2588
  volume-title: Proc. of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 2024012011485230600_ref21
– volume: 23
  start-page: 8412
  year: 2021
  ident: 2024012011485230600_ref3
  article-title: MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis
  publication-title: IEEE trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3080511
– volume: 11
  start-page: 1
  year: 2021
  ident: 2024012011485230600_ref2
  article-title: MSSRM: A multi-embedding based self-attention spatio-temporal recurrent model for human mobility prediction
  publication-title: HCIS
– volume: 14
  start-page: 1
  year: 2020
  ident: 2024012011485230600_ref20
  article-title: Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/3385414
– start-page: 6367
  volume-title: Proc. of the AAAI conference on artificial intelligence
  year: 2022
  ident: 2024012011485230600_ref8
– volume: 9
  start-page: 1006
  year: 2021
  ident: 2024012011485230600_ref10
  article-title: Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction
  publication-title: IEEE trans. Intell. Transp. Syst.
SSID ssj0002096
Score 2.6148357
Snippet Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 236
Title A Hybrid-Convolution Spatial–Temporal Recurrent Network For Traffic Flow Prediction
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeumFllJEn7IQEoeV6a69j-QYpY0iRHshkdJTtH5Bq2hTRUkFPXHgH_Qf9pd0XM9uFkofcFntWiNv4vl2PLZnviHkPQfDG7ZBAzZSisF8HLK2kBFLrHRnr4nyDHzHJ2l_GH8aJaNG41ctamkxlx_V1V_zSv5Hq9AGenVZsv-g2apTaIB70C9cQcNwfZaOO0H_h8u4Yt1pcYlvClyRYXh1GcUgBp58ynHoKyRjOvGx30FvOnPs5o5FIuhNXFLczJ3bVLoqGQyw8kNQ_1H1zebRYnnA4_dTvy2K87MKM6eY4ABQ_Lr0PTEW2DVaxChuP3AXssJ8tuVjaY11kwuGPk65P3wx3srGacgcb3zdDONTHW5oU0Vam565J7y9Z_k9Kxbo8ryYwI38nqvIF3f5g0_7YeEXZIXDYgOs5Urn8Pjzl2pG5-Fdnbfqr1Tkn-LA93GAPfzm3LiEyZqvMlgnL3GRQTseMa9IwxQbZK1UI0V7_poMO_Q-gCgC6ObndQkdWkGHInQoQIcidKiDDl1CZ5MMe0eDbp9hnQ2mwHmdM6WNiGMLn21olM5zrbIszXWYZVILngiTRVzrKE1sy1jwZ7VbFhhuYq1sS0kp3pBmMS3MW0KjPDdgFELdtjJu6SiH-SA2kRRamtSqZIuwcoDGCknoXS2UydgHQ4ixH9AxDugW-VDJX3j6lQcl38F4PyG0_RyhHbK6BPouac5nC7MHnudc7iMwbgFyPozy
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid-Convolution+Spatial%E2%80%93Temporal+Recurrent+Network+For+Traffic+Flow+Prediction&rft.jtitle=Computer+journal&rft.au=Zhang%2C+Xu&rft.au=Wen%2C+Shunjie&rft.au=Yan%2C+Liang&rft.au=Feng%2C+Jiangfan&rft.date=2024-01-17&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=1&rft.spage=236&rft.epage=252&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxac171&rft.externalDocID=10.1093%2Fcomjnl%2Fbxac171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon