A Chinese Grammatical Error Correction Model Based On Grammatical Generalization And Parameter Sharing
Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a va...
Saved in:
Published in | Computer journal Vol. 67; no. 5; pp. 1628 - 1636 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
22.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a vast quantity of annotated corpora for training and parameter tuning. However, there are currently few open-source annotated corpora for the CGEC task; the existing researches mainly concentrate on using data augmentation technology to alleviate the data-hungry problem. In this paper, rather than expanding training data, we propose a competitive CGEC model from a new insight for reducing model parameters. The model contains three main components: a sequence learning module, a grammatical generalization module and a parameter sharing module. Experimental results on two Chinese benchmarks demonstrate that the proposed model could achieve competitive performance over several baselines. Even if the parameter number of our model is reduced by 1/3, it could reach a comparable $F_{0.5}$ value of 30.75%. Furthermore, we utilize English datasets to evaluate the generalization and scalability of the proposed model. This could provide a new feasible research direction for CGEC research. |
---|---|
AbstractList | Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of millions or even hundreds of millions of parameters since they model the target task as a sequence-to-sequence problem. This may require a vast quantity of annotated corpora for training and parameter tuning. However, there are currently few open-source annotated corpora for the CGEC task; the existing researches mainly concentrate on using data augmentation technology to alleviate the data-hungry problem. In this paper, rather than expanding training data, we propose a competitive CGEC model from a new insight for reducing model parameters. The model contains three main components: a sequence learning module, a grammatical generalization module and a parameter sharing module. Experimental results on two Chinese benchmarks demonstrate that the proposed model could achieve competitive performance over several baselines. Even if the parameter number of our model is reduced by 1/3, it could reach a comparable $F_{0.5}$ value of 30.75%. Furthermore, we utilize English datasets to evaluate the generalization and scalability of the proposed model. This could provide a new feasible research direction for CGEC research. |
Author | Jiang, Shengyi Fu, Yingwen Lin, Xiaotian Wang, Lianxi Lin, Nankai |
Author_xml | – sequence: 1 givenname: Nankai surname: Lin fullname: Lin, Nankai – sequence: 2 givenname: Xiaotian surname: Lin fullname: Lin, Xiaotian – sequence: 3 givenname: Yingwen surname: Fu fullname: Fu, Yingwen – sequence: 4 givenname: Shengyi surname: Jiang fullname: Jiang, Shengyi email: jiangshengyi@163.com – sequence: 5 givenname: Lianxi surname: Wang fullname: Wang, Lianxi email: wanglianxi@gdufs.edu.cn |
BookMark | eNqFkMFLwzAUh4MouE2vnnP10O0ladr1OMucwmSCei6vSeoy2mQkFdS_3rntoiCeHvze9z0evyE5dd4ZQq4YjBkUYqJ8t3HtpH5HDdP8hAxYmkHCIctPyQCAQZJmHM7JMMYNAHAosgFpZrRcW2eioYuAXYe9VdjSeQg-0NKHYFRvvaMPXpuW3mA0mq7cD3ZhnAnY2k_ckzOn6SPu9qY3gT6tMVj3ekHOGmyjuTzOEXm5nT-Xd8lytbgvZ8tE8Vz0SS0xk4VSQqaaIUxlbTjXqeSQAlNCSckz4EWd6wYQNS9QYK01E4XYhaDEiKSHuyr4GINpKmX7_V99QNtWDKrvrqpDV9Wxq502_qVtg-0wfPwtXB8E_7b9j_0C59yA3A |
CitedBy_id | crossref_primary_10_1007_s10579_025_09814_7 |
Cites_doi | 10.1007/978-3-319-99495-6_29 10.1016/j.ipm.2022.102957 10.18653/v1/2020.emnlp-main.463 10.18653/v1/2020.acl-main.391 10.1007/978-3-319-99501-4_36 10.1007/978-3-030-32381-3_52 10.1016/j.ipm.2022.102891 10.1007/978-3-319-99501-4_10 10.18653/v1/2020.bea-1.16 10.1007/978-3-642-04898-2_327 10.18653/v1/2020.emnlp-main.228 10.18653/v1/2021.findings-acl.216 10.1016/j.ipm.2022.103041 10.18653/v1/D19-1435 10.18653/v1/2021.findings-acl.399 10.1016/j.csl.2022.101435 10.18653/v1/2020.coling-main.199 |
ContentType | Journal Article |
Copyright | The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
Copyright_xml | – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxad087 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1636 |
ExternalDocumentID | 10_1093_comjnl_bxad087 10.1093/comjnl/bxad087 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-b5a659cc354d1a085be22d4520401c3c5526029b7df0aad29a3abdd13939b70c3 |
ISSN | 0010-4620 |
IngestDate | Thu Apr 24 23:12:03 EDT 2025 Tue Jul 01 02:55:10 EDT 2025 Mon Jun 30 08:34:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Parameter Sharing Chinese Grammatical Error Correction Grammatical Generalization |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-b5a659cc354d1a085be22d4520401c3c5526029b7df0aad29a3abdd13939b70c3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxad087 crossref_primary_10_1093_comjnl_bxad087 oup_primary_10_1093_comjnl_bxad087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-22 |
PublicationDateYYYYMMDD | 2024-06-22 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Mita (2024062312365152400_ref11) 2021 Joyce (2024062312365152400_ref30) 2011 Sun (2024062312365152400_ref27) 2022; 42 Takase (2024062312365152400_ref28) 2021 Hosseini (2024062312365152400_ref1) 2022; 59 Duan (2024062312365152400_ref21) 2019 Zhao (2024062312365152400_ref5) 2020 Tang (2024062312365152400_ref6) 2021 Kwon (2024062312365152400_ref26) 2022; 77 Awasthi (2024062312365152400_ref7) 2019 Zhao (2024062312365152400_ref25) 2019 Wang (2024062312365152400_ref31) 2020 Mizumoto (2024062312365152400_ref32) 2011 Wang (2024062312365152400_ref10) 2021 Xu (2024062312365152400_ref14) 2002; 29 Ma (2024062312365152400_ref15) 2003 Zhang (2024062312365152400_ref16) 2006; 20 Li (2024062312365152400_ref9) 2022; 59 Yuan (2024062312365152400_ref18) 2016 Fu (2024062312365152400_ref23) 2018 Wang (2024062312365152400_ref3) 2020; 34 Dahlmeier (2024062312365152400_ref33) 2013 Liu (2024062312365152400_ref29) 2020 Yannakoudakis (2024062312365152400_ref35) 2011 Chollampatt (2024062312365152400_ref17) 2018 Vaswani (2024062312365152400_ref12) 2017 Omelianchuk (2024062312365152400_ref8) 2020 Liang (2024062312365152400_ref22) 2020 Hinson (2024062312365152400_ref24) 2020 Zhou (2024062312365152400_ref19) 2018 Liang (2024062312365152400_ref13) 2021 Mai (2024062312365152400_ref2) 2022; 59 Tajiri (2024062312365152400_ref34) 2012 Wang (2024062312365152400_ref4) 2020; 15 Ren (2024062312365152400_ref20) 2018 Wang (2024062312365152400_ref37) 2020 Kaneko (2024062312365152400_ref36) 2020 |
References_xml | – start-page: 1226 volume-title: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020 year: 2020 ident: 2024062312365152400_ref5 article-title: Maskgec: Improving neural grammatical error correction via dynamic masking – start-page: 10890 volume-title: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021 year: 2021 ident: 2024062312365152400_ref13 article-title: R-drop: Regularized dropout for neural networks – year: 2021 ident: 2024062312365152400_ref28 article-title: Lessons on parameter sharing across layers in transformers publication-title: CoRR – start-page: 341 volume-title: Natural Language Processing and Chinese Computing, Cham year: 2018 ident: 2024062312365152400_ref23 article-title: Youdao’s winning solution to the nlpcc-2018 task 2 challenge: A neural machine translation approach to chinese grammatical error correction doi: 10.1007/978-3-319-99495-6_29 – start-page: 180 volume-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies year: 2011 ident: 2024062312365152400_ref35 article-title: A new dataset and method for automatically grading ESOL texts – volume: 59 start-page: 102957 year: 2022 ident: 2024062312365152400_ref1 article-title: A systemic functional linguistics approach to implicit entity recognition in tweets publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.102957 – volume: 15 start-page: 99 year: 2020 ident: 2024062312365152400_ref4 article-title: Chinese grammatical error correction method based on data augmentation and copy mechanism publication-title: CAAI Trans. Intell. Syst. – start-page: 198 volume-title: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) year: 2012 ident: 2024062312365152400_ref34 article-title: Tense and aspect error correction for ESL learners using global context – start-page: jun volume-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA year: 2019 ident: 2024062312365152400_ref25 article-title: Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data – start-page: 5747 volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 year: 2020 ident: 2024062312365152400_ref29 article-title: Understanding the difficulty of training transformers doi: 10.18653/v1/2020.emnlp-main.463 – start-page: abs/2011.02093 year: 2020 ident: 2024062312365152400_ref31 article-title: Chinese grammatical correction using bert-based pre-trained model publication-title: CoRR – volume: 42 start-page: 860 year: 2022 ident: 2024062312365152400_ref27 article-title: Chinese grammatical error correction model based on bidirectional and auto-regressive transformers noiser publication-title: J. Comput. Appl. – start-page: 4248 volume-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics year: 2020 ident: 2024062312365152400_ref36 article-title: Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction doi: 10.18653/v1/2020.acl-main.391 – start-page: 401 volume-title: Natural Language Processing and Chinese Computing, Cham year: 2018 ident: 2024062312365152400_ref20 article-title: A sequence to sequence learning for chinese grammatical error correction doi: 10.1007/978-3-319-99501-4_36 – start-page: 5755 volume-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018 year: 2018 ident: 2024062312365152400_ref17 article-title: A multilayer convolutional encoder-decoder neural network for grammatical error correction – start-page: 380 volume-title: NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA year: 2016 ident: 2024062312365152400_ref18 article-title: Grammatical error correction using neural machine translation – start-page: 651 volume-title: Chinese Computational Linguistics, Cham year: 2019 ident: 2024062312365152400_ref21 article-title: Pinyin as a feature of neural machine translation for chinese speech recognition error correction doi: 10.1007/978-3-030-32381-3_52 – volume: 59 start-page: 102891 year: 2022 ident: 2024062312365152400_ref9 article-title: Incorporating rich syntax information in grammatical error correction publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.102891 – start-page: 117 volume-title: Natural Language Processing and Chinese Computing, Cham, aug year: 2018 ident: 2024062312365152400_ref19 article-title: Chinese grammatical error correction using statistical and neural models doi: 10.1007/978-3-319-99501-4_10 – start-page: 22 volume-title: Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications year: 2013 ident: 2024062312365152400_ref33 article-title: Building a large annotated corpus of learner English: The NUS corpus of learner English – start-page: 163 volume-title: Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, BEA@ACL 2020, Online year: 2020 ident: 2024062312365152400_ref8 article-title: Gector - grammatical error correction: Tag, not rewrite doi: 10.18653/v1/2020.bea-1.16 – volume: 29 start-page: 149 year: 2002 ident: 2024062312365152400_ref14 article-title: The design and application of a dynamic program algorithm in automatic text collating publication-title: Comput. Sci. – start-page: 1 volume-title: 20th International Conference on Computer Processing of Oriental Languages, Shenyang, China year: 2003 ident: 2024062312365152400_ref15 article-title: A method of automatic detecting errors based on n-gram and dependency relationship analysis – start-page: 720 volume-title: International encyclopedia of statistical science year: 2011 ident: 2024062312365152400_ref30 article-title: Kullback-leibler divergence doi: 10.1007/978-3-642-04898-2_327 – start-page: 2858 volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) year: 2020 ident: 2024062312365152400_ref37 article-title: Improving grammatical error correction models with purpose-built adversarial examples doi: 10.18653/v1/2020.emnlp-main.228 – volume: 20 start-page: 55 issue: 1–7 year: 2006 ident: 2024062312365152400_ref16 article-title: A hybrid model of combining rule-based and statistics-based approaches for automatic detecting errors in chinese text publication-title: J. Chin. Inf. Process. – start-page: 813 volume-title: Proceedings of the 20th Chinese National Conference on Computational Linguistics year: 2021 ident: 2024062312365152400_ref6 article-title: Chinese grammatical error correction enhanced by data augmentation from word and character levels – start-page: 5998 volume-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 year: 2017 ident: 2024062312365152400_ref12 article-title: Attention is all you need – start-page: 244 volume-title: Natural Language Processing and Chinese Computing: 9th CCF International Conference, NLPCC 2020, Zhengzhou, China, October 14–18, 2020, Proceedings, Part II year: 2020 ident: 2024062312365152400_ref22 article-title: Weaken grammatical error influence in chinese grammatical error correction – start-page: 2437 volume-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event year: 2021 ident: 2024062312365152400_ref10 article-title: Dynamic connected networks for chinese spelling check doi: 10.18653/v1/2021.findings-acl.216 – volume: 59 start-page: 103041 year: 2022 ident: 2024062312365152400_ref2 article-title: Pronounce differently, mean differently: a multi-tagging-scheme learning method for chinese ner integrated with lexicon and phonetic features publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.103041 – start-page: 147 volume-title: Fifth International Joint Conference on Natural Language Processing, IJCNLP 2011, Chiang Mai, Thailand, November 8–13, 2011 year: 2011 ident: 2024062312365152400_ref32 article-title: Mining revision log of language learning SNS for automated japanese error correction of second language learners – start-page: 4259 volume-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 year: 2019 ident: 2024062312365152400_ref7 article-title: Parallel iterative edit models for local sequence transduction doi: 10.18653/v1/D19-1435 – start-page: 4554 volume-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event year: 2021 ident: 2024062312365152400_ref11 article-title: Do grammatical error correction models realize grammatical generalization? doi: 10.18653/v1/2021.findings-acl.399 – volume: 34 start-page: 106 year: 2020 ident: 2024062312365152400_ref3 article-title: Chinese grammatical error correction method based on transformer enhanced architecture publication-title: J. Chin. Inf. Process. – volume: 77 start-page: 101435 year: 2022 ident: 2024062312365152400_ref26 article-title: Self-feeding training method for semi-supervised grammatical error correction publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2022.101435 – start-page: 2191 volume-title: Proceedings of the 28th International Conference on Computational Linguistics year: 2020 ident: 2024062312365152400_ref24 article-title: Heterogeneous recycle generation for Chinese grammatical error correction doi: 10.18653/v1/2020.coling-main.199 |
SSID | ssj0002096 |
Score | 2.3705378 |
Snippet | Chinese grammatical error correction (CGEC) is a significant challenge in Chinese natural language processing. Deep-learning-based models tend to have tens of... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1628 |
Title | A Chinese Grammatical Error Correction Model Based On Grammatical Generalization And Parameter Sharing |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFN6K8tEJIHKKl9tq7jo_hUVUVpQdaKbdoXwVDcJDlCNpf0J_d2YeddSmicLHs1WbkZL7MzuzOfIPQy7TgyVRpRgw1GQFQKCLSoiBJpnipywSiIlsofPCR7x3n-3M2H43Oo6yldStfq7Mr60r-R6swBnq1VbL_oNleKAzAPegXrqBhuF5LxzPX_tpY9uhGfHfkq5YmuGlWDfzRG2fMQLu239ly8gbWKz05rAdzA-t0KMa06Y3gU9p8LcudaMmcu5WtIzMITSAm8fvZfB5PRQC2-puoLg3OK7FqIxTurp3dB8k_N3Vo-1W3cf3F1J9Pq3g3guY2a4rGG5T2cD3n1J-1GG9Uc54QSxMfW93wVMXn2s6EpjxUi5vw6AlSfjP1ngYLlPe1XsKN_CV0EtbuAav2pdWuz0H0p-_ZwktYhM_fQFsUAg46RluzdwcfPvWrOk1cr7f--_UEoNmOl7ATJAwcHFs0GfkrR3fQrRBo4JlHzV00MvU9dLvTHw42_T46meEAIhwBAzsQ4Q2IsAMRdiDCh_Vg7hBEGECEexDhAKIH6Hj3_dHbPRKabxAFHm1LJBOclUplLNepAMdcGkp1zihY_VRlijGIhGkpC32SCKFpKTIhtYaAIoPBRGUP0bhe1eYRwmIKPqC2BMjFNFdlIWQueamKopwqzozeRqT7xRYqMNPbBinLxdU62kav-vk_PCfLH2e-AAX8ZdLja4t7gm5uMP8UjdtmbZ6BT9rK5wEuFzPSkwk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Chinese+Grammatical+Error+Correction+Model+Based+On+Grammatical+Generalization+And+Parameter+Sharing&rft.jtitle=Computer+journal&rft.au=Lin%2C+Nankai&rft.au=Lin%2C+Xiaotian&rft.au=Fu%2C+Yingwen&rft.au=Jiang%2C+Shengyi&rft.date=2024-06-22&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1628&rft.epage=1636&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |