API Recommendation For Mashup Creation: A Comprehensive Survey
Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficient...
Saved in:
Published in | Computer journal Vol. 67; no. 5; pp. 1920 - 1940 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
22.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficiently. The proliferation of publicly available APIs on the Internet has inspired the community to adopt various models to accomplish the recommendation task. Until present, considerable efforts have been made to recommend the optimal set of APIs, delivering fruitful results and achieving varying recommendation performance. This paper presents a timely review on the topic of API recommendations for mashup creation. Specifically, we investigate and compare not only traditional data mining approaches and recommendation techniques but also more recent approaches based on network representation learning and deep learning techniques. By analyzing the merits and pitfalls of existing approaches, we pinpoint a few promising directions to address the remaining challenges in the current research. This survey provides a timely comprehensive review of the API recommendation research and could be a useful reference for relevant researchers and practitioners. |
---|---|
AbstractList | Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficiently. The proliferation of publicly available APIs on the Internet has inspired the community to adopt various models to accomplish the recommendation task. Until present, considerable efforts have been made to recommend the optimal set of APIs, delivering fruitful results and achieving varying recommendation performance. This paper presents a timely review on the topic of API recommendations for mashup creation. Specifically, we investigate and compare not only traditional data mining approaches and recommendation techniques but also more recent approaches based on network representation learning and deep learning techniques. By analyzing the merits and pitfalls of existing approaches, we pinpoint a few promising directions to address the remaining challenges in the current research. This survey provides a timely comprehensive review of the API recommendation research and could be a useful reference for relevant researchers and practitioners. |
Author | Alharbi, Sultan Wang, Xianzhi Xu, Guandong Alhosaini, Hadeel |
Author_xml | – sequence: 1 givenname: Hadeel surname: Alhosaini fullname: Alhosaini, Hadeel email: hadeel.alhosaini@student.uts.edu.au – sequence: 2 givenname: Sultan surname: Alharbi fullname: Alharbi, Sultan – sequence: 3 givenname: Xianzhi surname: Wang fullname: Wang, Xianzhi – sequence: 4 givenname: Guandong surname: Xu fullname: Xu, Guandong |
BookMark | eNqFkM9LwzAYhoNMcJtePefqoVu-tE2sB2EUp4OJ4o9zSdIvrGNtStIN999bt50E8fTCx_t8vDwjMmhcg4RcA5sAy-KpcfW62Uz1lyoB-BkZQiJYxJmQAzJkDFiUCM4uyCiENWOMs0wMyf3sdUHfsGdrbErVVa6hc-fpswqrbUtzj4fbHZ3R3NWtxxU2odohfd_6He4vyblVm4BXpxyTz_nDR_4ULV8eF_lsGRku4y7SXICwRmYZ19YYCVL0U9ISAcFqm2YlaCGljUsGiU0TsMpipvRtqjUkJcZjkhz_Gu9C8GgLU3WHZZ1X1aYAVvw4KI4OipODHpv8wlpf1crv_wZujoDbtv91vwHdLXLg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3447882 crossref_primary_10_1109_TAI_2024_3472614 |
Cites_doi | 10.1109/CBMS58004.2023.00292 10.1109/ICWS.2014.50 10.1007/s10791-019-09361-0 10.1109/CSCWD57460.2023.10152814 10.1016/j.ins.2019.10.004 10.1109/BIBE55377.2022.00025 10.1109/TETCI.2017.2699222 10.1109/ICWS.2018.00037 10.1109/ICWS60048.2023.00025 10.1007/978-3-030-30146-0_27 10.1145/3061710 10.1007/s11227-022-04369-8 10.1016/j.eswa.2022.116574 10.1109/TSC.2021.3098756 10.1049/cit2.12135 10.1109/TSC.2017.2681666 10.1109/SCC.2017.36 10.1145/3097983.3098109 10.1109/TNSM.2021.3125028 10.1109/SCC.2017.19 10.1007/s11276-021-02543-z 10.1145/2507157.2507176 10.1145/3106426.3106492 10.1016/j.knosys.2020.106196 10.1109/ACCESS.2019.2894822 10.1007/978-3-030-67537-0_33 10.1109/ICWS.2016.65 10.1145/3219819.3219961 10.1109/MIC.2016.74 10.1016/j.asoc.2019.105830 10.1016/j.ipm.2020.102231 10.5539/mas.v12n3p175 10.1007/s00521-020-04908-5 10.1109/ACCESS.2019.2907546 10.1109/ICWS49710.2020.00050 10.1145/3372938.3372941 10.1007/978-981-15-1899-7_29 10.1109/ICWS.2019.00053 10.1016/j.eswa.2018.05.039 10.1109/CBMS58004.2023.00210 10.1109/TSE.2021.3053111 10.1007/s11280-021-00943-x 10.1109/TEM.2019.2961376 10.1109/TII.2022.3177411 10.1016/j.knosys.2023.110512 10.1109/TSC.2018.2803171 10.1109/ICMLA.2017.0-169 10.1109/SCC.2019.00040 10.1002/cpe.7069 10.1145/1871437.1871734 10.1109/ACCESS.2019.2950355 10.1016/j.eswa.2021.115698 10.1109/TSE.2022.3197063 10.1007/978-3-030-59618-7_7 10.1109/TCSS.2022.3168595 10.1109/IRI58017.2023.00037 10.1109/ACCESS.2019.2894297 10.1007/s11257-019-09231-w 10.1109/ICWS60048.2023.00074 10.1016/j.infsof.2017.05.001 10.1007/978-3-030-33702-5_4 10.1109/VLHCC.2017.8103460 10.1145/3604915.3608820 10.1109/HPCC/SmartCity/DSS.2019.00033 10.1007/978-3-642-34419-0_14 10.1007/s10791-022-09415-w 10.1109/ICWS.2017.44 10.1007/s11257-022-09342-x 10.1007/s11280-021-00894-3 10.1145/3477495.3531962 10.1109/TBDATA.2020.2975587 10.1145/1935826.1935910 10.1007/s12652-018-1079-6 10.1109/TCSS.2019.2906925 10.1145/3357384.3357965 10.1109/ITCE.2019.8646645 10.1145/3404835.3462935 10.1109/TSC.2021.3085491 10.1109/ICWS.2018.00022 10.1109/TPDS.2018.2877363 10.1007/s11227-022-05011-3 10.1109/CSCWD57460.2023.10152634 10.1109/TII.2020.3039500 10.1109/ACCESS.2019.2913947 10.1016/j.future.2021.07.004 10.1016/j.eswa.2020.113231 10.1109/TBDATA.2018.2850013 10.1109/ACCESS.2018.2890388 10.1007/s11227-021-03832-2 10.1007/s11432-021-3531-0 |
ContentType | Journal Article |
Copyright | The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
Copyright_xml | – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxad112 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1940 |
ExternalDocumentID | 10_1093_comjnl_bxad112 10.1093/comjnl/bxad112 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-b2616fc7992bfcc71766205de1e1fbf59d1b677f3d014f541fafe9ab85bb14de3 |
ISSN | 0010-4620 |
IngestDate | Tue Jul 01 02:55:11 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Mon Jun 30 08:34:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Collaborative Filtering API recommendation Network Representation Learning Deep Learning Future Directions |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-b2616fc7992bfcc71766205de1e1fbf59d1b677f3d014f541fafe9ab85bb14de3 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxad112 crossref_primary_10_1093_comjnl_bxad112 oup_primary_10_1093_comjnl_bxad112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-22 |
PublicationDateYYYYMMDD | 2024-06-22 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sharma (2024062312370099600_ref40) 2013; 2 Shi (2024062312370099600_ref89) 2019 Mohamed (2024062312370099600_ref27) 2019 Cao (2024062312370099600_ref86) 2022; 34 Tang (2024062312370099600_ref31) 2019; 7 Yin (2024062312370099600_ref4) 2021; 17 Xiong (2024062312370099600_ref63) 2018; 110 Labbaci (2024062312370099600_ref93) 2017 Lizarralde (2024062312370099600_ref92) 2020; 57 Zhang (2024062312370099600_ref58) 2019 Bai (2024062312370099600_ref69) 2019; 7 Huang (2024062312370099600_ref81) 2018 Dang (2024062312370099600_ref95) 2021; 77 Das (2024062312370099600_ref38) 2017; 160 Almarimi (2024062312370099600_ref55) 2019; 85 Liang (2024062312370099600_ref34) 2019; 7 Wang (2024062312370099600_ref19) 2017 Cao (2024062312370099600_ref64) 2019 Xu (2024062312370099600_ref5) 2021; 125 Gong (2024062312370099600_ref77) 2021; 51 Zhang (2024062312370099600_ref82) 2021 Wang (2024062312370099600_ref42) 2022; 25 Chaimalas (2024062312370099600_ref106) 2023 Xu (2024062312370099600_ref14) 2023; 26 Xie (2024062312370099600_ref57) 2022 Zhou (2024062312370099600_ref49) 2021; 48 Ye (2024062312370099600_ref9) 2019; 7 Zhang (2024062312370099600_ref71) 2018; 6 Golbandi (2024062312370099600_ref107) 2011 Zhao (2024062312370099600_ref35) 2019 Cao (2024062312370099600_ref32) 2017; 90 Zhang (2024062312370099600_ref16) 2017 Felfernig (2024062312370099600_ref28) 2013 Zheng (2024062312370099600_ref104) 2023 Jiang (2024062312370099600_ref7) 2022; 2022 Gong (2024062312370099600_ref76) 2022 Karimi (2024062312370099600_ref113) 2019 Alshangiti (2024062312370099600_ref62) 2020; 149 Jiang (2024062312370099600_ref56) 2019 Halili (2024062312370099600_ref15) 2018; 12 Simpson (2024062312370099600_ref39) 2022 Ma (2024062312370099600_ref90) 2020; 68 Cao (2024062312370099600_ref84) 2019 Botangen (2024062312370099600_ref112) 2019 Xie (2024062312370099600_ref65) 2018 Xue (2024062312370099600_ref3) 2017 Chen (2024062312370099600_ref8) 2022; 196 Golbandi (2024062312370099600_ref105) 2010 Qi (2024062312370099600_ref72) 2019; 6 He (2024062312370099600_ref100) 2023 Lin (2024062312370099600_ref54) 2018 Wang (2024062312370099600_ref99) 2023 Bai (2024062312370099600_ref94) 2017; 13 Nguyen (2024062312370099600_ref13) 2020 Saraswathi (2024062312370099600_ref70) 2017 Symeonidis (2024062312370099600_ref20) 2022; 32 Lamothe (2024062312370099600_ref2) 2020 Lei (2024062312370099600_ref36) 2020; 513 Lee (2024062312370099600_ref108) 2021 Cao (2024062312370099600_ref43) 2016 Qi (2024062312370099600_ref52) 2021; 17 Symeonidis (2024062312370099600_ref21) 2022 Thung (2024062312370099600_ref59) 2017; 1 Shang (2024062312370099600_ref24) 2019 Zhang (2024062312370099600_ref11) 2018 Wu (2024062312370099600_ref91) 2021; 15 Zhang (2024062312370099600_ref116) 2020; 14 Hao (2024062312370099600_ref47) 2017 Thorat (2024062312370099600_ref67) 2015; 110 Wang (2024062312370099600_ref74) 2021; 24 Wu (2024062312370099600_ref78) 2022; 10 Qi (2024062312370099600_ref75) 2023; 35 Li (2024062312370099600_ref44) 2017 Jiang (2024062312370099600_ref10) 2020; 2020 Li (2024062312370099600_ref96) 2022; 78 Gu (2024062312370099600_ref53) 2016 Qi (2024062312370099600_ref73) 2020; 8 Najmani (2024062312370099600_ref26) 2019 Safran (2024062312370099600_ref115) 2017; 13 Yu (2024062312370099600_ref97) 2023 Xiao (2024062312370099600_ref48) 2019 Wang (2024062312370099600_ref111) 2020; 204 Wang (2024062312370099600_ref18) 2019 Ali (2024062312370099600_ref51) 2014 Chen (2024062312370099600_ref80) 2022; 19 Mezni (2024062312370099600_ref110) 2020; 11 Kang (2024062312370099600_ref85) 2021; 18 Hu (2024062312370099600_ref33) 2019 Yao (2024062312370099600_ref46) 2018; 14 Xie (2024062312370099600_ref66) 2019 Shi (2024062312370099600_ref88) 2018; 30 Liu (2024062312370099600_ref37) 2020 Wu (2024062312370099600_ref109) 2019; 7 Tan (2024062312370099600_ref1) 2016; 20 Kang (2024062312370099600_ref83) 2020 Symeonidis (2024062312370099600_ref23) 2023 Symeonidis (2024062312370099600_ref25) 2022; 25 Yu (2024062312370099600_ref101) 2023; 79 Xie (2024062312370099600_ref61) 2019; 7 Ma (2024062312370099600_ref12) 2023; 8 Xiao (2024062312370099600_ref102) 2023 Wang (2024062312370099600_ref17) 2018 Thung (2024062312370099600_ref30) 2016 Rahman (2024062312370099600_ref41) 2017 Bianchini (2024062312370099600_ref6) 2017; 11 Symeonidis (2024062312370099600_ref22) 2023 Wang (2024062312370099600_ref98) 2023; 66 Lops (2024062312370099600_ref68) 2019; 29 Gu (2024062312370099600_ref50) 2022; 15 Xu (2024062312370099600_ref45) 2021; 27 Peng (2024062312370099600_ref29) 2022; 49 Li (2024062312370099600_ref79) 2020; 32 Wang (2024062312370099600_ref103) 2023; 269 Wang (2024062312370099600_ref114) 2013 Nguyen (2024062312370099600_ref87) 2021; 186 Li (2024062312370099600_ref60) 2014 Brown (2024062312370099600_ref117) 2017 |
References_xml | – start-page: 634 volume-title: 2023 IEEE 36th international symposium on computer-based medical systems (CBMS) year: 2023 ident: 2024062312370099600_ref23 article-title: Safe and effective recommendation of drug combinations based on matrix co-factorization doi: 10.1109/CBMS58004.2023.00292 – start-page: 289 volume-title: 2014 IEEE international conference on web services, anchorage year: 2014 ident: 2024062312370099600_ref60 article-title: A novel approach for api recommendation in mashup development doi: 10.1109/ICWS.2014.50 – start-page: 1 volume-title: 2019 international joint conference on neural networks (IJCNN) year: 2019 ident: 2024062312370099600_ref89 article-title: Ta-blstm: tag attention-based bidirectional long short-term memory for service recommendation in mashup creation – volume: 14 start-page: 1 year: 2020 ident: 2024062312370099600_ref116 article-title: Explainable recommendation: a survey and new perspectives. Foundations and trends ® publication-title: Inf. Retr. doi: 10.1007/s10791-019-09361-0 – start-page: 745 volume-title: 2023 26th international conference on computer supported cooperative work in design (CSCWD) year: 2023 ident: 2024062312370099600_ref100 article-title: Bat: mining binary-api topic for multi-service application development doi: 10.1109/CSCWD57460.2023.10152814 – start-page: 896 volume-title: 2016 31st IEEE/ACM international conference on automated software engineering (ASE) year: 2016 ident: 2024062312370099600_ref30 article-title: Api recommendation system for software development – volume: 513 start-page: 98 year: 2020 ident: 2024062312370099600_ref36 article-title: A service recommendation algorithm with the transfer learning based matrix factorization to improve cloud security publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.004 – start-page: 79 volume-title: 2022 IEEE 22nd international conference on bioinformatics and bioengineering (BIBE) year: 2022 ident: 2024062312370099600_ref21 article-title: Mortality prediction and safe drug recommendation for critically-ill patients doi: 10.1109/BIBE55377.2022.00025 – start-page: 179 volume-title: International conference on web information systems engineering year: 2019 ident: 2024062312370099600_ref48 article-title: Dinrec: deep interest network based api recommendation approach for mashup creation – volume: 35 start-page: 5444 year: 2023 ident: 2024062312370099600_ref75 article-title: A correlation graph-based approach for personalized and compatible web apis recommendation in mobile app development publication-title: IEEE Trans. Knowl. Data Eng. – volume: 1 start-page: 145 year: 2017 ident: 2024062312370099600_ref59 article-title: Webapirec: recommending web apis to software projects via personalized ranking publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2017.2699222 – start-page: 235 volume-title: 2018 IEEE international conference on web services (ICWS) year: 2018 ident: 2024062312370099600_ref54 article-title: Nl2api: a framework for bootstrapping service recommendation using natural language queries doi: 10.1109/ICWS.2018.00037 – start-page: 91 volume-title: 2023 IEEE international conference on web services (ICWS) year: 2023 ident: 2024062312370099600_ref99 article-title: Functional and structural fusion based web api recommendations in heterogeneous networks doi: 10.1109/ICWS60048.2023.00025 – start-page: 394 volume-title: International conference on collaborative computing: networking, applications and Worksharing year: 2019 ident: 2024062312370099600_ref64 article-title: Web services classification with topical attention based bi-lstm doi: 10.1007/978-3-030-30146-0_27 – volume: 11 start-page: 1 year: 2017 ident: 2024062312370099600_ref6 article-title: Wiser: a multi-dimensional framework for searching and ranking web apis publication-title: ACM Trans. Web (TWEB) doi: 10.1145/3061710 – volume: 110 start-page: 31 year: 2015 ident: 2024062312370099600_ref67 article-title: Survey on collaborative filtering, content-based filtering and hybrid recommendation system publication-title: Int. J. Comput. Appl. – volume: 78 start-page: 12621 year: 2022 ident: 2024062312370099600_ref96 article-title: Web services recommendation based on metapath-guided graph attention network publication-title: J. Supercomput. doi: 10.1007/s11227-022-04369-8 – volume: 196 start-page: 116574 year: 2022 ident: 2024062312370099600_ref8 article-title: Open apis recommendation with an ensemble-based multi-feature model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116574 – volume: 15 start-page: 3330 year: 2021 ident: 2024062312370099600_ref91 article-title: Mashup-oriented web api recommendation via multi-model fusion and multi-task learning publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3098756 – volume: 17 start-page: 1 year: 2021 ident: 2024062312370099600_ref52 article-title: Compatibility-aware web api recommendation for mashup creation via textual description mining publication-title: ACM Trans. Multimedia Comput. Commun. Appl. – start-page: 391 volume-title: Asia-Pacific services computing conference year: 2016 ident: 2024062312370099600_ref43 article-title: Using relational topic model and factorization machines to recommend web apis for mashup creation – volume: 8 start-page: 914 year: 2023 ident: 2024062312370099600_ref12 article-title: Deep learning framework for multi-round service bundle recommendation in iterative mashup development publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/cit2.12135 – volume: 13 start-page: 73 year: 2017 ident: 2024062312370099600_ref94 article-title: Dltsr: a deep learning framework for recommendations of long-tail web services publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2017.2681666 – start-page: 225 volume-title: 2017 IEEE international conference on services computing (SCC) year: 2017 ident: 2024062312370099600_ref41 article-title: Web api recommendation for mashup development using matrix factorization on integrated content and network-based service clustering doi: 10.1109/SCC.2017.36 – volume: 160 start-page: 6 year: 2017 ident: 2024062312370099600_ref38 article-title: A survey on recommendation system publication-title: Int. J. Comput. Appl. – start-page: 1315 volume-title: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining year: 2017 ident: 2024062312370099600_ref16 article-title: Leap: learning to prescribe effective and safe treatment combinations for multimorbidity doi: 10.1145/3097983.3098109 – volume: 18 start-page: 4183 year: 2021 ident: 2024062312370099600_ref85 article-title: Neural and attentional factorization machine-based web api recommendation for mashup development publication-title: IEEE Trans. Netw. Serv. Manage. doi: 10.1109/TNSM.2021.3125028 – start-page: 84 volume-title: 2017 IEEE international conference on services computing (SCC) year: 2017 ident: 2024062312370099600_ref44 article-title: Integrating tag, topic, co-occurrence, and popularity to recommend web apis for mashup creation doi: 10.1109/SCC.2017.19 – volume: 27 start-page: 3441 year: 2021 ident: 2024062312370099600_ref45 article-title: Preference discovery from wireless social media data in apis recommendation publication-title: Wirel. Netw. doi: 10.1007/s11276-021-02543-z – start-page: 237 volume-title: Proceedings of the 7th ACM conference on recommender systems year: 2013 ident: 2024062312370099600_ref114 article-title: Online multi-task collaborative filtering for on-the-fly recommender systems doi: 10.1145/2507157.2507176 – start-page: 848 volume-title: Proceedings of the international conference on web intelligence year: 2017 ident: 2024062312370099600_ref93 article-title: A deep learning approach for web service interactions doi: 10.1145/3106426.3106492 – volume: 204 start-page: 106196 year: 2020 ident: 2024062312370099600_ref111 article-title: Diversified service recommendation with high accuracy and efficiency publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106196 – volume: 7 start-page: 16155 year: 2019 ident: 2024062312370099600_ref61 article-title: Personalized service recommendation with mashup group preference in heterogeneous information network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894822 – volume: 2022 start-page: 1 year: 2022 ident: 2024062312370099600_ref7 article-title: Web service recommendation based on word embedding and node embedding publication-title: Mobile Inf. Syst. – start-page: 550 volume-title: International conference on collaborative computing: networking, applications and Worksharing year: 2021 ident: 2024062312370099600_ref82 article-title: A deep recommendation framework for completely new users in mashup creation doi: 10.1007/978-3-030-67537-0_33 – start-page: 452 volume-title: 2016 IEEE international conference on web services (ICWS) year: 2016 ident: 2024062312370099600_ref53 article-title: Service package recommendation for mashup creation via mashup textual description mining doi: 10.1109/ICWS.2016.65 – start-page: 2447 volume-title: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining year: 2018 ident: 2024062312370099600_ref17 article-title: Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation doi: 10.1145/3219819.3219961 – volume: 20 start-page: 64 year: 2016 ident: 2024062312370099600_ref1 article-title: From the service-oriented architecture to the web api economy publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2016.74 – volume: 85 start-page: 105830 year: 2019 ident: 2024062312370099600_ref55 article-title: Web service api recommendation for automated mashup creation using multi-objective evolutionary search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105830 – volume: 57 start-page: 102231 year: 2020 ident: 2024062312370099600_ref92 article-title: Discovering web services in social web service repositories using deep variational autoencoders publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102231 – volume: 12 start-page: 175 year: 2018 ident: 2024062312370099600_ref15 article-title: Web services: a comparison of soap and rest services publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v12n3p175 – start-page: 30 volume-title: CCF conference on computer supported cooperative work and social computing year: 2019 ident: 2024062312370099600_ref56 article-title: Service discovery method for agile mashup development – volume: 32 start-page: 16647 year: 2020 ident: 2024062312370099600_ref79 article-title: Network representation learning: a systematic literature review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04908-5 – start-page: 293 volume-title: 2018 33rd IEEE/ACM international conference on automated software engineering (ASE) year: 2018 ident: 2024062312370099600_ref81 article-title: Api method recommendation without worrying about the task-api knowledge gap – volume: 7 start-page: 43697 year: 2019 ident: 2024062312370099600_ref9 article-title: Web services classification based on wide & bi-lstm model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907546 – start-page: 29 volume-title: INRA@ RecSys year: 2019 ident: 2024062312370099600_ref113 article-title: On-the-fly news recommendation using sequential patterns – start-page: 330 volume-title: 2020 IEEE international conference on web services (ICWS) year: 2020 ident: 2024062312370099600_ref83 article-title: Nafm: neural and attentional factorization machine for web api recommendation doi: 10.1109/ICWS49710.2020.00050 – start-page: 1 volume-title: Proceedings of the 4th International Conference on Big Data and Internet of Things year: 2019 ident: 2024062312370099600_ref26 article-title: A comparative study on recommender systems approaches doi: 10.1145/3372938.3372941 – start-page: 406 volume-title: Big Data: 7th CCF Conference, BigData 2019 year: 2019 ident: 2024062312370099600_ref35 article-title: Web api recommendation with features ensemble and learning-to-rank doi: 10.1007/978-981-15-1899-7_29 – start-page: 265 volume-title: 2019 IEEE international conference on web services (ICWS) year: 2019 ident: 2024062312370099600_ref66 article-title: Generative adversarial network based service recommendation in heterogeneous information networks doi: 10.1109/ICWS.2019.00053 – volume: 110 start-page: 191 year: 2018 ident: 2024062312370099600_ref63 article-title: Deep hybrid collaborative filtering for web service recommendation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.039 – start-page: 163 volume-title: 2023 IEEE 36th international symposium on computer-based medical systems (CBMS) year: 2023 ident: 2024062312370099600_ref22 article-title: Accurate and safe drug recommendations based on singular value decomposition doi: 10.1109/CBMS58004.2023.00210 – volume: 48 start-page: 2157 year: 2021 ident: 2024062312370099600_ref49 article-title: Boosting api recommendation with implicit feedback publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2021.3053111 – volume: 25 start-page: 1809 year: 2022 ident: 2024062312370099600_ref42 article-title: Edge-cloud-enabled matrix factorization for diversified apis recommendation in mashup creation publication-title: World Wide Web doi: 10.1007/s11280-021-00943-x – volume: 68 start-page: 105 year: 2020 ident: 2024062312370099600_ref90 article-title: A deep neural network with multiplex interactions for cold-start service recommendation publication-title: IEEE Trans. Eng. Manage. doi: 10.1109/TEM.2019.2961376 – volume: 19 start-page: 2930 year: 2022 ident: 2024062312370099600_ref80 article-title: Keyword-driven service recommendation via deep reinforced steiner tree search publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3177411 – volume: 13 start-page: 47 year: 2017 ident: 2024062312370099600_ref115 article-title: Real-time recommendation algorithms for crowdsourcing systems publication-title: Appl. Comput. Inf. – volume: 269 start-page: 110512 year: 2023 ident: 2024062312370099600_ref103 article-title: Motif-based graph attentional neural network for web service recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110512 – volume: 14 start-page: 502 year: 2018 ident: 2024062312370099600_ref46 article-title: Mashup recommendation by regularizing matrix factorization with api co-invocations publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2018.2803171 – start-page: 119 volume-title: 2017 16th IEEE international conference on machine learning and applications (ICMLA) year: 2017 ident: 2024062312370099600_ref3 article-title: Automatic generation and recommendation for api mashups doi: 10.1109/ICMLA.2017.0-169 – start-page: 189 volume-title: 2019 IEEE international conference on services computing (SCC) year: 2019 ident: 2024062312370099600_ref84 article-title: Service recommendation based on attentional factorization machine doi: 10.1109/SCC.2019.00040 – volume: 34 start-page: e7069 year: 2022 ident: 2024062312370099600_ref86 article-title: Web api recommendation via combining graph attention representation and deep factorization machines quality prediction publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.7069 – start-page: 1805 volume-title: Proceedings of the 19th ACM international conference on information and knowledge management year: 2010 ident: 2024062312370099600_ref105 article-title: On bootstrapping recommender systems doi: 10.1145/1871437.1871734 – volume: 7 start-page: 168981 year: 2019 ident: 2024062312370099600_ref34 article-title: Exploiting user tagging for web service co-clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950355 – volume: 186 start-page: 115698 year: 2021 ident: 2024062312370099600_ref87 article-title: Attentional matrix factorization with context and co-invocation for service recommendation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115698 – volume: 49 start-page: 1876 year: 2022 ident: 2024062312370099600_ref29 article-title: Revisiting, benchmarking and exploring api recommendation: how far are we? publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2022.3197063 – start-page: 96 volume-title: Web Services–ICWS 2020: 27th International Conference, Held as Part of the Services Conference Federation, SCF 2020 year: 2020 ident: 2024062312370099600_ref37 article-title: Web api search: discover web api and its endpoint with natural language queries doi: 10.1007/978-3-030-59618-7_7 – volume: 10 start-page: 771 year: 2022 ident: 2024062312370099600_ref78 article-title: Popularity-aware and diverse web apis recommendation based on correlation graph publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3168595 – start-page: 179 volume-title: 2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI) year: 2023 ident: 2024062312370099600_ref102 article-title: Mrhn: Hypergraph convolutional network for web api recommendation doi: 10.1109/IRI58017.2023.00037 – volume: 7 start-page: 14206 year: 2019 ident: 2024062312370099600_ref31 article-title: Mining collaboration patterns between apis for mashup creation in web of things publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894297 – volume: 29 start-page: 239 year: 2019 ident: 2024062312370099600_ref68 article-title: Trends in content-based recommendation publication-title: User Model. User-Adapt. Interact. doi: 10.1007/s11257-019-09231-w – start-page: 553 volume-title: 2023 IEEE international conference on web services (ICWS) year: 2023 ident: 2024062312370099600_ref104 article-title: H-mgsr: a hierarchical motif-based graph attention neural network for service recommendation doi: 10.1109/ICWS60048.2023.00074 – volume: 26 start-page: 45 year: 2023 ident: 2024062312370099600_ref14 article-title: Web api service recommendation for mashup creation publication-title: Int. J. Comput. Sci. Eng. – volume: 90 start-page: 40 year: 2017 ident: 2024062312370099600_ref32 article-title: Domain-aware mashup service clustering based on lda topic model from multiple data sources publication-title: Information and Software Technology doi: 10.1016/j.infsof.2017.05.001 – start-page: 53 volume-title: International conference on service-oriented computing year: 2019 ident: 2024062312370099600_ref112 article-title: integrating geographical and functional relevance to implicit data for web service recommendation doi: 10.1007/978-3-030-33702-5_4 – year: 2017 ident: 2024062312370099600_ref19 article-title: Safe medicine recommendation via medical knowledge graph embedding – start-page: 129 volume-title: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC) year: 2017 ident: 2024062312370099600_ref117 article-title: How software users recommend tools to each other doi: 10.1109/VLHCC.2017.8103460 – start-page: 715 volume-title: Proceedings of the 17th ACM conference on recommender systems year: 2023 ident: 2024062312370099600_ref106 article-title: Bootstrapped personalized popularity for cold start recommender systems doi: 10.1145/3604915.3608820 – start-page: 130 volume-title: 2019 IEEE 21st international conference on high performance computing and communications; IEEE 17th international conference on Smart City; IEEE 5th international conference on data science and systems (HPCC/SmartCity/DSS) year: 2019 ident: 2024062312370099600_ref33 article-title: Mdt: a multi-description topic based clustering approach for composite-service discovery doi: 10.1109/HPCC/SmartCity/DSS.2019.00033 – volume-title: Managing Requirements Knowledge year: 2013 ident: 2024062312370099600_ref28 article-title: An Overview of Recommender Systems in Requirements Engineering doi: 10.1007/978-3-642-34419-0_14 – volume: 25 start-page: 461 year: 2022 ident: 2024062312370099600_ref25 article-title: Sequence-aware news recommendations by combining intra-with inter-session user information publication-title: Inf. Retr. J. doi: 10.1007/s10791-022-09415-w – start-page: 285 volume-title: 2017 IEEE international conference on web services (ICWS) year: 2017 ident: 2024062312370099600_ref47 article-title: Service recommendation based on targeted reconstruction of service descriptions doi: 10.1109/ICWS.2017.44 – volume: 32 start-page: 999 year: 2022 ident: 2024062312370099600_ref20 article-title: Safe, effective and explainable drug recommendation based on medical data integration publication-title: User Model. User-Adapt. Interact. doi: 10.1007/s11257-022-09342-x – start-page: 19 volume-title: IEEE/ACIS 23rd international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) year: 2022 ident: 2024062312370099600_ref57 article-title: Goal-driven context-aware service recommendation for mashup development – volume: 24 start-page: 869 year: 2021 ident: 2024062312370099600_ref74 article-title: A novel knowledge graph embedding based api recommendation method for mashup development publication-title: World Wide Web doi: 10.1007/s11280-021-00894-3 – start-page: 395 volume-title: Proceedings of the 45th international ACM SIGIR conference on Research and Development in information retrieval year: 2022 ident: 2024062312370099600_ref76 article-title: Dawar: diversity-aware web apis recommendation for mashup creation based on correlation graph doi: 10.1145/3477495.3531962 – start-page: 176 volume-title: Semantic-based collaborative filtering for enhancing recommendation year: 2014 ident: 2024062312370099600_ref51 – volume: 8 start-page: 685 year: 2020 ident: 2024062312370099600_ref73 article-title: Data-driven web apis recommendation for building web applications publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2020.2975587 – volume: 2 start-page: 8 year: 2013 ident: 2024062312370099600_ref40 article-title: A survey of recommender systems: approaches and limitations publication-title: Int. J. Innov. Eng. Technol. – start-page: 509 volume-title: 2018 IEEE Intl Conf on parallel & distributed processing with applications, Ubiquitous Computing & Communications, big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom) year: 2018 ident: 2024062312370099600_ref11 article-title: Web service recommendation via combining doc2vec-based functionality clustering and deepfm-based score prediction – start-page: 595 volume-title: Proceedings of the fourth ACM international conference on web search and data mining year: 2011 ident: 2024062312370099600_ref107 article-title: Adaptive bootstrapping of recommender systems using decision trees doi: 10.1145/1935826.1935910 – volume: 11 start-page: 119 year: 2020 ident: 2024062312370099600_ref110 article-title: An evolutionary clustering approach based on temporal aspects for context-aware service recommendation publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-1079-6 – volume: 6 start-page: 1063 year: 2019 ident: 2024062312370099600_ref72 article-title: Finding all you need: web apis recommendation in web of things through keywords search publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2019.2906925 – start-page: 1623 volume-title: Proceedings of the 28th ACM international conference on information and knowledge management year: 2019 ident: 2024062312370099600_ref18 article-title: Order-free medicine combination prediction with graph convolutional reinforcement learning doi: 10.1145/3357384.3357965 – start-page: 912 volume-title: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE) year: 2020 ident: 2024062312370099600_ref2 article-title: When apis are intentionally bypassed: an exploratory study of api workarounds – year: 2022 ident: 2024062312370099600_ref39 article-title: 20 impressive api economy statistics. Nordic APIs – start-page: 149 volume-title: 2019 international conference on innovative trends in computer engineering (ITCE) year: 2019 ident: 2024062312370099600_ref27 article-title: Recommender systems challenges and solutions survey doi: 10.1109/ITCE.2019.8646645 – start-page: 317 volume-title: Proceedings of the 44th international ACM SIGIR conference on Research and Development in information retrieval year: 2021 ident: 2024062312370099600_ref108 article-title: Bootstrapping user and item representations for one-class collaborative filtering doi: 10.1145/3404835.3462935 – volume: 15 start-page: 3170 year: 2022 ident: 2024062312370099600_ref50 article-title: Csbr: a compositional semantics-based service bundle recommendation approach for mashup development publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3085491 – start-page: 115 volume-title: 2018 IEEE international conference on web services (ICWS) year: 2018 ident: 2024062312370099600_ref65 article-title: Factorization machine based service recommendation on heterogeneous information networks doi: 10.1109/ICWS.2018.00022 – volume: 51 start-page: 2337 year: 2021 ident: 2024062312370099600_ref77 article-title: Keywords-driven web apis group recommendation for automatic app service creation process publication-title: Softw.: Pract. Exp. – volume: 30 start-page: 1077 year: 2018 ident: 2024062312370099600_ref88 article-title: Functional and contextual attention-based lstm for service recommendation in mashup creation publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2018.2877363 – start-page: 1 volume-title: Proceedings of the Australasian computer science week multiconference year: 2020 ident: 2024062312370099600_ref13 article-title: Attentional matrix factorization with document-context awareness and implicit api relationship for service recommendation – volume: 79 start-page: 8993 year: 2023 ident: 2024062312370099600_ref101 article-title: Web service recommendation for mashup creation based on graph network publication-title: J. Supercomput. doi: 10.1007/s11227-022-05011-3 – start-page: 261 volume-title: 2023 26th international conference on computer supported cooperative work in design (CSCWD) year: 2023 ident: 2024062312370099600_ref97 article-title: Akgin: an api knowledge graph and intent network based mashup-oriented api recommendation method doi: 10.1109/CSCWD57460.2023.10152634 – volume: 17 start-page: 6153 year: 2021 ident: 2024062312370099600_ref4 article-title: Personalized apis recommendation with cognitive knowledge mining for industrial systems publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2020.3039500 – volume: 7 start-page: 60242 year: 2019 ident: 2024062312370099600_ref109 article-title: A hybrid approach to service recommendation based on network representation learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913947 – volume: 125 start-page: 471 year: 2021 ident: 2024062312370099600_ref5 article-title: Collaborative apis recommendation for artificial intelligence of things with information fusion publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.07.004 – start-page: 1126 volume-title: Proceedings of the AAAI conference on artificial intelligence, Honolulu year: 2019 ident: 2024062312370099600_ref24 article-title: Gamenet: graph augmented memory networks for recommending medication combination – volume: 149 start-page: 113231 year: 2020 ident: 2024062312370099600_ref62 article-title: A bayesian learning model for design-phase service mashup popularity prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113231 – volume-title: Proceedings of the International Conference on Intelligent Computing Systems (ICICS 2017–Dec 15th–16th 2017) organized by Sona College of Technology year: 2017 ident: 2024062312370099600_ref70 article-title: Survey: a hybrid approach to solve cold-start problem in online recommendation system – volume: 6 start-page: 3 year: 2018 ident: 2024062312370099600_ref71 article-title: Network representation learning: a survey publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2018.2850013 – volume: 7 start-page: 9324 year: 2019 ident: 2024062312370099600_ref69 article-title: Scientific paper recommendation: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890388 – start-page: 281 volume-title: International symposium on intelligence computation and applications year: 2019 ident: 2024062312370099600_ref58 article-title: Rasop: an api recommendation method based on word embedding technology – volume: 77 start-page: 14280 year: 2021 ident: 2024062312370099600_ref95 article-title: Deep knowledge-aware framework for web service recommendation publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-03832-2 – volume: 2020 start-page: 1 year: 2020 ident: 2024062312370099600_ref10 article-title: Hyoasam: a hybrid open api selection approach for mashup development publication-title: Math. Probl. Eng. – volume: 66 start-page: 1 year: 2023 ident: 2024062312370099600_ref98 article-title: Deep learning-based open api recommendation for mashup development publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-021-3531-0 |
SSID | ssj0002096 |
Score | 2.3705294 |
Snippet | Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1920 |
Title | API Recommendation For Mashup Creation: A Comprehensive Survey |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLZYedkL47JpHRdZExIPVSBxnaTZA1LFRWyi0yRA9K2yY5sW9aaQoIlfz3HspAkDAXuJEtc5UX0-nYt9LgjtgtLjUgTEAV-5Aw6Kih3m89CRYL2yUDIa5ln8vd_B2RX91ff7i5CgPLsk5fvxw7N5Jf_DVRgDvuos2XdwtiQKA3AP_IUrcBiub-Jx989PbffNJhNpeyO1TmdJq8fuhtm8dWTtwSL5fDJP5NDGq19kyX39RLdo79CqflkjYTyc3ek2ErmSYkLK6k8s4SMT3DNOFzi7tpvQfcDew3BUDPezfBc-Y7qDyE11v4FQHRdFqluQ-vicBsScpkgjNmngOroQfFWu2qdR9eQ6F5JgVLoVhetFpmDTP8LcFLqCRbydjuGG_2XCszHXtbrZT_RZGWVoztfbA0NhYN__gJYJuBSkgZa7x73zi1JvEzfv5lb-v7LEZ_vAUDiwFGomjE6LrFgkl6toxboSuGtwsYaW5HQdfSr4iK3U3kCHABNchwkGmGADE1zA5Afu4hpIsAHJZ3R1enJ5dObYthlODLZo6nBwinUGVxQRruI41CVAiesL6UlPceVHwuNBGKq2APdY-dRTTMmI8Y7PuUeFbH9BjelsKr8izCiYK4pFKhKUxp7quFKJIGAC7BrQom4TOcVKDGJbU163NhkPnl_7Jtor589NNZUXZ36HhX1l0rc3k9tEHxdY3kKNNMnkNliTKd-xMHgExGN6QQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=API+Recommendation+For+Mashup+Creation%3A+A+Comprehensive+Survey&rft.jtitle=Computer+journal&rft.au=Alhosaini%2C+Hadeel&rft.au=Alharbi%2C+Sultan&rft.au=Wang%2C+Xianzhi&rft.au=Xu%2C+Guandong&rft.date=2024-06-22&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1920&rft.epage=1940&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |