Towards improving coherence and diversity of slogan generation
Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ s...
Saved in:
Published in | Natural language engineering Vol. 29; no. 2; pp. 254 - 286 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L
$\mathrm{F}_1$
score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines. |
---|---|
AbstractList | Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L
$\mathrm{F}_1$
score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines. Previous work in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often not coherent with the company’s focus or style across their marketing communications because the skeletons are mined from other companies’ slogans. We propose a sequence-to-sequence (seq2seq) Transformer model to generate slogans from a brief company description. A naïve seq2seq model fine-tuned for slogan generation is prone to introducing false information. We use company name delexicalisation and entity masking to alleviate this problem and improve the generated slogans’ quality and truthfulness. Furthermore, we apply conditional training based on the first words’ part-of-speech tag to generate syntactically diverse slogans. Our best model achieved a ROUGE-1/-2/-L \(\mathrm{F}_1\) score of 35.58/18.47/33.32. Besides, automatic and human evaluations indicate that our method generates significantly more factual, diverse and catchy slogans than strong long short-term memory and Transformer seq2seq baselines. |
Author | Wanvarie, Dittaya Le, Phu T. V. Bhatia, Akshay Jin, Yiping |
Author_xml | – sequence: 1 givenname: Yiping orcidid: 0000-0002-9599-9181 surname: Jin fullname: Jin, Yiping – sequence: 2 givenname: Akshay surname: Bhatia fullname: Bhatia, Akshay – sequence: 3 givenname: Dittaya surname: Wanvarie fullname: Wanvarie, Dittaya – sequence: 4 givenname: Phu T. V. surname: Le fullname: Le, Phu T. V. |
BookMark | eNp9UE1LAzEUDFLBtvoDvAU8r-ZtspvdiyDFLyh4sJ6XfNaUNqnJttJ_b9Z6UvD0hjcz7w0zQSMfvEHoEsg1EOA3r0AroCVrSyCEMM5O0BhY3RYNABllnOli4M_QJKXVoAHOxuh2ET5F1Am7zTaGvfNLrMK7icYrg4XXWLu9icn1BxwsTuuwFB4vjTdR9C74c3RqxTqZi585RW8P94vZUzF_eXye3c0LVXLaF7KShNe6ZsxSqpmSNW20zDvJrYYMDa9UDUpSAG65yOnautECrNSSVZpO0dXxbg75sTOp71ZhF31-2ZVNW1IKlLZZxY8qFUNK0dhOuf47Zx-FW3dAuqGs7k9Z2Qm_nNvoNiIe_vF8AWDCbTo |
CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113148 |
Cites_doi | 10.18653/v1/N19-1043 10.1109/CVPR.2019.00065 10.1509/jmr.14.0117 10.18653/v1/D15-1166 10.18653/v1/W18-6526 10.18653/v1/2020.acl-main.458 10.18653/v1/N19-1395 10.18653/v1/2021.naacl-industry.33 10.18653/v1/2021.eacl-main.235 10.1145/3340531.3412720 10.1007/978-3-030-55218-3_2 10.1162/neco.1997.9.8.1735 10.18653/v1/2020.emnlp-demos.6 10.18653/v1/P17-1099 10.18653/v1/P18-1082 10.18653/v1/2021.naacl-main.475 10.18653/v1/2020.acl-main.173 10.18653/v1/2020.acl-main.450 10.1145/3292500.3330955 10.18653/v1/E17-2048 10.1207/s15516709cog0901_7 10.2753/JOA0091-3367380104 10.1609/aaai.v32i1.11912 10.1111/j.0022-3840.1977.00308.x 10.18653/v1/2021.emnlp-main.420 10.3390/info11020108 10.18653/v1/N19-1125 10.18653/v1/2021.naacl-main.58 10.1080/00913367.1972.10672470 10.18653/v1/2020.emnlp-main.749 10.1162/tacl_a_00349 10.18653/v1/2021.naacl-main.383 10.1017/S1351324920000236 10.1007/978-3-540-77105-0_57 10.18653/v1/P19-1452 10.3115/v1/D14-1179 10.18653/v1/2020.emnlp-main.506 10.18653/v1/P19-1213 10.18653/v1/2020.acl-main.703 10.18653/v1/2020.acl-main.123 10.1145/3184558.3186345 10.18653/v1/N18-1101 10.18653/v1/2021.acl-long.501 10.3115/1572433.1572440 10.18653/v1/2020.acl-demos.14 10.3115/v1/P15-1034 10.1037/h0072217 10.18653/v1/2020.acl-main.456 10.1177/001316446002000104 10.18653/v1/2021.findings-acl.42 10.1145/3292500.3330754 10.18653/v1/D19-1320 10.18653/v1/2020.acl-main.454 10.18653/v1/2020.emnlp-main.750 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7T9 7XB 88G 8AL 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CPGLG CRLPW DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- L6V M0N M2M M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ PTHSS Q9U |
DOI | 10.1017/S1351324921000474 |
DatabaseName | CrossRef ProQuest Central (Corporate) Linguistics and Language Behavior Abstracts (LLBA) ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Linguistics Collection Linguistics Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Psychology Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Linguistics Collection ProQuest One Sustainability ProQuest Engineering Collection Health Research Premium Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing Engineering Database ProQuest One Social Sciences ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Linguistics and Language Behavior Abstracts (LLBA) ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Psychology Journals ProQuest One Academic UKI Edition Linguistics Database Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1469-8110 |
EndPage | 286 |
ExternalDocumentID | 10_1017_S1351324921000474 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09D 0E1 0R~ 123 29M 4.4 5VS 6~7 6~8 74X 74Y 7~V 8FE 8FG 8FI 8FJ 8I0 8R4 8R5 9M5 AAAZR AABES AABWE AACJB AACJH AAFUK AAGFV AAKNA AAKTX AALKF AANRG AAPYI AARAB AASVR AATMM AAUIS AAUKB AAYOK AAYXX ABBXD ABBZL ABCFY ABGDZ ABHFL ABITZ ABIVO ABJCF ABJNI ABJWI ABKKG ABLJU ABMWE ABQTM ABQWD ABROB ABTCQ ABTND ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ABZUI ACABY ACAJB ACBMC ACDLN ACEJA ACETC ACGFS ACHQT ACIMK ACIWK ACOZI ACQPF ACRPL ACUIJ ACYZP ACZBM ACZBN ACZUX ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADMLS ADNMO ADOVH ADTCA ADVJH AEBAK AEBPU AEFOJ AEHGV AEMFK AEMTW AENCP AENEX AENGE AEUYN AFFUJ AFKQG AFKRA AFKRZ AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGHGI AGJUD AGLWM AGQPQ AGTDA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALVPG ALWZO ANFVQ ANOYL AOWSX AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AVDNQ AYIQA AZQEC BBLKV BBQHK BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP BVXVI C0O CAG CBIIA CCPQU CCQAD CCTKK CCUQV CDIZJ CFAFE CFBFF CGMFO CGQII CHEAL CITATION CJCSC COF CPGLG CRLPW CS3 DC4 DOHLZ DU5 DWQXO EBS ED0 EGQIC EJD FYUFA GNUQQ HCIFZ HG- HOVLH HSS HST HZ~ I.5 I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JOSPZ JPPIE JQKCU JRMXA K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2M M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQQKQ PROAC PSYQQ PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M UKHRP UT1 WFFJZ WQ3 WXS WXU WYP ZJOSE ZMEZD ZYDXJ ~A4 ~V1 3V. 7T9 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQGLB PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c273t-b5b076d644f33d4cb638dbb07b7fd18dbe75c61cb3117f7a004968da1fbdb45d3 |
IEDL.DBID | BENPR |
ISSN | 1351-3249 |
IngestDate | Fri Jul 25 10:44:47 EDT 2025 Tue Jul 01 00:19:51 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-b5b076d644f33d4cb638dbb07b7fd18dbe75c61cb3117f7a004968da1fbdb45d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9599-9181 |
PQID | 2892331339 |
PQPubID | 30339 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2892331339 crossref_citationtrail_10_1017_S1351324921000474 crossref_primary_10_1017_S1351324921000474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Natural language engineering |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Mikolov (S1351324921000474_ref46) 2013; 26 S1351324921000474_ref29 S1351324921000474_ref63 S1351324921000474_ref20 S1351324921000474_ref64 S1351324921000474_ref61 S1351324921000474_ref60 S1351324921000474_ref27 Vaswani (S1351324921000474_ref65) 2017 S1351324921000474_ref28 S1351324921000474_ref69 S1351324921000474_ref25 S1351324921000474_ref23 S1351324921000474_ref67 S1351324921000474_ref24 S1351324921000474_ref68 S1351324921000474_ref21 S1351324921000474_ref22 S1351324921000474_ref66 S1351324921000474_ref7 S1351324921000474_ref8 S1351324921000474_ref5 S1351324921000474_ref6 S1351324921000474_ref3 S1351324921000474_ref4 S1351324921000474_ref18 S1351324921000474_ref1 S1351324921000474_ref2 S1351324921000474_ref19 S1351324921000474_ref52 S1351324921000474_ref53 S1351324921000474_ref50 S1351324921000474_ref51 S1351324921000474_ref16 S1351324921000474_ref17 S1351324921000474_ref58 S1351324921000474_ref14 S1351324921000474_ref59 S1351324921000474_ref15 S1351324921000474_ref12 S1351324921000474_ref13 S1351324921000474_ref10 S1351324921000474_ref9 S1351324921000474_ref54 S1351324921000474_ref11 S1351324921000474_ref55 Reddy (S1351324921000474_ref57) 1977 S1351324921000474_ref41 S1351324921000474_ref42 S1351324921000474_ref40 S1351324921000474_ref49 Hermann (S1351324921000474_ref26) 2015 S1351324921000474_ref47 S1351324921000474_ref48 S1351324921000474_ref45 S1351324921000474_ref43 S1351324921000474_ref44 Sutskever (S1351324921000474_ref62) 2014; 27 S1351324921000474_ref30 S1351324921000474_ref74 S1351324921000474_ref31 S1351324921000474_ref75 S1351324921000474_ref72 S1351324921000474_ref73 S1351324921000474_ref70 S1351324921000474_ref71 Radford (S1351324921000474_ref56) 2019; 1 S1351324921000474_ref38 S1351324921000474_ref39 S1351324921000474_ref36 S1351324921000474_ref37 S1351324921000474_ref34 S1351324921000474_ref35 S1351324921000474_ref32 S1351324921000474_ref33 |
References_xml | – ident: S1351324921000474_ref51 doi: 10.18653/v1/N19-1043 – ident: S1351324921000474_ref25 doi: 10.1109/CVPR.2019.00065 – ident: S1351324921000474_ref7 doi: 10.1509/jmr.14.0117 – ident: S1351324921000474_ref42 doi: 10.18653/v1/D15-1166 – ident: S1351324921000474_ref32 doi: 10.18653/v1/W18-6526 – ident: S1351324921000474_ref74 doi: 10.18653/v1/2020.acl-main.458 – ident: S1351324921000474_ref17 doi: 10.18653/v1/N19-1395 – ident: S1351324921000474_ref34 doi: 10.18653/v1/2021.naacl-industry.33 – ident: S1351324921000474_ref50 doi: 10.18653/v1/2021.eacl-main.235 – ident: S1351324921000474_ref48 doi: 10.1145/3340531.3412720 – ident: S1351324921000474_ref66 doi: 10.1007/978-3-030-55218-3_2 – ident: S1351324921000474_ref27 doi: 10.1162/neco.1997.9.8.1735 – ident: S1351324921000474_ref14 – ident: S1351324921000474_ref52 – ident: S1351324921000474_ref71 doi: 10.18653/v1/2020.emnlp-demos.6 – ident: S1351324921000474_ref60 doi: 10.18653/v1/P17-1099 – ident: S1351324921000474_ref19 doi: 10.18653/v1/P18-1082 – ident: S1351324921000474_ref11 doi: 10.18653/v1/2021.naacl-main.475 – ident: S1351324921000474_ref22 – ident: S1351324921000474_ref44 doi: 10.18653/v1/2020.acl-main.173 – ident: S1351324921000474_ref47 – ident: S1351324921000474_ref67 doi: 10.18653/v1/2020.acl-main.450 – ident: S1351324921000474_ref24 doi: 10.1145/3292500.3330955 – ident: S1351324921000474_ref23 doi: 10.18653/v1/E17-2048 – ident: S1351324921000474_ref2 doi: 10.1207/s15516709cog0901_7 – ident: S1351324921000474_ref8 – ident: S1351324921000474_ref54 doi: 10.2753/JOA0091-3367380104 – ident: S1351324921000474_ref10 doi: 10.1609/aaai.v32i1.11912 – volume: 26 start-page: 3111 year: 2013 ident: S1351324921000474_ref46 article-title: Distributed representations of words and phrases and their compositionality publication-title: In Advances in neural information processing systems – ident: S1351324921000474_ref64 – ident: S1351324921000474_ref68 – volume: 27 start-page: 3104 year: 2014 ident: S1351324921000474_ref62 article-title: Sequence to sequence learning with neural networks publication-title: In Advances in Neural Information Processing Systems – ident: S1351324921000474_ref45 doi: 10.1111/j.0022-3840.1977.00308.x – ident: S1351324921000474_ref61 doi: 10.18653/v1/2021.emnlp-main.420 – ident: S1351324921000474_ref29 doi: 10.3390/info11020108 – ident: S1351324921000474_ref21 doi: 10.18653/v1/N19-1125 – ident: S1351324921000474_ref36 – ident: S1351324921000474_ref5 – ident: S1351324921000474_ref75 doi: 10.18653/v1/2021.naacl-main.58 – ident: S1351324921000474_ref69 doi: 10.1080/00913367.1972.10672470 – ident: S1351324921000474_ref15 doi: 10.18653/v1/2020.emnlp-main.749 – start-page: 5998 volume-title: In Advances in neural information processing systems year: 2017 ident: S1351324921000474_ref65 – ident: S1351324921000474_ref58 doi: 10.1162/tacl_a_00349 – ident: S1351324921000474_ref53 doi: 10.18653/v1/2021.naacl-main.383 – volume: 1 start-page: 9 year: 2019 ident: S1351324921000474_ref56 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – ident: S1351324921000474_ref73 – ident: S1351324921000474_ref3 doi: 10.1017/S1351324920000236 – ident: S1351324921000474_ref1 doi: 10.1007/978-3-540-77105-0_57 – ident: S1351324921000474_ref63 doi: 10.18653/v1/P19-1452 – volume-title: Speech understanding systems: A summary of results of the five-year research effort year: 1977 ident: S1351324921000474_ref57 – ident: S1351324921000474_ref40 – ident: S1351324921000474_ref6 – ident: S1351324921000474_ref12 doi: 10.3115/v1/D14-1179 – ident: S1351324921000474_ref39 – ident: S1351324921000474_ref9 doi: 10.18653/v1/2020.emnlp-main.506 – ident: S1351324921000474_ref18 doi: 10.18653/v1/P19-1213 – start-page: 1693 volume-title: In Advances in Neural Information Processing Systems year: 2015 ident: S1351324921000474_ref26 – ident: S1351324921000474_ref38 doi: 10.18653/v1/2020.acl-main.703 – ident: S1351324921000474_ref72 – ident: S1351324921000474_ref43 doi: 10.18653/v1/2020.acl-main.123 – ident: S1351324921000474_ref49 doi: 10.1145/3184558.3186345 – ident: S1351324921000474_ref28 – ident: S1351324921000474_ref70 doi: 10.18653/v1/N18-1101 – ident: S1351324921000474_ref30 doi: 10.18653/v1/2021.acl-long.501 – ident: S1351324921000474_ref35 doi: 10.3115/1572433.1572440 – ident: S1351324921000474_ref55 doi: 10.18653/v1/2020.acl-demos.14 – ident: S1351324921000474_ref4 doi: 10.3115/v1/P15-1034 – ident: S1351324921000474_ref41 doi: 10.1037/h0072217 – ident: S1351324921000474_ref33 doi: 10.18653/v1/2020.acl-main.456 – ident: S1351324921000474_ref13 doi: 10.1177/001316446002000104 – ident: S1351324921000474_ref20 doi: 10.18653/v1/2021.findings-acl.42 – ident: S1351324921000474_ref31 doi: 10.1145/3292500.3330754 – ident: S1351324921000474_ref59 doi: 10.18653/v1/D19-1320 – ident: S1351324921000474_ref16 doi: 10.18653/v1/2020.acl-main.454 – ident: S1351324921000474_ref37 doi: 10.18653/v1/2020.emnlp-main.750 |
SSID | ssj0004174 |
Score | 2.3032625 |
Snippet | Previouswork in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are often... Previous work in slogan generation focused on utilising slogan skeletons mined from existing slogans. While some generated slogans can be catchy, they are... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 254 |
SubjectTerms | Advertising Coherence Credibility Datasets Genetic algorithms Keywords Masking Natural language generation Short term memory Slogans Syntax Transformers |
Title | Towards improving coherence and diversity of slogan generation |
URI | https://www.proquest.com/docview/2892331339 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7c9uKLv8XpHHnwSQiubdKkL4rK5hAcIhvsrSS5VgVpp53_v8maOkTYW7m2L5fcl7vL3X0AF0ZrnqCIaSJjTplFYao4SmqES7gpE-TC9Q4_TeLxjD3O-dwn3CpfVtlg4gqosTQuR35lA4MwimxEldwsPqljjXK3q55CowUdC8FStqFzN5w8v6w7I-s5zI6GjlrXIWnuNd3QaCd0stCluJlgf0-mv8C8Om1Ge7Dj3URyW6_rPmxlxQHsNhQMxFvkIVxPV2WvFXlvkgPElG91Cx9RBRJs6i5ImZPKAp0qyOtq1LRbkSOYjYbT-zH1lAjUWD9jSTXXAxGjdWLyKEJmtDUf1FamRY6BfcwEN3FgdBQEwqrZBQCxRBXkGjXjGB1DuyiL7ARImMcGeaB4qBSTIZMZZ8izBF1vqgx1FwaNOlLj54U72oqPtC4ME-k_DXbh8veXRT0sY9PHvUbHqbebKl2v8unm12ew7Yjf62qwHrSXX9_ZuXUPlroPLTl66Pud8AOHU7e2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1Eo4AEWJAuS2HkMgBBQCgWmIrGF2E4ACaWFFCH-FL-RuySmQkjd2CLHiazz-V6-uw9gRyslIxP4PAp9yQVKYZ5IE3IdUMAt0U4WUO3wza3fvRNX9_K-AV-2FobSKq1MLAW1GWiKke-jY-B6HnpU0fHwlRNqFN2uWgiNii166ecHumzF4eUZ7u-u63bO-6ddXqMKcI2qesSVVOi7G7QDMs8zQivkQKNwTAWZcfAxDaT2Ha08xwlwpWRD-6FJnEwZJaTx8L9TMC1wJeTshZ2LcR1m1fWZQO84GiqRvUWlFtU0SGMuBdRFIH7rwd9qoNRtnQWYq41SdlJx0SI00nwJ5i3gA6vP_zIc9csk24I921AE04OnqmCQJblhxmZ5sEHGChSrSc4ey8bWtP8rcPcvpFqFZj7I0zVgbuZrI51EukkiQleEqRRGppGhStjQVS04sOSIdd2dnEAyXuIqDS2I_1CwBXs_nwyr1hyTJrctjeP6lBbxmKfWJ7_ehplu_-Y6vr687W3ALEHOV3lobWiO3t7TTTRMRmqr5AYGD__Nft_YavN- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC-LFt_iouge9CIsm2c0mBxW1lvoqIgreYnY3UUFStRXxr_nrnGmyigjeegubB2HyZV47Mx_AhtFaxlaFPI5CyQVqYZ5KG3GjKOGWGi9X1Dt80Q07N-L0Vt7W4NP1wlBZpdOJQ0Vte4Zy5NsYGPhBgBFVvJ1XZRGXrfb-8wsnBinaaXV0GiVEzrKPdwzf-rsnLfzWm77fPr4-6vCKYYAbNNsDrqXGON6iT5AHgRVGIxqtxjWtcuvhYaakCT2jA89T-NbkT4eRTb1cWy2kDfC5Y9BQFBXVoXF43L28-unKLGdAEwUeR7cldnuqNLCaFmnNp_S6UOK3VfxtFIaWrj0Nk5WLyg5KTM1ALStmYcrRP7BKG8zB3vWw5LbPHl1igpneQ9k-yNLCMutqPlgvZ31UsmnB7odjrgkN83AzEmEtQL3oFdkiMD8PjZVeKv00FZEvokwKK7PYUl9s5Osl2HHiSEw1q5woM56SsihNJX8kuARb37c8l4M6_ru46WScVP9sP_lB2PL_p9dhHKGXnJ90z1Zggvjny6K0JtQHr2_ZKnopA71WwYHB3agR-AU3JPkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+improving+coherence+and+diversity+of+slogan+generation&rft.jtitle=Natural+language+engineering&rft.au=Jin%2C+Yiping&rft.au=Bhatia%2C+Akshay&rft.au=Wanvarie%2C+Dittaya&rft.au=Le%2C+Phu+T+V&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=1351-3249&rft.eissn=1469-8110&rft.volume=29&rft.issue=2&rft.spage=254&rft.epage=286&rft_id=info:doi/10.1017%2FS1351324921000474&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-3249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-3249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-3249&client=summon |