Enhancing Auditory Brainstem Response Classification Based On Vision Transformer
A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learni...
Saved in:
Published in | Computer journal Vol. 67; no. 5; pp. 1872 - 1878 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
22.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learning have prompted a resurgence of research into ABR classification. This study presents an automated ABR recognition model. The initial step in our design process involves collecting a dataset by extracting ABR test images from sample test reports. Subsequently, we employ an elastic distortion approach to generate new images from the originals, effectively expanding the dataset while preserving the fundamental structure and morphology of the original ABR content. Finally, the Vision Transformer method was exploited to train and develop our model. In the testing phase, the incorporation of both the newly generated and original images yields an impressive accuracy rate of 97.83%. This result is noteworthy when benchmarked against the latest research in the field, underscoring the substantial performance enhancement achieved through the utilization of generated data. |
---|---|
AbstractList | A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual quantification of ABR tests by an audiologist is not only costly but also time-consuming and susceptible to errors. Recently in machine learning have prompted a resurgence of research into ABR classification. This study presents an automated ABR recognition model. The initial step in our design process involves collecting a dataset by extracting ABR test images from sample test reports. Subsequently, we employ an elastic distortion approach to generate new images from the originals, effectively expanding the dataset while preserving the fundamental structure and morphology of the original ABR content. Finally, the Vision Transformer method was exploited to train and develop our model. In the testing phase, the incorporation of both the newly generated and original images yields an impressive accuracy rate of 97.83%. This result is noteworthy when benchmarked against the latest research in the field, underscoring the substantial performance enhancement achieved through the utilization of generated data. |
Author | Abubakir Ahmed, Hunar Majidpour, Jafar Hussein Ahmed, Mohammed Majidpour, Amir Kais Jameel, Samer |
Author_xml | – sequence: 1 givenname: Hunar surname: Abubakir Ahmed fullname: Abubakir Ahmed, Hunar – sequence: 2 givenname: Jafar surname: Majidpour fullname: Majidpour, Jafar email: jafar.majidpoor@uor.edu.krd – sequence: 3 givenname: Mohammed surname: Hussein Ahmed fullname: Hussein Ahmed, Mohammed – sequence: 4 givenname: Samer surname: Kais Jameel fullname: Kais Jameel, Samer – sequence: 5 givenname: Amir surname: Majidpour fullname: Majidpour, Amir |
BookMark | eNqFkM9PwjAUxxuDiYBePffqYfDa9cd2BIJoQoIx6HXptlZLtpa0I5H_3iGcTIyX9807fN7L9zNCA-edRuiewIRAnk4r3-5cMy2_VE1AXqEhYQISCkIO0BCAQMIEhRs0inEHABRyMUQvS_epXGXdB54datv5cMTzoKyLnW7xq45776LGi0bFaI2tVGe9w3MVdY03Dr_beNq3QblofGh1uEXXRjVR311yjN4el9vFU7LerJ4Xs3VSUZl2_eSyVowbDllGCZUUZMb7yDkvSck1M0anFRMiE2lJNJV1nhnGme6zzEk6RpPz3Sr4GIM2xT7YVoVjQaA4-SjOPoqLjx5gv4DKdj91ur5v8zf2cMb8Yf_fi28oLHjE |
CitedBy_id | crossref_primary_10_1007_s00521_025_11036_5 crossref_primary_10_1109_ACCESS_2024_3374890 |
Cites_doi | 10.1016/j.engappai.2005.08.004 10.1109/TPAMI.2022.3152247 10.1038/s41598-022-09954-8 10.1007/s10032-019-00336-x 10.1007/s41095-021-0247-3 10.3390/diagnostics11081384 10.3109/21695717.2016.1110957 10.1016/j.artmed.2016.05.001 10.1080/14992027.2018.1551633 10.1016/j.cmpb.2021.105942 10.1097/00003446-199610000-00006 10.1016/j.joto.2016.12.003 10.1016/j.bbe.2016.01.003 10.1016/j.jneumeth.2017.08.010 10.1007/s42979-021-00815-1 10.1088/1741-2552/ab1e01 10.1186/s40537-019-0197-0 10.1093/comjnl/bxaa061 10.1016/j.bbr.2010.08.051 10.1016/j.bspc.2023.105117 10.1093/bioinformatics/btz259 10.3390/s22041596 |
ContentType | Journal Article |
Copyright | The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
Copyright_xml | – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxad107 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1878 |
ExternalDocumentID | 10_1093_comjnl_bxad107 10.1093/comjnl/bxad107 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-c257da45f5088212720785272955b1b5e4ffe3c466863b1e27d98f454ed98b913 |
ISSN | 0010-4620 |
IngestDate | Tue Jul 01 02:55:11 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Mon Jun 30 08:34:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Vision Transformer Data Augmentation ABR Detection Auditory Brainstem Response Classification |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-c257da45f5088212720785272955b1b5e4ffe3c466863b1e27d98f454ed98b913 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1093_comjnl_bxad107 crossref_citationtrail_10_1093_comjnl_bxad107 oup_primary_10_1093_comjnl_bxad107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-22 |
PublicationDateYYYYMMDD | 2024-06-22 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sarker (2024062312365863700_ref15) 2021; 2 Rasmussen (2024062312365863700_ref16) 2022; 22 Krishnan (2024062312365863700_ref20) 2019; 22 Xu (2024062312365863700_ref28) 2022; 8 Dosovitskiy (2024062312365863700_ref24) 2020 Acir (2024062312365863700_ref1) 2006; 19 Hicks (2024062312365863700_ref25) 2022; 12 Llanos (2024062312365863700_ref12) 2017; 291 Vujović (2024062312365863700_ref26) 2021; 12 Ponton (2024062312365863700_ref2) 1996; 17 Han (2024062312365863700_ref21) 2023; 45 Hornickel (2024062312365863700_ref4) 2011; 216 Ren (2024062312365863700_ref3) 2016; 11 Majidpour (2024062312365863700_ref14) 2023; 86 McKearney (2024062312365863700_ref10) 2019; 58 Dobrowolski (2024062312365863700_ref11) 2016; 36 Wimalarathna (2024062312365863700_ref5) 2021; 200 Bloice (2024062312365863700_ref19) 2019; 35 Shorten (2024062312365863700_ref17) 2019; 6 Molina (2024062312365863700_ref27) 2016; 70 Zaitoun (2024062312365863700_ref7) 2016; 14 Zaitoun (2024062312365863700_ref8) 2014; 38 Ness (2024062312365863700_ref6) 2009 Dai (2024062312365863700_ref23) 2021; 11 Llanos (2024062312365863700_ref13) 2019; 16 Yang (2024062312365863700_ref18) 2022 Bhojanapalli (2024062312365863700_ref22) 2021 Mumtaz (2024062312365863700_ref9) 2022; 65 |
References_xml | – volume: 19 start-page: 209 year: 2006 ident: 2024062312365863700_ref1 article-title: Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2005.08.004 – volume: 45 start-page: 87 year: 2023 ident: 2024062312365863700_ref21 article-title: A survey on vision transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3152247 – volume: 12 start-page: 5979 year: 2022 ident: 2024062312365863700_ref25 article-title: On evaluation metrics for medical applications of artificial intelligence publication-title: Sci. Rep. doi: 10.1038/s41598-022-09954-8 – volume: 22 start-page: 387 year: 2019 ident: 2024062312365863700_ref20 article-title: HWNet v2: an efficient word image representation for handwritten documents publication-title: Int. J. Doc. Anal. Recognit. doi: 10.1007/s10032-019-00336-x – volume: 8 start-page: 33 year: 2022 ident: 2024062312365863700_ref28 article-title: Transformers in computational visual media: a survey publication-title: Comput. Vis. Media doi: 10.1007/s41095-021-0247-3 – volume: 11 start-page: 1384 year: 2021 ident: 2024062312365863700_ref23 article-title: Transmed: transformers advance multi-modal medical image classification publication-title: Diagnostics doi: 10.3390/diagnostics11081384 – volume: 14 start-page: 59 year: 2016 ident: 2024062312365863700_ref7 article-title: Inter and intra-reader variability in the threshold estimation of auditory brainstem response (ABR) results publication-title: Hear. Balance Commun. doi: 10.3109/21695717.2016.1110957 – volume: 70 start-page: 12 year: 2016 ident: 2024062312365863700_ref27 article-title: Classification of auditory brainstem responses through symbolic pattern discovery publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2016.05.001 – volume: 58 start-page: 224 year: 2019 ident: 2024062312365863700_ref10 article-title: Objective auditory brainstem response classification using machine learning publication-title: Int. J. Audiol. doi: 10.1080/14992027.2018.1551633 – volume: 200 start-page: 105942 year: 2021 ident: 2024062312365863700_ref5 article-title: Comparison of machine learning models to classify auditory brainstem responses recorded from children with auditory processing disorder publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.105942 – volume: 17 start-page: 402 year: 1996 ident: 2024062312365863700_ref2 article-title: Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission publication-title: Ear Hear. doi: 10.1097/00003446-199610000-00006 – volume: 11 start-page: 178 year: 2016 ident: 2024062312365863700_ref3 article-title: Intra-operative hearing monitoring methods in middle ear surgeries publication-title: J. Otol. doi: 10.1016/j.joto.2016.12.003 – volume: 36 start-page: 427 year: 2016 ident: 2024062312365863700_ref11 article-title: Classification of auditory brainstem response using wavelet decomposition and SVM network publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2016.01.003 – volume: 291 start-page: 101 year: 2017 ident: 2024062312365863700_ref12 article-title: Hidden Markov modeling of frequency-following responses to mandarin lexical tones publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.08.010 – year: 2020 ident: 2024062312365863700_ref24 article-title: An image is worth 16x16 words: transformers for image recognition at scale publication-title: arXiv preprint arXiv:2010.11929 – volume: 2 start-page: 420 year: 2021 ident: 2024062312365863700_ref15 article-title: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00815-1 – volume-title: Normative data for neurodiagnostic Auditory Brainstem Response testing (ABR) year: 2009 ident: 2024062312365863700_ref6 – volume: 38 year: 2014 ident: 2024062312365863700_ref8 article-title: Inter and intra-reader agreement among audiologists in reading auditory brainstem response waves publication-title: Revue canadienne d’orthophonie et d’audiologie— – volume: 16 start-page: 056004 year: 2019 ident: 2024062312365863700_ref13 article-title: Biometric identification of listener identity from frequency following responses to speech publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab1e01 – volume: 6 start-page: 1 year: 2019 ident: 2024062312365863700_ref17 article-title: A survey on image data augmentation for deep learning publication-title: J. big data doi: 10.1186/s40537-019-0197-0 – volume: 65 start-page: 457 year: 2022 ident: 2024062312365863700_ref9 article-title: Fast learning through deep multi-net CNN model for violence recognition in video surveillance publication-title: Comput. J. doi: 10.1093/comjnl/bxaa061 – volume: 12 start-page: 599 year: 2021 ident: 2024062312365863700_ref26 article-title: Classification model evaluation metrics publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 216 start-page: 597 year: 2011 ident: 2024062312365863700_ref4 article-title: Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2010.08.051 – volume: 86 start-page: 105117 year: 2023 ident: 2024062312365863700_ref14 article-title: Detection of auditory brainstem response peaks using image processing techniques in infants with normal hearing sensitivity publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105117 – start-page: 10231 volume-title: Proceedings of the IEEE/CVF international conference on computer vision year: 2021 ident: 2024062312365863700_ref22 article-title: Understanding robustness of transformers for image classification – volume: 35 start-page: 4522 year: 2019 ident: 2024062312365863700_ref19 article-title: Biomedical image augmentation using Augmentor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz259 – volume: 22 start-page: 1596 year: 2022 ident: 2024062312365863700_ref16 article-title: The challenge of data annotation in deep learning—a case study on whole plant corn silage publication-title: Sensors doi: 10.3390/s22041596 – year: 2022 ident: 2024062312365863700_ref18 article-title: Image data augmentation for deep learning: a survey publication-title: arXiv preprint arXiv:2204.08610 |
SSID | ssj0002096 |
Score | 2.3703945 |
Snippet | A method for testing the health of ear’s peripheral auditory nerve and its connection to the brainstem is called an auditory brainstem response (ABR). Manual... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1872 |
Title | Enhancing Auditory Brainstem Response Classification Based On Vision Transformer |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe68rKXfcCmwT5kIaQ9VBn1V-o-lg1UTXQgARNvlZPYahEERBtp2t-yP3Z3sWPCVDS2F6dJHcv1_Xp3Pt8HITu8sJpJ4H65dSoB7icSPdQM_u5Ku2LAmMgxOHnyLR2fya_n6rzT-dXyWqqW2af858q4kv-hKjwDumKU7D9QNg4KD-Az0BdaoDC0j6LxfjnDdBlo2MDgCjwu38OSD5icGQ3z6P1qfd1L9AjytN4DuVX0jsre9zqs3Kc3R9U1-Ok2aQtCuYdeeyb1OVGVgdZ52xvNrryhdFyVJrr4TszFvLiBV7wLrrv7ZlwtFhatK817k-sZms2LyPPNfFF77XrHgRPTzCgYJbhE5yne2sKuDnZsM2Jg_zLl_kjGet4r036C2eTbzDnczdvH3zWnZdqX_AlSG271Songs2UBjS9KmPxB9sMUoc7uH3m2H-78hKxx2ITwLlkbfZkcnkRJz_t1_bf4Y2JSULHrx9gNI9xTejCQsqXDnL4gz8Lmg448kl6Sji3XyfOG0jTw-Q1yHIFFG2DRCCzaAIveBxatgUWPSuqBRVvAekXODvZPP4-TUHojyUGfXUKrBoWRyqH-jkUAOKiSCi5DpTKWKSudsyKXaapTkTHLB8VQO6mkhWs2ZOI16ZbXpX1DKEgJI3RfDBzTUhujNVO5cLAPd9LoPt8kSbM20zzkpcfyKJdT7x8hpn4tp2EtN8nH2P_GZ2R5sOc2LPVfOm09ptNb8vQO5e9Id3lb2fegjC6zDwETvwGPCJB1 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Auditory+Brainstem+Response+Classification+Based+On+Vision+Transformer&rft.jtitle=Computer+journal&rft.au=Abubakir+Ahmed%2C+Hunar&rft.au=Majidpour%2C+Jafar&rft.au=Hussein+Ahmed%2C+Mohammed&rft.au=Kais+Jameel%2C+Samer&rft.date=2024-06-22&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1872&rft.epage=1878&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad107&rft.externalDocID=10.1093%2Fcomjnl%2Fbxad107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |