Towards improving coherence and diversity of slogan generation

Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ s...

Full description

Saved in:
Bibliographic Details
Published inNatural language engineering Vol. 29; no. 2; pp. 254 - 286
Main Authors Jin, Yiping, Bhatia, Akshay, Wanvarie, Dittaya, Le, Phu T. V.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L $\mathrm{F}_1$ score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines.
AbstractList Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L $\mathrm{F}_1$ score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines.
Previous work in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L \(\mathrm{F}_1\) score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines.
Author Wanvarie, Dittaya
Le, Phu T. V.
Bhatia, Akshay
Jin, Yiping
Author_xml – sequence: 1
  givenname: Yiping
  orcidid: 0000-0002-9599-9181
  surname: Jin
  fullname: Jin, Yiping
– sequence: 2
  givenname: Akshay
  surname: Bhatia
  fullname: Bhatia, Akshay
– sequence: 3
  givenname: Dittaya
  surname: Wanvarie
  fullname: Wanvarie, Dittaya
– sequence: 4
  givenname: Phu T. V.
  surname: Le
  fullname: Le, Phu T. V.
BookMark eNp9UE1LAzEUDFLBtvoDvAU8r-ZtspvdiyDFLyh4sJ6XfNaUNqnJttJ_b9Z6UvD0hjcz7w0zQSMfvEHoEsg1EOA3r0AroCVrSyCEMM5O0BhY3RYNABllnOli4M_QJKXVoAHOxuh2ET5F1Am7zTaGvfNLrMK7icYrg4XXWLu9icn1BxwsTuuwFB4vjTdR9C74c3RqxTqZi585RW8P94vZUzF_eXye3c0LVXLaF7KShNe6ZsxSqpmSNW20zDvJrYYMDa9UDUpSAG65yOnautECrNSSVZpO0dXxbg75sTOp71ZhF31-2ZVNW1IKlLZZxY8qFUNK0dhOuf47Zx-FW3dAuqGs7k9Z2Qm_nNvoNiIe_vF8AWDCbTo
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113148
Cites_doi 10.18653/v1/N19-1043
10.1109/CVPR.2019.00065
10.1509/jmr.14.0117
10.18653/v1/D15-1166
10.18653/v1/W18-6526
10.18653/v1/2020.acl-main.458
10.18653/v1/N19-1395
10.18653/v1/2021.naacl-industry.33
10.18653/v1/2021.eacl-main.235
10.1145/3340531.3412720
10.1007/978-3-030-55218-3_2
10.1162/neco.1997.9.8.1735
10.18653/v1/2020.emnlp-demos.6
10.18653/v1/P17-1099
10.18653/v1/P18-1082
10.18653/v1/2021.naacl-main.475
10.18653/v1/2020.acl-main.173
10.18653/v1/2020.acl-main.450
10.1145/3292500.3330955
10.18653/v1/E17-2048
10.1207/s15516709cog0901_7
10.2753/JOA0091-3367380104
10.1609/aaai.v32i1.11912
10.1111/j.0022-3840.1977.00308.x
10.18653/v1/2021.emnlp-main.420
10.3390/info11020108
10.18653/v1/N19-1125
10.18653/v1/2021.naacl-main.58
10.1080/00913367.1972.10672470
10.18653/v1/2020.emnlp-main.749
10.1162/tacl_a_00349
10.18653/v1/2021.naacl-main.383
10.1017/S1351324920000236
10.1007/978-3-540-77105-0_57
10.18653/v1/P19-1452
10.3115/v1/D14-1179
10.18653/v1/2020.emnlp-main.506
10.18653/v1/P19-1213
10.18653/v1/2020.acl-main.703
10.18653/v1/2020.acl-main.123
10.1145/3184558.3186345
10.18653/v1/N18-1101
10.18653/v1/2021.acl-long.501
10.3115/1572433.1572440
10.18653/v1/2020.acl-demos.14
10.3115/v1/P15-1034
10.1037/h0072217
10.18653/v1/2020.acl-main.456
10.1177/001316446002000104
10.18653/v1/2021.findings-acl.42
10.1145/3292500.3330754
10.18653/v1/D19-1320
10.18653/v1/2020.acl-main.454
10.18653/v1/2020.emnlp-main.750
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7T9
7XB
88G
8AL
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CPGLG
CRLPW
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M2M
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
PTHSS
Q9U
DOI 10.1017/S1351324921000474
DatabaseName CrossRef
ProQuest Central (Corporate)
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Linguistics Collection
Linguistics Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Psychology Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Linguistics Collection
ProQuest One Sustainability
ProQuest Engineering Collection
Health Research Premium Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Engineering Database
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Linguistics Database
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1469-8110
EndPage 286
ExternalDocumentID 10_1017_S1351324921000474
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09D
0E1
0R~
123
29M
4.4
5VS
6~7
6~8
74X
74Y
7~V
8FE
8FG
8FI
8FJ
8I0
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJB
AACJH
AAFUK
AAGFV
AAKNA
AAKTX
AALKF
AANRG
AAPYI
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYOK
AAYXX
ABBXD
ABBZL
ABCFY
ABGDZ
ABHFL
ABITZ
ABIVO
ABJCF
ABJNI
ABJWI
ABKKG
ABLJU
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABTND
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACABY
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFS
ACHQT
ACIMK
ACIWK
ACOZI
ACQPF
ACRPL
ACUIJ
ACYZP
ACZBM
ACZBN
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADNMO
ADOVH
ADTCA
ADVJH
AEBAK
AEBPU
AEFOJ
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEUYN
AFFUJ
AFKQG
AFKRA
AFKRZ
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGHGI
AGJUD
AGLWM
AGQPQ
AGTDA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ALWZO
ANFVQ
ANOYL
AOWSX
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AVDNQ
AYIQA
AZQEC
BBLKV
BBQHK
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CCUQV
CDIZJ
CFAFE
CFBFF
CGMFO
CGQII
CHEAL
CITATION
CJCSC
COF
CPGLG
CRLPW
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
ED0
EGQIC
EJD
FYUFA
GNUQQ
HCIFZ
HG-
HOVLH
HSS
HST
HZ~
I.5
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JOSPZ
JPPIE
JQKCU
JRMXA
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2M
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PSYQQ
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
UKHRP
UT1
WFFJZ
WQ3
WXS
WXU
WYP
ZJOSE
ZMEZD
ZYDXJ
~A4
~V1
3V.
7T9
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c273t-b5b076d644f33d4cb638dbb07b7fd18dbe75c61cb3117f7a004968da1fbdb45d3
IEDL.DBID BENPR
ISSN 1351-3249
IngestDate Fri Jul 25 10:44:47 EDT 2025
Tue Jul 01 00:19:51 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-b5b076d644f33d4cb638dbb07b7fd18dbe75c61cb3117f7a004968da1fbdb45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9599-9181
PQID 2892331339
PQPubID 30339
PageCount 33
ParticipantIDs proquest_journals_2892331339
crossref_citationtrail_10_1017_S1351324921000474
crossref_primary_10_1017_S1351324921000474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Natural language engineering
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Mikolov (S1351324921000474_ref46) 2013; 26
S1351324921000474_ref29
S1351324921000474_ref63
S1351324921000474_ref20
S1351324921000474_ref64
S1351324921000474_ref61
S1351324921000474_ref60
S1351324921000474_ref27
Vaswani (S1351324921000474_ref65) 2017
S1351324921000474_ref28
S1351324921000474_ref69
S1351324921000474_ref25
S1351324921000474_ref23
S1351324921000474_ref67
S1351324921000474_ref24
S1351324921000474_ref68
S1351324921000474_ref21
S1351324921000474_ref22
S1351324921000474_ref66
S1351324921000474_ref7
S1351324921000474_ref8
S1351324921000474_ref5
S1351324921000474_ref6
S1351324921000474_ref3
S1351324921000474_ref4
S1351324921000474_ref18
S1351324921000474_ref1
S1351324921000474_ref2
S1351324921000474_ref19
S1351324921000474_ref52
S1351324921000474_ref53
S1351324921000474_ref50
S1351324921000474_ref51
S1351324921000474_ref16
S1351324921000474_ref17
S1351324921000474_ref58
S1351324921000474_ref14
S1351324921000474_ref59
S1351324921000474_ref15
S1351324921000474_ref12
S1351324921000474_ref13
S1351324921000474_ref10
S1351324921000474_ref9
S1351324921000474_ref54
S1351324921000474_ref11
S1351324921000474_ref55
Reddy (S1351324921000474_ref57) 1977
S1351324921000474_ref41
S1351324921000474_ref42
S1351324921000474_ref40
S1351324921000474_ref49
Hermann (S1351324921000474_ref26) 2015
S1351324921000474_ref47
S1351324921000474_ref48
S1351324921000474_ref45
S1351324921000474_ref43
S1351324921000474_ref44
Sutskever (S1351324921000474_ref62) 2014; 27
S1351324921000474_ref30
S1351324921000474_ref74
S1351324921000474_ref31
S1351324921000474_ref75
S1351324921000474_ref72
S1351324921000474_ref73
S1351324921000474_ref70
S1351324921000474_ref71
Radford (S1351324921000474_ref56) 2019; 1
S1351324921000474_ref38
S1351324921000474_ref39
S1351324921000474_ref36
S1351324921000474_ref37
S1351324921000474_ref34
S1351324921000474_ref35
S1351324921000474_ref32
S1351324921000474_ref33
References_xml – ident: S1351324921000474_ref51
  doi: 10.18653/v1/N19-1043
– ident: S1351324921000474_ref25
  doi: 10.1109/CVPR.2019.00065
– ident: S1351324921000474_ref7
  doi: 10.1509/jmr.14.0117
– ident: S1351324921000474_ref42
  doi: 10.18653/v1/D15-1166
– ident: S1351324921000474_ref32
  doi: 10.18653/v1/W18-6526
– ident: S1351324921000474_ref74
  doi: 10.18653/v1/2020.acl-main.458
– ident: S1351324921000474_ref17
  doi: 10.18653/v1/N19-1395
– ident: S1351324921000474_ref34
  doi: 10.18653/v1/2021.naacl-industry.33
– ident: S1351324921000474_ref50
  doi: 10.18653/v1/2021.eacl-main.235
– ident: S1351324921000474_ref48
  doi: 10.1145/3340531.3412720
– ident: S1351324921000474_ref66
  doi: 10.1007/978-3-030-55218-3_2
– ident: S1351324921000474_ref27
  doi: 10.1162/neco.1997.9.8.1735
– ident: S1351324921000474_ref14
– ident: S1351324921000474_ref52
– ident: S1351324921000474_ref71
  doi: 10.18653/v1/2020.emnlp-demos.6
– ident: S1351324921000474_ref60
  doi: 10.18653/v1/P17-1099
– ident: S1351324921000474_ref19
  doi: 10.18653/v1/P18-1082
– ident: S1351324921000474_ref11
  doi: 10.18653/v1/2021.naacl-main.475
– ident: S1351324921000474_ref22
– ident: S1351324921000474_ref44
  doi: 10.18653/v1/2020.acl-main.173
– ident: S1351324921000474_ref47
– ident: S1351324921000474_ref67
  doi: 10.18653/v1/2020.acl-main.450
– ident: S1351324921000474_ref24
  doi: 10.1145/3292500.3330955
– ident: S1351324921000474_ref23
  doi: 10.18653/v1/E17-2048
– ident: S1351324921000474_ref2
  doi: 10.1207/s15516709cog0901_7
– ident: S1351324921000474_ref8
– ident: S1351324921000474_ref54
  doi: 10.2753/JOA0091-3367380104
– ident: S1351324921000474_ref10
  doi: 10.1609/aaai.v32i1.11912
– volume: 26
  start-page: 3111
  year: 2013
  ident: S1351324921000474_ref46
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: In Advances in neural information processing systems
– ident: S1351324921000474_ref64
– ident: S1351324921000474_ref68
– volume: 27
  start-page: 3104
  year: 2014
  ident: S1351324921000474_ref62
  article-title: Sequence to sequence learning with neural networks
  publication-title: In Advances in Neural Information Processing Systems
– ident: S1351324921000474_ref45
  doi: 10.1111/j.0022-3840.1977.00308.x
– ident: S1351324921000474_ref61
  doi: 10.18653/v1/2021.emnlp-main.420
– ident: S1351324921000474_ref29
  doi: 10.3390/info11020108
– ident: S1351324921000474_ref21
  doi: 10.18653/v1/N19-1125
– ident: S1351324921000474_ref36
– ident: S1351324921000474_ref5
– ident: S1351324921000474_ref75
  doi: 10.18653/v1/2021.naacl-main.58
– ident: S1351324921000474_ref69
  doi: 10.1080/00913367.1972.10672470
– ident: S1351324921000474_ref15
  doi: 10.18653/v1/2020.emnlp-main.749
– start-page: 5998
  volume-title: In Advances in neural information processing systems
  year: 2017
  ident: S1351324921000474_ref65
– ident: S1351324921000474_ref58
  doi: 10.1162/tacl_a_00349
– ident: S1351324921000474_ref53
  doi: 10.18653/v1/2021.naacl-main.383
– volume: 1
  start-page: 9
  year: 2019
  ident: S1351324921000474_ref56
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI blog
– ident: S1351324921000474_ref73
– ident: S1351324921000474_ref3
  doi: 10.1017/S1351324920000236
– ident: S1351324921000474_ref1
  doi: 10.1007/978-3-540-77105-0_57
– ident: S1351324921000474_ref63
  doi: 10.18653/v1/P19-1452
– volume-title: Speech understanding systems: A summary of results of the five-year research effort
  year: 1977
  ident: S1351324921000474_ref57
– ident: S1351324921000474_ref40
– ident: S1351324921000474_ref6
– ident: S1351324921000474_ref12
  doi: 10.3115/v1/D14-1179
– ident: S1351324921000474_ref39
– ident: S1351324921000474_ref9
  doi: 10.18653/v1/2020.emnlp-main.506
– ident: S1351324921000474_ref18
  doi: 10.18653/v1/P19-1213
– start-page: 1693
  volume-title: In Advances in Neural Information Processing Systems
  year: 2015
  ident: S1351324921000474_ref26
– ident: S1351324921000474_ref38
  doi: 10.18653/v1/2020.acl-main.703
– ident: S1351324921000474_ref72
– ident: S1351324921000474_ref43
  doi: 10.18653/v1/2020.acl-main.123
– ident: S1351324921000474_ref49
  doi: 10.1145/3184558.3186345
– ident: S1351324921000474_ref28
– ident: S1351324921000474_ref70
  doi: 10.18653/v1/N18-1101
– ident: S1351324921000474_ref30
  doi: 10.18653/v1/2021.acl-long.501
– ident: S1351324921000474_ref35
  doi: 10.3115/1572433.1572440
– ident: S1351324921000474_ref55
  doi: 10.18653/v1/2020.acl-demos.14
– ident: S1351324921000474_ref4
  doi: 10.3115/v1/P15-1034
– ident: S1351324921000474_ref41
  doi: 10.1037/h0072217
– ident: S1351324921000474_ref33
  doi: 10.18653/v1/2020.acl-main.456
– ident: S1351324921000474_ref13
  doi: 10.1177/001316446002000104
– ident: S1351324921000474_ref20
  doi: 10.18653/v1/2021.findings-acl.42
– ident: S1351324921000474_ref31
  doi: 10.1145/3292500.3330754
– ident: S1351324921000474_ref59
  doi: 10.18653/v1/D19-1320
– ident: S1351324921000474_ref16
  doi: 10.18653/v1/2020.acl-main.454
– ident: S1351324921000474_ref37
  doi: 10.18653/v1/2020.emnlp-main.750
SSID ssj0004174
Score 2.3032625
Snippet Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often...
Previous work in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 254
SubjectTerms Advertising
Coherence
Credibility
Datasets
Genetic algorithms
Keywords
Masking
Natural language generation
Short term memory
Slogans
Syntax
Transformers
Title Towards improving coherence and diversity of slogan generation
URI https://www.proquest.com/docview/2892331339
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7c9uKLv8XpHHnwSQiubdKkL4rK5hAcIhvsrSS5VgVpp53_v8maOkTYW7m2L5fcl7vL3X0AF0ZrnqCIaSJjTplFYao4SmqES7gpE-TC9Q4_TeLxjD3O-dwn3CpfVtlg4gqosTQuR35lA4MwimxEldwsPqljjXK3q55CowUdC8FStqFzN5w8v6w7I-s5zI6GjlrXIWnuNd3QaCd0stCluJlgf0-mv8C8Om1Ge7Dj3URyW6_rPmxlxQHsNhQMxFvkIVxPV2WvFXlvkgPElG91Cx9RBRJs6i5ImZPKAp0qyOtq1LRbkSOYjYbT-zH1lAjUWD9jSTXXAxGjdWLyKEJmtDUf1FamRY6BfcwEN3FgdBQEwqrZBQCxRBXkGjXjGB1DuyiL7ARImMcGeaB4qBSTIZMZZ8izBF1vqgx1FwaNOlLj54U72oqPtC4ME-k_DXbh8veXRT0sY9PHvUbHqbebKl2v8unm12ew7Yjf62qwHrSXX9_ZuXUPlroPLTl66Pud8AOHU7e2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1Eo4AEWJAuS2HkMgBBQCgWmIrGF2E4ACaWFFCH-FL-RuySmQkjd2CLHiazz-V6-uw9gRyslIxP4PAp9yQVKYZ5IE3IdUMAt0U4WUO3wza3fvRNX9_K-AV-2FobSKq1MLAW1GWiKke-jY-B6HnpU0fHwlRNqFN2uWgiNii166ecHumzF4eUZ7u-u63bO-6ddXqMKcI2qesSVVOi7G7QDMs8zQivkQKNwTAWZcfAxDaT2Ha08xwlwpWRD-6FJnEwZJaTx8L9TMC1wJeTshZ2LcR1m1fWZQO84GiqRvUWlFtU0SGMuBdRFIH7rwd9qoNRtnQWYq41SdlJx0SI00nwJ5i3gA6vP_zIc9csk24I921AE04OnqmCQJblhxmZ5sEHGChSrSc4ey8bWtP8rcPcvpFqFZj7I0zVgbuZrI51EukkiQleEqRRGppGhStjQVS04sOSIdd2dnEAyXuIqDS2I_1CwBXs_nwyr1hyTJrctjeP6lBbxmKfWJ7_ehplu_-Y6vr687W3ALEHOV3lobWiO3t7TTTRMRmqr5AYGD__Nft_YavN-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC-LFt_iouge9CIsm2c0mBxW1lvoqIgreYnY3UUFStRXxr_nrnGmyigjeegubB2HyZV47Mx_AhtFaxlaFPI5CyQVqYZ5KG3GjKOGWGi9X1Dt80Q07N-L0Vt7W4NP1wlBZpdOJQ0Vte4Zy5NsYGPhBgBFVvJ1XZRGXrfb-8wsnBinaaXV0GiVEzrKPdwzf-rsnLfzWm77fPr4-6vCKYYAbNNsDrqXGON6iT5AHgRVGIxqtxjWtcuvhYaakCT2jA89T-NbkT4eRTb1cWy2kDfC5Y9BQFBXVoXF43L28-unKLGdAEwUeR7cldnuqNLCaFmnNp_S6UOK3VfxtFIaWrj0Nk5WLyg5KTM1ALStmYcrRP7BKG8zB3vWw5LbPHl1igpneQ9k-yNLCMutqPlgvZ31UsmnB7odjrgkN83AzEmEtQL3oFdkiMD8PjZVeKv00FZEvokwKK7PYUl9s5Osl2HHiSEw1q5woM56SsihNJX8kuARb37c8l4M6_ru46WScVP9sP_lB2PL_p9dhHKGXnJ90z1Zggvjny6K0JtQHr2_ZKnopA71WwYHB3agR-AU3JPkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+improving+coherence+and+diversity+of+slogan+generation&rft.jtitle=Natural+language+engineering&rft.au=Jin%2C+Yiping&rft.au=Bhatia%2C+Akshay&rft.au=Wanvarie%2C+Dittaya&rft.au=Le%2C+Phu+T+V&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=1351-3249&rft.eissn=1469-8110&rft.volume=29&rft.issue=2&rft.spage=254&rft.epage=286&rft_id=info:doi/10.1017%2FS1351324921000474&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-3249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-3249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-3249&client=summon