A Chinese Grammatical Error Correction Model Based On Grammatical Generalization And Parameter Sharing

Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a va...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 5; pp. 1628 - 1636
Main Authors Lin, Nankai, Lin, Xiaotian, Fu, Yingwen, Jiang, Shengyi, Wang, Lianxi
Format Journal Article
LanguageEnglish
Published Oxford University Press 22.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a vast quantity of annotated corpora for training and parameter tuning. However, there are currently few open-source annotated corpora for the CGEC task; the existing researches mainly concentrate on using data augmentation technology to alleviate the data-hungry problem. In this paper, rather than expanding training data, we propose a competitive CGEC model from a new insight for reducing model parameters. The model contains three main components: a sequence learning module, a grammatical generalization module and a parameter sharing module. Experimental results on two Chinese benchmarks demonstrate that the proposed model could achieve competitive performance over several baselines. Even if the parameter number of our model is reduced by 1/3, it could reach a comparable $F_{0.5}$ value of 30.75%. Furthermore, we utilize English datasets to evaluate the generalization and scalability of the proposed model. This could provide a new feasible research direction for CGEC research.
AbstractList Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a vast quantity of annotated corpora for training and parameter tuning. However, there are currently few open-source annotated corpora for the CGEC task; the existing researches mainly concentrate on using data augmentation technology to alleviate the data-hungry problem. In this paper, rather than expanding training data, we propose a competitive CGEC model from a new insight for reducing model parameters. The model contains three main components: a sequence learning module, a grammatical generalization module and a parameter sharing module. Experimental results on two Chinese benchmarks demonstrate that the proposed model could achieve competitive performance over several baselines. Even if the parameter number of our model is reduced by 1/3, it could reach a comparable $F_{0.5}$ value of 30.75%. Furthermore, we utilize English datasets to evaluate the generalization and scalability of the proposed model. This could provide a new feasible research direction for CGEC research.
Author Jiang, Shengyi
Fu, Yingwen
Lin, Xiaotian
Wang, Lianxi
Lin, Nankai
Author_xml – sequence: 1
  givenname: Nankai
  surname: Lin
  fullname: Lin, Nankai
– sequence: 2
  givenname: Xiaotian
  surname: Lin
  fullname: Lin, Xiaotian
– sequence: 3
  givenname: Yingwen
  surname: Fu
  fullname: Fu, Yingwen
– sequence: 4
  givenname: Shengyi
  surname: Jiang
  fullname: Jiang, Shengyi
  email: jiangshengyi@163.com
– sequence: 5
  givenname: Lianxi
  surname: Wang
  fullname: Wang, Lianxi
  email: wanglianxi@gdufs.edu.cn
BookMark eNqFkMFLwzAUh4MouE2vnnP10O0ladr1OMucwmSCei6vSeoy2mQkFdS_3rntoiCeHvze9z0evyE5dd4ZQq4YjBkUYqJ8t3HtpH5HDdP8hAxYmkHCIctPyQCAQZJmHM7JMMYNAHAosgFpZrRcW2eioYuAXYe9VdjSeQg-0NKHYFRvvaMPXpuW3mA0mq7cD3ZhnAnY2k_ckzOn6SPu9qY3gT6tMVj3ekHOGmyjuTzOEXm5nT-Xd8lytbgvZ8tE8Vz0SS0xk4VSQqaaIUxlbTjXqeSQAlNCSckz4EWd6wYQNS9QYK01E4XYhaDEiKSHuyr4GINpKmX7_V99QNtWDKrvrqpDV9Wxq502_qVtg-0wfPwtXB8E_7b9j_0C59yA3A
CitedBy_id crossref_primary_10_1007_s10579_025_09814_7
Cites_doi 10.1007/978-3-319-99495-6_29
10.1016/j.ipm.2022.102957
10.18653/v1/2020.emnlp-main.463
10.18653/v1/2020.acl-main.391
10.1007/978-3-319-99501-4_36
10.1007/978-3-030-32381-3_52
10.1016/j.ipm.2022.102891
10.1007/978-3-319-99501-4_10
10.18653/v1/2020.bea-1.16
10.1007/978-3-642-04898-2_327
10.18653/v1/2020.emnlp-main.228
10.18653/v1/2021.findings-acl.216
10.1016/j.ipm.2022.103041
10.18653/v1/D19-1435
10.18653/v1/2021.findings-acl.399
10.1016/j.csl.2022.101435
10.18653/v1/2020.coling-main.199
ContentType Journal Article
Copyright The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
Copyright_xml – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxad087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 1636
ExternalDocumentID 10_1093_comjnl_bxad087
10.1093/comjnl/bxad087
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-b5a659cc354d1a085be22d4520401c3c5526029b7df0aad29a3abdd13939b70c3
ISSN 0010-4620
IngestDate Thu Apr 24 23:12:03 EDT 2025
Tue Jul 01 02:55:10 EDT 2025
Mon Jun 30 08:34:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Parameter Sharing
Chinese Grammatical Error Correction
Grammatical Generalization
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-b5a659cc354d1a085be22d4520401c3c5526029b7df0aad29a3abdd13939b70c3
PageCount 9
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxad087
crossref_primary_10_1093_comjnl_bxad087
oup_primary_10_1093_comjnl_bxad087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-22
PublicationDateYYYYMMDD 2024-06-22
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-22
  day: 22
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mita (2024062312365152400_ref11) 2021
Joyce (2024062312365152400_ref30) 2011
Sun (2024062312365152400_ref27) 2022; 42
Takase (2024062312365152400_ref28) 2021
Hosseini (2024062312365152400_ref1) 2022; 59
Duan (2024062312365152400_ref21) 2019
Zhao (2024062312365152400_ref5) 2020
Tang (2024062312365152400_ref6) 2021
Kwon (2024062312365152400_ref26) 2022; 77
Awasthi (2024062312365152400_ref7) 2019
Zhao (2024062312365152400_ref25) 2019
Wang (2024062312365152400_ref31) 2020
Mizumoto (2024062312365152400_ref32) 2011
Wang (2024062312365152400_ref10) 2021
Xu (2024062312365152400_ref14) 2002; 29
Ma (2024062312365152400_ref15) 2003
Zhang (2024062312365152400_ref16) 2006; 20
Li (2024062312365152400_ref9) 2022; 59
Yuan (2024062312365152400_ref18) 2016
Fu (2024062312365152400_ref23) 2018
Wang (2024062312365152400_ref3) 2020; 34
Dahlmeier (2024062312365152400_ref33) 2013
Liu (2024062312365152400_ref29) 2020
Yannakoudakis (2024062312365152400_ref35) 2011
Chollampatt (2024062312365152400_ref17) 2018
Vaswani (2024062312365152400_ref12) 2017
Omelianchuk (2024062312365152400_ref8) 2020
Liang (2024062312365152400_ref22) 2020
Hinson (2024062312365152400_ref24) 2020
Zhou (2024062312365152400_ref19) 2018
Liang (2024062312365152400_ref13) 2021
Mai (2024062312365152400_ref2) 2022; 59
Tajiri (2024062312365152400_ref34) 2012
Wang (2024062312365152400_ref4) 2020; 15
Ren (2024062312365152400_ref20) 2018
Wang (2024062312365152400_ref37) 2020
Kaneko (2024062312365152400_ref36) 2020
References_xml – start-page: 1226
  volume-title: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020
  year: 2020
  ident: 2024062312365152400_ref5
  article-title: Maskgec: Improving neural grammatical error correction via dynamic masking
– start-page: 10890
  volume-title: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021
  year: 2021
  ident: 2024062312365152400_ref13
  article-title: R-drop: Regularized dropout for neural networks
– year: 2021
  ident: 2024062312365152400_ref28
  article-title: Lessons on parameter sharing across layers in transformers
  publication-title: CoRR
– start-page: 341
  volume-title: Natural Language Processing and Chinese Computing, Cham
  year: 2018
  ident: 2024062312365152400_ref23
  article-title: Youdao’s winning solution to the nlpcc-2018 task 2 challenge: A neural machine translation approach to chinese grammatical error correction
  doi: 10.1007/978-3-319-99495-6_29
– start-page: 180
  volume-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
  year: 2011
  ident: 2024062312365152400_ref35
  article-title: A new dataset and method for automatically grading ESOL texts
– volume: 59
  start-page: 102957
  year: 2022
  ident: 2024062312365152400_ref1
  article-title: A systemic functional linguistics approach to implicit entity recognition in tweets
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.102957
– volume: 15
  start-page: 99
  year: 2020
  ident: 2024062312365152400_ref4
  article-title: Chinese grammatical error correction method based on data augmentation and copy mechanism
  publication-title: CAAI Trans. Intell. Syst.
– start-page: 198
  volume-title: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
  year: 2012
  ident: 2024062312365152400_ref34
  article-title: Tense and aspect error correction for ESL learners using global context
– start-page: jun
  volume-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA
  year: 2019
  ident: 2024062312365152400_ref25
  article-title: Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data
– start-page: 5747
  volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
  year: 2020
  ident: 2024062312365152400_ref29
  article-title: Understanding the difficulty of training transformers
  doi: 10.18653/v1/2020.emnlp-main.463
– start-page: abs/2011.02093
  year: 2020
  ident: 2024062312365152400_ref31
  article-title: Chinese grammatical correction using bert-based pre-trained model
  publication-title: CoRR
– volume: 42
  start-page: 860
  year: 2022
  ident: 2024062312365152400_ref27
  article-title: Chinese grammatical error correction model based on bidirectional and auto-regressive transformers noiser
  publication-title: J. Comput. Appl.
– start-page: 4248
  volume-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
  year: 2020
  ident: 2024062312365152400_ref36
  article-title: Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction
  doi: 10.18653/v1/2020.acl-main.391
– start-page: 401
  volume-title: Natural Language Processing and Chinese Computing, Cham
  year: 2018
  ident: 2024062312365152400_ref20
  article-title: A sequence to sequence learning for chinese grammatical error correction
  doi: 10.1007/978-3-319-99501-4_36
– start-page: 5755
  volume-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018
  year: 2018
  ident: 2024062312365152400_ref17
  article-title: A multilayer convolutional encoder-decoder neural network for grammatical error correction
– start-page: 380
  volume-title: NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA
  year: 2016
  ident: 2024062312365152400_ref18
  article-title: Grammatical error correction using neural machine translation
– start-page: 651
  volume-title: Chinese Computational Linguistics, Cham
  year: 2019
  ident: 2024062312365152400_ref21
  article-title: Pinyin as a feature of neural machine translation for chinese speech recognition error correction
  doi: 10.1007/978-3-030-32381-3_52
– volume: 59
  start-page: 102891
  year: 2022
  ident: 2024062312365152400_ref9
  article-title: Incorporating rich syntax information in grammatical error correction
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.102891
– start-page: 117
  volume-title: Natural Language Processing and Chinese Computing, Cham, aug
  year: 2018
  ident: 2024062312365152400_ref19
  article-title: Chinese grammatical error correction using statistical and neural models
  doi: 10.1007/978-3-319-99501-4_10
– start-page: 22
  volume-title: Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications
  year: 2013
  ident: 2024062312365152400_ref33
  article-title: Building a large annotated corpus of learner English: The NUS corpus of learner English
– start-page: 163
  volume-title: Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, BEA@ACL 2020, Online
  year: 2020
  ident: 2024062312365152400_ref8
  article-title: Gector - grammatical error correction: Tag, not rewrite
  doi: 10.18653/v1/2020.bea-1.16
– volume: 29
  start-page: 149
  year: 2002
  ident: 2024062312365152400_ref14
  article-title: The design and application of a dynamic program algorithm in automatic text collating
  publication-title: Comput. Sci.
– start-page: 1
  volume-title: 20th International Conference on Computer Processing of Oriental Languages, Shenyang, China
  year: 2003
  ident: 2024062312365152400_ref15
  article-title: A method of automatic detecting errors based on n-gram and dependency relationship analysis
– start-page: 720
  volume-title: International encyclopedia of statistical science
  year: 2011
  ident: 2024062312365152400_ref30
  article-title: Kullback-leibler divergence
  doi: 10.1007/978-3-642-04898-2_327
– start-page: 2858
  volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
  year: 2020
  ident: 2024062312365152400_ref37
  article-title: Improving grammatical error correction models with purpose-built adversarial examples
  doi: 10.18653/v1/2020.emnlp-main.228
– volume: 20
  start-page: 55
  issue: 1–7
  year: 2006
  ident: 2024062312365152400_ref16
  article-title: A hybrid model of combining rule-based and statistics-based approaches for automatic detecting errors in chinese text
  publication-title: J. Chin. Inf. Process.
– start-page: 813
  volume-title: Proceedings of the 20th Chinese National Conference on Computational Linguistics
  year: 2021
  ident: 2024062312365152400_ref6
  article-title: Chinese grammatical error correction enhanced by data augmentation from word and character levels
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017
  year: 2017
  ident: 2024062312365152400_ref12
  article-title: Attention is all you need
– start-page: 244
  volume-title: Natural Language Processing and Chinese Computing: 9th CCF International Conference, NLPCC 2020, Zhengzhou, China, October 14–18, 2020, Proceedings, Part II
  year: 2020
  ident: 2024062312365152400_ref22
  article-title: Weaken grammatical error influence in chinese grammatical error correction
– start-page: 2437
  volume-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event
  year: 2021
  ident: 2024062312365152400_ref10
  article-title: Dynamic connected networks for chinese spelling check
  doi: 10.18653/v1/2021.findings-acl.216
– volume: 59
  start-page: 103041
  year: 2022
  ident: 2024062312365152400_ref2
  article-title: Pronounce differently, mean differently: a multi-tagging-scheme learning method for chinese ner integrated with lexicon and phonetic features
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.103041
– start-page: 147
  volume-title: Fifth International Joint Conference on Natural Language Processing, IJCNLP 2011, Chiang Mai, Thailand, November 8–13, 2011
  year: 2011
  ident: 2024062312365152400_ref32
  article-title: Mining revision log of language learning SNS for automated japanese error correction of second language learners
– start-page: 4259
  volume-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
  year: 2019
  ident: 2024062312365152400_ref7
  article-title: Parallel iterative edit models for local sequence transduction
  doi: 10.18653/v1/D19-1435
– start-page: 4554
  volume-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event
  year: 2021
  ident: 2024062312365152400_ref11
  article-title: Do grammatical error correction models realize grammatical generalization?
  doi: 10.18653/v1/2021.findings-acl.399
– volume: 34
  start-page: 106
  year: 2020
  ident: 2024062312365152400_ref3
  article-title: Chinese grammatical error correction method based on transformer enhanced architecture
  publication-title: J. Chin. Inf. Process.
– volume: 77
  start-page: 101435
  year: 2022
  ident: 2024062312365152400_ref26
  article-title: Self-feeding training method for semi-supervised grammatical error correction
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2022.101435
– start-page: 2191
  volume-title: Proceedings of the 28th International Conference on Computational Linguistics
  year: 2020
  ident: 2024062312365152400_ref24
  article-title: Heterogeneous recycle generation for Chinese grammatical error correction
  doi: 10.18653/v1/2020.coling-main.199
SSID ssj0002096
Score 2.3705378
Snippet Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1628
Title A Chinese Grammatical Error Correction Model Based On Grammatical Generalization And Parameter Sharing
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFN6K8tEJIHKKl9tq7jo_hUVUVpQdaKbdoXwVDcJDlCNpf0J_d2YeddSmicLHs1WbkZL7MzuzOfIPQy7TgyVRpRgw1GQFQKCLSoiBJpnipywSiIlsofPCR7x3n-3M2H43Oo6yldStfq7Mr60r-R6swBnq1VbL_oNleKAzAPegXrqBhuF5LxzPX_tpY9uhGfHfkq5YmuGlWDfzRG2fMQLu239ly8gbWKz05rAdzA-t0KMa06Y3gU9p8LcudaMmcu5WtIzMITSAm8fvZfB5PRQC2-puoLg3OK7FqIxTurp3dB8k_N3Vo-1W3cf3F1J9Pq3g3guY2a4rGG5T2cD3n1J-1GG9Uc54QSxMfW93wVMXn2s6EpjxUi5vw6AlSfjP1ngYLlPe1XsKN_CV0EtbuAav2pdWuz0H0p-_ZwktYhM_fQFsUAg46RluzdwcfPvWrOk1cr7f--_UEoNmOl7ATJAwcHFs0GfkrR3fQrRBo4JlHzV00MvU9dLvTHw42_T46meEAIhwBAzsQ4Q2IsAMRdiDCh_Vg7hBEGECEexDhAKIH6Hj3_dHbPRKabxAFHm1LJBOclUplLNepAMdcGkp1zihY_VRlijGIhGkpC32SCKFpKTIhtYaAIoPBRGUP0bhe1eYRwmIKPqC2BMjFNFdlIWQueamKopwqzozeRqT7xRYqMNPbBinLxdU62kav-vk_PCfLH2e-AAX8ZdLja4t7gm5uMP8UjdtmbZ6BT9rK5wEuFzPSkwk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Chinese+Grammatical+Error+Correction+Model+Based+On+Grammatical+Generalization+And+Parameter+Sharing&rft.jtitle=Computer+journal&rft.au=Lin%2C+Nankai&rft.au=Lin%2C+Xiaotian&rft.au=Fu%2C+Yingwen&rft.au=Jiang%2C+Shengyi&rft.date=2024-06-22&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1628&rft.epage=1636&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon