A Hybrid-Convolution Spatial–Temporal Recurrent Network For Traffic Flow Prediction
Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existi...
Saved in:
Published in | Computer journal Vol. 67; no. 1; pp. 236 - 252 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
17.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial–temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial–temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2–8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model. |
---|---|
AbstractList | Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial–temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial–temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2–8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model. |
Author | Feng, Jiangfan Xia, Ying Wen, Shunjie Yan, Liang Zhang, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Zhang fullname: Zhang, Xu email: zhangx@cqupt.edu.cn – sequence: 2 givenname: Shunjie surname: Wen fullname: Wen, Shunjie – sequence: 3 givenname: Liang surname: Yan fullname: Yan, Liang – sequence: 4 givenname: Jiangfan surname: Feng fullname: Feng, Jiangfan – sequence: 5 givenname: Ying surname: Xia fullname: Xia, Ying |
BookMark | eNqFkMFOAjEURRuDiYBuXXfrYuC1HabMkhARE6JGYT3ptK9JsUwnnUFk5z_4h36JEliZGFd3c8_NzemRThUqJOSawYBBLoY6bNaVH5bvSjPJzkiXpRkkHDLZIV0ABkmacbggvaZZAwCHPOuS1YTO92V0JpmG6i34betCRV9q1Trlvz4-l7ipQ1SePqPexohVSx-w3YX4Smch0mVU1jpNZz7s6FNE4_Rh4JKcW-UbvDpln6xmt8vpPFk83t1PJ4tEcynaRBsUaWq5RkBtlDJaykwZkLI0go8ESsaNYdnIjtHmuTDAco4cU6PtWJel6JP0uKtjaJqIttCuVYcHbVTOFwyKg5riqKY4qfnBBr-wOrqNivu_gZsjELb1f91vp6R9zw |
CitedBy_id | crossref_primary_10_1109_TGRS_2023_3325298 crossref_primary_10_1007_s10586_023_03991_2 crossref_primary_10_1155_2023_9604454 crossref_primary_10_1038_s41598_023_47123_7 crossref_primary_10_1109_ACCESS_2023_3337602 crossref_primary_10_1007_s10723_023_09719_1 crossref_primary_10_1007_s10586_024_05061_7 crossref_primary_10_1007_s11082_023_06061_4 crossref_primary_10_1007_s00500_023_09451_8 crossref_primary_10_3390_biomimetics8050441 crossref_primary_10_1007_s10462_024_11028_2 crossref_primary_10_1007_s10462_023_10474_8 crossref_primary_10_1016_j_compeleceng_2024_109679 crossref_primary_10_3390_su152014780 crossref_primary_10_1007_s11071_023_08830_y crossref_primary_10_1109_ACCESS_2023_3340984 crossref_primary_10_1016_j_ipm_2023_103440 crossref_primary_10_1007_s10723_023_09701_x crossref_primary_10_1007_s10723_023_09721_7 crossref_primary_10_1007_s10723_023_09723_5 crossref_primary_10_1155_2023_2009635 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1007_s00500_023_09091_y crossref_primary_10_1142_S0218126625501518 crossref_primary_10_3390_en16124573 crossref_primary_10_1109_TCE_2023_3320513 crossref_primary_10_1080_15397734_2023_2180032 crossref_primary_10_3390_e25101472 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1016_j_engappai_2024_109215 crossref_primary_10_1007_s10723_023_09671_0 crossref_primary_10_1109_TNSM_2024_3384942 crossref_primary_10_1038_s41598_023_37466_6 crossref_primary_10_3390_technologies11050121 crossref_primary_10_1155_2023_8089395 crossref_primary_10_1007_s42235_023_00367_5 crossref_primary_10_1007_s11276_023_03485_4 crossref_primary_10_1109_TCE_2023_3335155 crossref_primary_10_1186_s13677_023_00571_y crossref_primary_10_3390_sym15071418 crossref_primary_10_1007_s40435_025_01624_7 crossref_primary_10_1007_s10723_023_09688_5 crossref_primary_10_1016_j_cie_2024_110667 crossref_primary_10_1093_jcde_qwad093 crossref_primary_10_1142_S0218488523500307 crossref_primary_10_3390_s23125562 crossref_primary_10_3390_math12091290 crossref_primary_10_1016_j_conbuildmat_2023_133534 crossref_primary_10_3390_su151914597 crossref_primary_10_1007_s10723_023_09724_4 crossref_primary_10_1177_17298806231171244 crossref_primary_10_3390_electronics12041051 crossref_primary_10_1007_s10723_023_09705_7 crossref_primary_10_1007_s10723_023_09707_5 crossref_primary_10_1016_j_aej_2024_12_074 crossref_primary_10_1038_s41598_024_55173_8 crossref_primary_10_1007_s40996_023_01291_8 crossref_primary_10_1007_s11042_023_15314_z crossref_primary_10_1016_j_asoc_2023_110664 crossref_primary_10_3390_app13148176 crossref_primary_10_3390_jmse12101875 crossref_primary_10_1007_s11042_023_16382_x crossref_primary_10_1007_s11042_023_16517_0 crossref_primary_10_1109_JIOT_2024_3362851 crossref_primary_10_1007_s11276_023_03546_8 crossref_primary_10_3390_su152014893 crossref_primary_10_3390_app142411886 crossref_primary_10_1109_TCE_2023_3325827 |
Cites_doi | 10.1109/TITS.2021.3067024 10.1016/j.ins.2021.08.042 10.1109/TITS.2020.3002718 10.1109/TITS.2019.2906365 10.1109/TKDE.2019.2891537 10.1109/TITS.2020.2997352 10.1109/JIOT.2021.3100068 10.1038/s41586-021-03480-9 10.1109/TITS.2021.3080511 10.1145/3385414 |
ContentType | Journal Article |
Copyright | The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
Copyright_xml | – notice: The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxac171 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 252 |
ExternalDocumentID | 10_1093_comjnl_bxac171 10.1093/comjnl/bxac171 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-cde344f2ce0ecdaadc776ad077bd3253e712dd165f8ef993d0192e2e4dcf8cbb3 |
ISSN | 0010-4620 |
IngestDate | Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 02:55:10 EDT 2025 Mon Jun 30 08:34:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | spatial–temporal analysis LSTM hybrid-convolution traffic flow prediction attention mechanism |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-cde344f2ce0ecdaadc776ad077bd3253e712dd165f8ef993d0192e2e4dcf8cbb3 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxac171 crossref_primary_10_1093_comjnl_bxac171 oup_primary_10_1093_comjnl_bxac171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-17 |
PublicationDateYYYYMMDD | 2024-01-17 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Guo (2024012011485230600_ref26) 2021 Wen (2024012011485230600_ref2) 2021; 11 Zhang (2024012011485230600_ref17) 2016 Liu (2024012011485230600_ref22) 2020; 22 Li (2024012011485230600_ref10) 2021; 9 Li (2024012011485230600_ref24) 2021 Chen (2024012011485230600_ref29) 2021 Zhang (2024012011485230600_ref3) 2021; 23 Fang (2024012011485230600_ref27) 2022; 23 Choi (2024012011485230600_ref8) 2022 Zheng (2024012011485230600_ref16) 2020; 22 Zhang (2024012011485230600_ref28) 2020; 32 Ali (2024012011485230600_ref13) 2021; 577 Yao (2024012011485230600_ref12) 2019 Wang (2024012011485230600_ref14) 2019 Lin (2024012011485230600_ref11) 2021 Chen (2024012011485230600_ref20) 2020; 14 Guo (2024012011485230600_ref19) 2019; 20 Zhang (2024012011485230600_ref25) 2021 Zheng (2024012011485230600_ref4) 2014; 5 Lin (2024012011485230600_ref18) 2019 Zhao (2024012011485230600_ref6) 2022 Li (2024012011485230600_ref5) 2021 Shi (2024012011485230600_ref15) 2015; 28 Ji (2024012011485230600_ref7) 2022 Zhang (2024012011485230600_ref9) 2017 Guo (2024012011485230600_ref23) 2021; 9 Yao (2024012011485230600_ref21) 2018 Woo (2024012011485230600_ref30) 2018 Schläpfer (2024012011485230600_ref1) 2021; 593 |
References_xml | – volume: 23 start-page: 7142 year: 2022 ident: 2024012011485230600_ref27 article-title: MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3067024 – start-page: 3 volume-title: Proc. of the European conference on computer vision (ECCV) year: 2018 ident: 2024012011485230600_ref30 – start-page: 1 volume-title: Proc. of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems year: 2016 ident: 2024012011485230600_ref17 – volume: 577 start-page: 852 year: 2021 ident: 2024012011485230600_ref13 article-title: Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.08.042 – volume: 5 start-page: 1 year: 2014 ident: 2024012011485230600_ref4 article-title: Urban computing: concepts, methodologies, and applications publication-title: ACM Trans. Intell. Syst. – start-page: 4048 volume-title: Proc. of the AAAI conference on artificial intelligence year: 2022 ident: 2024012011485230600_ref7 – start-page: 133 volume-title: Proc. of the 29th International Conference on Advances in Geographic Information Systems year: 2021 ident: 2024012011485230600_ref24 – year: 2021 ident: 2024012011485230600_ref11 article-title: A data-driven base station sleeping strategy based on traffic prediction publication-title: IEEE. trans. Intell. Transp. Syst. – start-page: 1655 volume-title: Proc. of Thirty-first AAAI conference on artificial intelligence year: 2017 ident: 2024012011485230600_ref9 article-title: Deep spatio-temporal residual networks for citywide crowd flows prediction – volume: 22 start-page: 7169 year: 2020 ident: 2024012011485230600_ref22 article-title: Dynamic spatial-temporal representation learning for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3002718 – volume: 20 start-page: 3913 year: 2019 ident: 2024012011485230600_ref19 article-title: Deep spatial-temporal 3d convolutional neural networks for traffic data forecasting publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2019.2906365 – start-page: 5668 volume-title: Proc. of the AAAI conference on artificial intelligence year: 2019 ident: 2024012011485230600_ref12 – volume-title: Proc. of 7th International Conference on Learning Representations (ICLR) year: 2019 ident: 2024012011485230600_ref14 – volume: 28 start-page: 802 year: 2015 ident: 2024012011485230600_ref15 article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting publication-title: Advances in neural information processing systems – volume: 32 start-page: 468 year: 2020 ident: 2024012011485230600_ref28 article-title: Flow prediction in spatio-temporal networks based on multitask deep learning publication-title: IEEE Trans. Knowl. Eng. doi: 10.1109/TKDE.2019.2891537 – year: 2022 ident: 2024012011485230600_ref6 article-title: STCGAT: Spatial-temporal causal networks for complex urban road traffic flow prediction – start-page: 1 volume-title: Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution year: 2021 ident: 2024012011485230600_ref5 – volume: 22 start-page: 6910 year: 2020 ident: 2024012011485230600_ref16 article-title: A hybrid deep learning model with attention-based conv-lstm networks for short-term traffic flow prediction publication-title: IEEE trans Intell Transp Syst doi: 10.1109/TITS.2020.2997352 – volume: 9 start-page: 3215 year: 2021 ident: 2024012011485230600_ref23 article-title: ASTCN: An attentive spatial temporal convolutional network for flow prediction publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3100068 – year: 2021 ident: 2024012011485230600_ref26 article-title: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting publication-title: IEEE Trans Knowl Eng. – start-page: 1020 volume-title: Proc. of the AAAI conference on artificial intelligence year: 2019 ident: 2024012011485230600_ref18 – volume-title: Exploring context modeling techniques on the spatiotemporal crowd flow prediction year: 2021 ident: 2024012011485230600_ref29 – volume: 593 start-page: 522 year: 2021 ident: 2024012011485230600_ref1 article-title: The universal visitation law of human mobility publication-title: Nature doi: 10.1038/s41586-021-03480-9 – start-page: 15008 volume-title: Proc. of the AAAI Conference on Artificial Intelligence year: 2021 ident: 2024012011485230600_ref25 – start-page: 2588 volume-title: Proc. of the AAAI Conference on Artificial Intelligence year: 2018 ident: 2024012011485230600_ref21 – volume: 23 start-page: 8412 year: 2021 ident: 2024012011485230600_ref3 article-title: MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis publication-title: IEEE trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3080511 – volume: 11 start-page: 1 year: 2021 ident: 2024012011485230600_ref2 article-title: MSSRM: A multi-embedding based self-attention spatio-temporal recurrent model for human mobility prediction publication-title: HCIS – volume: 14 start-page: 1 year: 2020 ident: 2024012011485230600_ref20 article-title: Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/3385414 – start-page: 6367 volume-title: Proc. of the AAAI conference on artificial intelligence year: 2022 ident: 2024012011485230600_ref8 – volume: 9 start-page: 1006 year: 2021 ident: 2024012011485230600_ref10 article-title: Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction publication-title: IEEE trans. Intell. Transp. Syst. |
SSID | ssj0002096 |
Score | 2.6148357 |
Snippet | Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 236 |
Title | A Hybrid-Convolution Spatial–Temporal Recurrent Network For Traffic Flow Prediction |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeumFllJEn7IQEoeV6a69j-QYpY0iRHshkdJTtH5Bq2hTRUkFPXHgH_Qf9pd0XM9uFkofcFntWiNv4vl2PLZnviHkPQfDG7ZBAzZSisF8HLK2kBFLrHRnr4nyDHzHJ2l_GH8aJaNG41ctamkxlx_V1V_zSv5Hq9AGenVZsv-g2apTaIB70C9cQcNwfZaOO0H_h8u4Yt1pcYlvClyRYXh1GcUgBp58ynHoKyRjOvGx30FvOnPs5o5FIuhNXFLczJ3bVLoqGQyw8kNQ_1H1zebRYnnA4_dTvy2K87MKM6eY4ABQ_Lr0PTEW2DVaxChuP3AXssJ8tuVjaY11kwuGPk65P3wx3srGacgcb3zdDONTHW5oU0Vam565J7y9Z_k9Kxbo8ryYwI38nqvIF3f5g0_7YeEXZIXDYgOs5Urn8Pjzl2pG5-Fdnbfqr1Tkn-LA93GAPfzm3LiEyZqvMlgnL3GRQTseMa9IwxQbZK1UI0V7_poMO_Q-gCgC6ObndQkdWkGHInQoQIcidKiDDl1CZ5MMe0eDbp9hnQ2mwHmdM6WNiGMLn21olM5zrbIszXWYZVILngiTRVzrKE1sy1jwZ7VbFhhuYq1sS0kp3pBmMS3MW0KjPDdgFELdtjJu6SiH-SA2kRRamtSqZIuwcoDGCknoXS2UydgHQ4ixH9AxDugW-VDJX3j6lQcl38F4PyG0_RyhHbK6BPouac5nC7MHnudc7iMwbgFyPozy |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid-Convolution+Spatial%E2%80%93Temporal+Recurrent+Network+For+Traffic+Flow+Prediction&rft.jtitle=Computer+journal&rft.au=Zhang%2C+Xu&rft.au=Wen%2C+Shunjie&rft.au=Yan%2C+Liang&rft.au=Feng%2C+Jiangfan&rft.date=2024-01-17&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=1&rft.spage=236&rft.epage=252&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxac171&rft.externalDocID=10.1093%2Fcomjnl%2Fbxac171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |