Enhancing Auditory Brainstem Response Classification Based On Vision Transformer

A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learni...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 5; pp. 1872 - 1878
Main Authors Abubakir Ahmed, Hunar, Majidpour, Jafar, Hussein Ahmed, Mohammed, Kais Jameel, Samer, Majidpour, Amir
Format Journal Article
LanguageEnglish
Published Oxford University Press 22.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learning have prompted a resurgence of research into ABR classification. This study presents an automated ABR recognition model. The initial step in our design process involves collecting a dataset by extracting ABR test images from sample test reports. Subsequently, we employ an elastic distortion approach to generate new images from the originals, effectively expanding the dataset while preserving the fundamental structure and morphology of the original ABR content. Finally, the Vision Transformer method was exploited to train and develop our model. In the testing phase, the incorporation of both the newly generated and original images yields an impressive accuracy rate of 97.83%. This result is noteworthy when benchmarked against the latest research in the field, underscoring the substantial performance enhancement achieved through the utilization of generated data.
AbstractList A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learning have prompted a resurgence of research into ABR classification. This study presents an automated ABR recognition model. The initial step in our design process involves collecting a dataset by extracting ABR test images from sample test reports. Subsequently, we employ an elastic distortion approach to generate new images from the originals, effectively expanding the dataset while preserving the fundamental structure and morphology of the original ABR content. Finally, the Vision Transformer method was exploited to train and develop our model. In the testing phase, the incorporation of both the newly generated and original images yields an impressive accuracy rate of 97.83%. This result is noteworthy when benchmarked against the latest research in the field, underscoring the substantial performance enhancement achieved through the utilization of generated data.
Author Abubakir Ahmed, Hunar
Majidpour, Jafar
Hussein Ahmed, Mohammed
Majidpour, Amir
Kais Jameel, Samer
Author_xml – sequence: 1
  givenname: Hunar
  surname: Abubakir Ahmed
  fullname: Abubakir Ahmed, Hunar
– sequence: 2
  givenname: Jafar
  surname: Majidpour
  fullname: Majidpour, Jafar
  email: jafar.majidpoor@uor.edu.krd
– sequence: 3
  givenname: Mohammed
  surname: Hussein Ahmed
  fullname: Hussein Ahmed, Mohammed
– sequence: 4
  givenname: Samer
  surname: Kais Jameel
  fullname: Kais Jameel, Samer
– sequence: 5
  givenname: Amir
  surname: Majidpour
  fullname: Majidpour, Amir
BookMark eNqFkM9PwjAUxxuDiYBePffqYfDa9cd2BIJoQoIx6HXptlZLtpa0I5H_3iGcTIyX9807fN7L9zNCA-edRuiewIRAnk4r3-5cMy2_VE1AXqEhYQISCkIO0BCAQMIEhRs0inEHABRyMUQvS_epXGXdB54datv5cMTzoKyLnW7xq45776LGi0bFaI2tVGe9w3MVdY03Dr_beNq3QblofGh1uEXXRjVR311yjN4el9vFU7LerJ4Xs3VSUZl2_eSyVowbDllGCZUUZMb7yDkvSck1M0anFRMiE2lJNJV1nhnGme6zzEk6RpPz3Sr4GIM2xT7YVoVjQaA4-SjOPoqLjx5gv4DKdj91ur5v8zf2cMb8Yf_fi28oLHjE
CitedBy_id crossref_primary_10_1007_s00521_025_11036_5
crossref_primary_10_1109_ACCESS_2024_3374890
Cites_doi 10.1016/j.engappai.2005.08.004
10.1109/TPAMI.2022.3152247
10.1038/s41598-022-09954-8
10.1007/s10032-019-00336-x
10.1007/s41095-021-0247-3
10.3390/diagnostics11081384
10.3109/21695717.2016.1110957
10.1016/j.artmed.2016.05.001
10.1080/14992027.2018.1551633
10.1016/j.cmpb.2021.105942
10.1097/00003446-199610000-00006
10.1016/j.joto.2016.12.003
10.1016/j.bbe.2016.01.003
10.1016/j.jneumeth.2017.08.010
10.1007/s42979-021-00815-1
10.1088/1741-2552/ab1e01
10.1186/s40537-019-0197-0
10.1093/comjnl/bxaa061
10.1016/j.bbr.2010.08.051
10.1016/j.bspc.2023.105117
10.1093/bioinformatics/btz259
10.3390/s22041596
ContentType Journal Article
Copyright The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
Copyright_xml – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxad107
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 1878
ExternalDocumentID 10_1093_comjnl_bxad107
10.1093/comjnl/bxad107
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-c257da45f5088212720785272955b1b5e4ffe3c466863b1e27d98f454ed98b913
ISSN 0010-4620
IngestDate Tue Jul 01 02:55:11 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Mon Jun 30 08:34:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Vision Transformer
Data Augmentation
ABR Detection
Auditory Brainstem Response
Classification
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-c257da45f5088212720785272955b1b5e4ffe3c466863b1e27d98f454ed98b913
PageCount 7
ParticipantIDs crossref_primary_10_1093_comjnl_bxad107
crossref_citationtrail_10_1093_comjnl_bxad107
oup_primary_10_1093_comjnl_bxad107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-22
PublicationDateYYYYMMDD 2024-06-22
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-22
  day: 22
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sarker (2024062312365863700_ref15) 2021; 2
Rasmussen (2024062312365863700_ref16) 2022; 22
Krishnan (2024062312365863700_ref20) 2019; 22
Xu (2024062312365863700_ref28) 2022; 8
Dosovitskiy (2024062312365863700_ref24) 2020
Acir (2024062312365863700_ref1) 2006; 19
Hicks (2024062312365863700_ref25) 2022; 12
Llanos (2024062312365863700_ref12) 2017; 291
Vujović (2024062312365863700_ref26) 2021; 12
Ponton (2024062312365863700_ref2) 1996; 17
Han (2024062312365863700_ref21) 2023; 45
Hornickel (2024062312365863700_ref4) 2011; 216
Ren (2024062312365863700_ref3) 2016; 11
Majidpour (2024062312365863700_ref14) 2023; 86
McKearney (2024062312365863700_ref10) 2019; 58
Dobrowolski (2024062312365863700_ref11) 2016; 36
Wimalarathna (2024062312365863700_ref5) 2021; 200
Bloice (2024062312365863700_ref19) 2019; 35
Shorten (2024062312365863700_ref17) 2019; 6
Molina (2024062312365863700_ref27) 2016; 70
Zaitoun (2024062312365863700_ref7) 2016; 14
Zaitoun (2024062312365863700_ref8) 2014; 38
Ness (2024062312365863700_ref6) 2009
Dai (2024062312365863700_ref23) 2021; 11
Llanos (2024062312365863700_ref13) 2019; 16
Yang (2024062312365863700_ref18) 2022
Bhojanapalli (2024062312365863700_ref22) 2021
Mumtaz (2024062312365863700_ref9) 2022; 65
References_xml – volume: 19
  start-page: 209
  year: 2006
  ident: 2024062312365863700_ref1
  article-title: Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2005.08.004
– volume: 45
  start-page: 87
  year: 2023
  ident: 2024062312365863700_ref21
  article-title: A survey on vision transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
– volume: 12
  start-page: 5979
  year: 2022
  ident: 2024062312365863700_ref25
  article-title: On evaluation metrics for medical applications of artificial intelligence
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09954-8
– volume: 22
  start-page: 387
  year: 2019
  ident: 2024062312365863700_ref20
  article-title: HWNet v2: an efficient word image representation for handwritten documents
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-019-00336-x
– volume: 8
  start-page: 33
  year: 2022
  ident: 2024062312365863700_ref28
  article-title: Transformers in computational visual media: a survey
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-021-0247-3
– volume: 11
  start-page: 1384
  year: 2021
  ident: 2024062312365863700_ref23
  article-title: Transmed: transformers advance multi-modal medical image classification
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081384
– volume: 14
  start-page: 59
  year: 2016
  ident: 2024062312365863700_ref7
  article-title: Inter and intra-reader variability in the threshold estimation of auditory brainstem response (ABR) results
  publication-title: Hear. Balance Commun.
  doi: 10.3109/21695717.2016.1110957
– volume: 70
  start-page: 12
  year: 2016
  ident: 2024062312365863700_ref27
  article-title: Classification of auditory brainstem responses through symbolic pattern discovery
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.05.001
– volume: 58
  start-page: 224
  year: 2019
  ident: 2024062312365863700_ref10
  article-title: Objective auditory brainstem response classification using machine learning
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992027.2018.1551633
– volume: 200
  start-page: 105942
  year: 2021
  ident: 2024062312365863700_ref5
  article-title: Comparison of machine learning models to classify auditory brainstem responses recorded from children with auditory processing disorder
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.105942
– volume: 17
  start-page: 402
  year: 1996
  ident: 2024062312365863700_ref2
  article-title: Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission
  publication-title: Ear Hear.
  doi: 10.1097/00003446-199610000-00006
– volume: 11
  start-page: 178
  year: 2016
  ident: 2024062312365863700_ref3
  article-title: Intra-operative hearing monitoring methods in middle ear surgeries
  publication-title: J. Otol.
  doi: 10.1016/j.joto.2016.12.003
– volume: 36
  start-page: 427
  year: 2016
  ident: 2024062312365863700_ref11
  article-title: Classification of auditory brainstem response using wavelet decomposition and SVM network
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2016.01.003
– volume: 291
  start-page: 101
  year: 2017
  ident: 2024062312365863700_ref12
  article-title: Hidden Markov modeling of frequency-following responses to mandarin lexical tones
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.08.010
– year: 2020
  ident: 2024062312365863700_ref24
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
  publication-title: arXiv preprint arXiv:2010.11929
– volume: 2
  start-page: 420
  year: 2021
  ident: 2024062312365863700_ref15
  article-title: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00815-1
– volume-title: Normative data for neurodiagnostic Auditory Brainstem Response testing (ABR)
  year: 2009
  ident: 2024062312365863700_ref6
– volume: 38
  year: 2014
  ident: 2024062312365863700_ref8
  article-title: Inter and intra-reader agreement among audiologists in reading auditory brainstem response waves
  publication-title: Revue canadienne d’orthophonie et d’audiologie—
– volume: 16
  start-page: 056004
  year: 2019
  ident: 2024062312365863700_ref13
  article-title: Biometric identification of listener identity from frequency following responses to speech
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab1e01
– volume: 6
  start-page: 1
  year: 2019
  ident: 2024062312365863700_ref17
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. big data
  doi: 10.1186/s40537-019-0197-0
– volume: 65
  start-page: 457
  year: 2022
  ident: 2024062312365863700_ref9
  article-title: Fast learning through deep multi-net CNN model for violence recognition in video surveillance
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxaa061
– volume: 12
  start-page: 599
  year: 2021
  ident: 2024062312365863700_ref26
  article-title: Classification model evaluation metrics
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 216
  start-page: 597
  year: 2011
  ident: 2024062312365863700_ref4
  article-title: Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2010.08.051
– volume: 86
  start-page: 105117
  year: 2023
  ident: 2024062312365863700_ref14
  article-title: Detection of auditory brainstem response peaks using image processing techniques in infants with normal hearing sensitivity
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105117
– start-page: 10231
  volume-title: Proceedings of the IEEE/CVF international conference on computer vision
  year: 2021
  ident: 2024062312365863700_ref22
  article-title: Understanding robustness of transformers for image classification
– volume: 35
  start-page: 4522
  year: 2019
  ident: 2024062312365863700_ref19
  article-title: Biomedical image augmentation using Augmentor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz259
– volume: 22
  start-page: 1596
  year: 2022
  ident: 2024062312365863700_ref16
  article-title: The challenge of data annotation in deep learning—a case study on whole plant corn silage
  publication-title: Sensors
  doi: 10.3390/s22041596
– year: 2022
  ident: 2024062312365863700_ref18
  article-title: Image data augmentation for deep learning: a survey
  publication-title: arXiv preprint arXiv:2204.08610
SSID ssj0002096
Score 2.3703945
Snippet A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1872
Title Enhancing Auditory Brainstem Response Classification Based On Vision Transformer
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe68rKXfcCmwT5kIaQ9VBn1V-o-lg1UTXQgARNvlZPYahEERBtp2t-yP3Z3sWPCVDS2F6dJHcv1_Xp3Pt8HITu8sJpJ4H65dSoB7icSPdQM_u5Ku2LAmMgxOHnyLR2fya_n6rzT-dXyWqqW2af858q4kv-hKjwDumKU7D9QNg4KD-Az0BdaoDC0j6LxfjnDdBlo2MDgCjwu38OSD5icGQ3z6P1qfd1L9AjytN4DuVX0jsre9zqs3Kc3R9U1-Ok2aQtCuYdeeyb1OVGVgdZ52xvNrryhdFyVJrr4TszFvLiBV7wLrrv7ZlwtFhatK817k-sZms2LyPPNfFF77XrHgRPTzCgYJbhE5yne2sKuDnZsM2Jg_zLl_kjGet4r036C2eTbzDnczdvH3zWnZdqX_AlSG271Songs2UBjS9KmPxB9sMUoc7uH3m2H-78hKxx2ITwLlkbfZkcnkRJz_t1_bf4Y2JSULHrx9gNI9xTejCQsqXDnL4gz8Lmg448kl6Sji3XyfOG0jTw-Q1yHIFFG2DRCCzaAIveBxatgUWPSuqBRVvAekXODvZPP4-TUHojyUGfXUKrBoWRyqH-jkUAOKiSCi5DpTKWKSudsyKXaapTkTHLB8VQO6mkhWs2ZOI16ZbXpX1DKEgJI3RfDBzTUhujNVO5cLAPd9LoPt8kSbM20zzkpcfyKJdT7x8hpn4tp2EtN8nH2P_GZ2R5sOc2LPVfOm09ptNb8vQO5e9Id3lb2fegjC6zDwETvwGPCJB1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Auditory+Brainstem+Response+Classification+Based+On+Vision+Transformer&rft.jtitle=Computer+journal&rft.au=Abubakir+Ahmed%2C+Hunar&rft.au=Majidpour%2C+Jafar&rft.au=Hussein+Ahmed%2C+Mohammed&rft.au=Kais+Jameel%2C+Samer&rft.date=2024-06-22&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1872&rft.epage=1878&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad107&rft.externalDocID=10.1093%2Fcomjnl%2Fbxad107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon