API Recommendation For Mashup Creation: A Comprehensive Survey

Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficient...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 5; pp. 1920 - 1940
Main Authors Alhosaini, Hadeel, Alharbi, Sultan, Wang, Xianzhi, Xu, Guandong
Format Journal Article
LanguageEnglish
Published Oxford University Press 22.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficiently. The proliferation of publicly available APIs on the Internet has inspired the community to adopt various models to accomplish the recommendation task. Until present, considerable efforts have been made to recommend the optimal set of APIs, delivering fruitful results and achieving varying recommendation performance. This paper presents a timely review on the topic of API recommendations for mashup creation. Specifically, we investigate and compare not only traditional data mining approaches and recommendation techniques but also more recent approaches based on network representation learning and deep learning techniques. By analyzing the merits and pitfalls of existing approaches, we pinpoint a few promising directions to address the remaining challenges in the current research. This survey provides a timely comprehensive review of the API recommendation research and could be a useful reference for relevant researchers and practitioners.
AbstractList Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficiently. The proliferation of publicly available APIs on the Internet has inspired the community to adopt various models to accomplish the recommendation task. Until present, considerable efforts have been made to recommend the optimal set of APIs, delivering fruitful results and achieving varying recommendation performance. This paper presents a timely review on the topic of API recommendations for mashup creation. Specifically, we investigate and compare not only traditional data mining approaches and recommendation techniques but also more recent approaches based on network representation learning and deep learning techniques. By analyzing the merits and pitfalls of existing approaches, we pinpoint a few promising directions to address the remaining challenges in the current research. This survey provides a timely comprehensive review of the API recommendation research and could be a useful reference for relevant researchers and practitioners.
Author Alharbi, Sultan
Wang, Xianzhi
Xu, Guandong
Alhosaini, Hadeel
Author_xml – sequence: 1
  givenname: Hadeel
  surname: Alhosaini
  fullname: Alhosaini, Hadeel
  email: hadeel.alhosaini@student.uts.edu.au
– sequence: 2
  givenname: Sultan
  surname: Alharbi
  fullname: Alharbi, Sultan
– sequence: 3
  givenname: Xianzhi
  surname: Wang
  fullname: Wang, Xianzhi
– sequence: 4
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
BookMark eNqFkM9LwzAYhoNMcJtePefqoVu-tE2sB2EUp4OJ4o9zSdIvrGNtStIN999bt50E8fTCx_t8vDwjMmhcg4RcA5sAy-KpcfW62Uz1lyoB-BkZQiJYxJmQAzJkDFiUCM4uyCiENWOMs0wMyf3sdUHfsGdrbErVVa6hc-fpswqrbUtzj4fbHZ3R3NWtxxU2odohfd_6He4vyblVm4BXpxyTz_nDR_4ULV8eF_lsGRku4y7SXICwRmYZ19YYCVL0U9ISAcFqm2YlaCGljUsGiU0TsMpipvRtqjUkJcZjkhz_Gu9C8GgLU3WHZZ1X1aYAVvw4KI4OipODHpv8wlpf1crv_wZujoDbtv91vwHdLXLg
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3447882
crossref_primary_10_1109_TAI_2024_3472614
Cites_doi 10.1109/CBMS58004.2023.00292
10.1109/ICWS.2014.50
10.1007/s10791-019-09361-0
10.1109/CSCWD57460.2023.10152814
10.1016/j.ins.2019.10.004
10.1109/BIBE55377.2022.00025
10.1109/TETCI.2017.2699222
10.1109/ICWS.2018.00037
10.1109/ICWS60048.2023.00025
10.1007/978-3-030-30146-0_27
10.1145/3061710
10.1007/s11227-022-04369-8
10.1016/j.eswa.2022.116574
10.1109/TSC.2021.3098756
10.1049/cit2.12135
10.1109/TSC.2017.2681666
10.1109/SCC.2017.36
10.1145/3097983.3098109
10.1109/TNSM.2021.3125028
10.1109/SCC.2017.19
10.1007/s11276-021-02543-z
10.1145/2507157.2507176
10.1145/3106426.3106492
10.1016/j.knosys.2020.106196
10.1109/ACCESS.2019.2894822
10.1007/978-3-030-67537-0_33
10.1109/ICWS.2016.65
10.1145/3219819.3219961
10.1109/MIC.2016.74
10.1016/j.asoc.2019.105830
10.1016/j.ipm.2020.102231
10.5539/mas.v12n3p175
10.1007/s00521-020-04908-5
10.1109/ACCESS.2019.2907546
10.1109/ICWS49710.2020.00050
10.1145/3372938.3372941
10.1007/978-981-15-1899-7_29
10.1109/ICWS.2019.00053
10.1016/j.eswa.2018.05.039
10.1109/CBMS58004.2023.00210
10.1109/TSE.2021.3053111
10.1007/s11280-021-00943-x
10.1109/TEM.2019.2961376
10.1109/TII.2022.3177411
10.1016/j.knosys.2023.110512
10.1109/TSC.2018.2803171
10.1109/ICMLA.2017.0-169
10.1109/SCC.2019.00040
10.1002/cpe.7069
10.1145/1871437.1871734
10.1109/ACCESS.2019.2950355
10.1016/j.eswa.2021.115698
10.1109/TSE.2022.3197063
10.1007/978-3-030-59618-7_7
10.1109/TCSS.2022.3168595
10.1109/IRI58017.2023.00037
10.1109/ACCESS.2019.2894297
10.1007/s11257-019-09231-w
10.1109/ICWS60048.2023.00074
10.1016/j.infsof.2017.05.001
10.1007/978-3-030-33702-5_4
10.1109/VLHCC.2017.8103460
10.1145/3604915.3608820
10.1109/HPCC/SmartCity/DSS.2019.00033
10.1007/978-3-642-34419-0_14
10.1007/s10791-022-09415-w
10.1109/ICWS.2017.44
10.1007/s11257-022-09342-x
10.1007/s11280-021-00894-3
10.1145/3477495.3531962
10.1109/TBDATA.2020.2975587
10.1145/1935826.1935910
10.1007/s12652-018-1079-6
10.1109/TCSS.2019.2906925
10.1145/3357384.3357965
10.1109/ITCE.2019.8646645
10.1145/3404835.3462935
10.1109/TSC.2021.3085491
10.1109/ICWS.2018.00022
10.1109/TPDS.2018.2877363
10.1007/s11227-022-05011-3
10.1109/CSCWD57460.2023.10152634
10.1109/TII.2020.3039500
10.1109/ACCESS.2019.2913947
10.1016/j.future.2021.07.004
10.1016/j.eswa.2020.113231
10.1109/TBDATA.2018.2850013
10.1109/ACCESS.2018.2890388
10.1007/s11227-021-03832-2
10.1007/s11432-021-3531-0
ContentType Journal Article
Copyright The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
Copyright_xml – notice: The British Computer Society 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxad112
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 1940
ExternalDocumentID 10_1093_comjnl_bxad112
10.1093/comjnl/bxad112
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-b2616fc7992bfcc71766205de1e1fbf59d1b677f3d014f541fafe9ab85bb14de3
ISSN 0010-4620
IngestDate Tue Jul 01 02:55:11 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Mon Jun 30 08:34:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Collaborative Filtering
API recommendation
Network Representation Learning
Deep Learning
Future Directions
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-b2616fc7992bfcc71766205de1e1fbf59d1b677f3d014f541fafe9ab85bb14de3
PageCount 21
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxad112
crossref_primary_10_1093_comjnl_bxad112
oup_primary_10_1093_comjnl_bxad112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-22
PublicationDateYYYYMMDD 2024-06-22
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-22
  day: 22
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sharma (2024062312370099600_ref40) 2013; 2
Shi (2024062312370099600_ref89) 2019
Mohamed (2024062312370099600_ref27) 2019
Cao (2024062312370099600_ref86) 2022; 34
Tang (2024062312370099600_ref31) 2019; 7
Yin (2024062312370099600_ref4) 2021; 17
Xiong (2024062312370099600_ref63) 2018; 110
Labbaci (2024062312370099600_ref93) 2017
Lizarralde (2024062312370099600_ref92) 2020; 57
Zhang (2024062312370099600_ref58) 2019
Bai (2024062312370099600_ref69) 2019; 7
Huang (2024062312370099600_ref81) 2018
Dang (2024062312370099600_ref95) 2021; 77
Das (2024062312370099600_ref38) 2017; 160
Almarimi (2024062312370099600_ref55) 2019; 85
Liang (2024062312370099600_ref34) 2019; 7
Wang (2024062312370099600_ref19) 2017
Cao (2024062312370099600_ref64) 2019
Xu (2024062312370099600_ref5) 2021; 125
Gong (2024062312370099600_ref77) 2021; 51
Zhang (2024062312370099600_ref82) 2021
Wang (2024062312370099600_ref42) 2022; 25
Chaimalas (2024062312370099600_ref106) 2023
Xu (2024062312370099600_ref14) 2023; 26
Xie (2024062312370099600_ref57) 2022
Zhou (2024062312370099600_ref49) 2021; 48
Ye (2024062312370099600_ref9) 2019; 7
Zhang (2024062312370099600_ref71) 2018; 6
Golbandi (2024062312370099600_ref107) 2011
Zhao (2024062312370099600_ref35) 2019
Cao (2024062312370099600_ref32) 2017; 90
Zhang (2024062312370099600_ref16) 2017
Felfernig (2024062312370099600_ref28) 2013
Zheng (2024062312370099600_ref104) 2023
Jiang (2024062312370099600_ref7) 2022; 2022
Gong (2024062312370099600_ref76) 2022
Karimi (2024062312370099600_ref113) 2019
Alshangiti (2024062312370099600_ref62) 2020; 149
Jiang (2024062312370099600_ref56) 2019
Halili (2024062312370099600_ref15) 2018; 12
Simpson (2024062312370099600_ref39) 2022
Ma (2024062312370099600_ref90) 2020; 68
Cao (2024062312370099600_ref84) 2019
Botangen (2024062312370099600_ref112) 2019
Xie (2024062312370099600_ref65) 2018
Xue (2024062312370099600_ref3) 2017
Chen (2024062312370099600_ref8) 2022; 196
Golbandi (2024062312370099600_ref105) 2010
Qi (2024062312370099600_ref72) 2019; 6
He (2024062312370099600_ref100) 2023
Lin (2024062312370099600_ref54) 2018
Wang (2024062312370099600_ref99) 2023
Bai (2024062312370099600_ref94) 2017; 13
Nguyen (2024062312370099600_ref13) 2020
Saraswathi (2024062312370099600_ref70) 2017
Symeonidis (2024062312370099600_ref20) 2022; 32
Lamothe (2024062312370099600_ref2) 2020
Lei (2024062312370099600_ref36) 2020; 513
Lee (2024062312370099600_ref108) 2021
Cao (2024062312370099600_ref43) 2016
Qi (2024062312370099600_ref52) 2021; 17
Symeonidis (2024062312370099600_ref21) 2022
Thung (2024062312370099600_ref59) 2017; 1
Shang (2024062312370099600_ref24) 2019
Zhang (2024062312370099600_ref11) 2018
Wu (2024062312370099600_ref91) 2021; 15
Zhang (2024062312370099600_ref116) 2020; 14
Hao (2024062312370099600_ref47) 2017
Thorat (2024062312370099600_ref67) 2015; 110
Wang (2024062312370099600_ref74) 2021; 24
Wu (2024062312370099600_ref78) 2022; 10
Qi (2024062312370099600_ref75) 2023; 35
Li (2024062312370099600_ref44) 2017
Jiang (2024062312370099600_ref10) 2020; 2020
Li (2024062312370099600_ref96) 2022; 78
Gu (2024062312370099600_ref53) 2016
Qi (2024062312370099600_ref73) 2020; 8
Najmani (2024062312370099600_ref26) 2019
Safran (2024062312370099600_ref115) 2017; 13
Yu (2024062312370099600_ref97) 2023
Xiao (2024062312370099600_ref48) 2019
Wang (2024062312370099600_ref111) 2020; 204
Wang (2024062312370099600_ref18) 2019
Ali (2024062312370099600_ref51) 2014
Chen (2024062312370099600_ref80) 2022; 19
Mezni (2024062312370099600_ref110) 2020; 11
Kang (2024062312370099600_ref85) 2021; 18
Hu (2024062312370099600_ref33) 2019
Yao (2024062312370099600_ref46) 2018; 14
Xie (2024062312370099600_ref66) 2019
Shi (2024062312370099600_ref88) 2018; 30
Liu (2024062312370099600_ref37) 2020
Wu (2024062312370099600_ref109) 2019; 7
Tan (2024062312370099600_ref1) 2016; 20
Kang (2024062312370099600_ref83) 2020
Symeonidis (2024062312370099600_ref23) 2023
Symeonidis (2024062312370099600_ref25) 2022; 25
Yu (2024062312370099600_ref101) 2023; 79
Xie (2024062312370099600_ref61) 2019; 7
Ma (2024062312370099600_ref12) 2023; 8
Xiao (2024062312370099600_ref102) 2023
Wang (2024062312370099600_ref17) 2018
Thung (2024062312370099600_ref30) 2016
Rahman (2024062312370099600_ref41) 2017
Bianchini (2024062312370099600_ref6) 2017; 11
Symeonidis (2024062312370099600_ref22) 2023
Wang (2024062312370099600_ref98) 2023; 66
Lops (2024062312370099600_ref68) 2019; 29
Gu (2024062312370099600_ref50) 2022; 15
Xu (2024062312370099600_ref45) 2021; 27
Peng (2024062312370099600_ref29) 2022; 49
Li (2024062312370099600_ref79) 2020; 32
Wang (2024062312370099600_ref103) 2023; 269
Wang (2024062312370099600_ref114) 2013
Nguyen (2024062312370099600_ref87) 2021; 186
Li (2024062312370099600_ref60) 2014
Brown (2024062312370099600_ref117) 2017
References_xml – start-page: 634
  volume-title: 2023 IEEE 36th international symposium on computer-based medical systems (CBMS)
  year: 2023
  ident: 2024062312370099600_ref23
  article-title: Safe and effective recommendation of drug combinations based on matrix co-factorization
  doi: 10.1109/CBMS58004.2023.00292
– start-page: 289
  volume-title: 2014 IEEE international conference on web services, anchorage
  year: 2014
  ident: 2024062312370099600_ref60
  article-title: A novel approach for api recommendation in mashup development
  doi: 10.1109/ICWS.2014.50
– start-page: 1
  volume-title: 2019 international joint conference on neural networks (IJCNN)
  year: 2019
  ident: 2024062312370099600_ref89
  article-title: Ta-blstm: tag attention-based bidirectional long short-term memory for service recommendation in mashup creation
– volume: 14
  start-page: 1
  year: 2020
  ident: 2024062312370099600_ref116
  article-title: Explainable recommendation: a survey and new perspectives. Foundations and trends ®
  publication-title: Inf. Retr.
  doi: 10.1007/s10791-019-09361-0
– start-page: 745
  volume-title: 2023 26th international conference on computer supported cooperative work in design (CSCWD)
  year: 2023
  ident: 2024062312370099600_ref100
  article-title: Bat: mining binary-api topic for multi-service application development
  doi: 10.1109/CSCWD57460.2023.10152814
– start-page: 896
  volume-title: 2016 31st IEEE/ACM international conference on automated software engineering (ASE)
  year: 2016
  ident: 2024062312370099600_ref30
  article-title: Api recommendation system for software development
– volume: 513
  start-page: 98
  year: 2020
  ident: 2024062312370099600_ref36
  article-title: A service recommendation algorithm with the transfer learning based matrix factorization to improve cloud security
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.004
– start-page: 79
  volume-title: 2022 IEEE 22nd international conference on bioinformatics and bioengineering (BIBE)
  year: 2022
  ident: 2024062312370099600_ref21
  article-title: Mortality prediction and safe drug recommendation for critically-ill patients
  doi: 10.1109/BIBE55377.2022.00025
– start-page: 179
  volume-title: International conference on web information systems engineering
  year: 2019
  ident: 2024062312370099600_ref48
  article-title: Dinrec: deep interest network based api recommendation approach for mashup creation
– volume: 35
  start-page: 5444
  year: 2023
  ident: 2024062312370099600_ref75
  article-title: A correlation graph-based approach for personalized and compatible web apis recommendation in mobile app development
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 1
  start-page: 145
  year: 2017
  ident: 2024062312370099600_ref59
  article-title: Webapirec: recommending web apis to software projects via personalized ranking
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2017.2699222
– start-page: 235
  volume-title: 2018 IEEE international conference on web services (ICWS)
  year: 2018
  ident: 2024062312370099600_ref54
  article-title: Nl2api: a framework for bootstrapping service recommendation using natural language queries
  doi: 10.1109/ICWS.2018.00037
– start-page: 91
  volume-title: 2023 IEEE international conference on web services (ICWS)
  year: 2023
  ident: 2024062312370099600_ref99
  article-title: Functional and structural fusion based web api recommendations in heterogeneous networks
  doi: 10.1109/ICWS60048.2023.00025
– start-page: 394
  volume-title: International conference on collaborative computing: networking, applications and Worksharing
  year: 2019
  ident: 2024062312370099600_ref64
  article-title: Web services classification with topical attention based bi-lstm
  doi: 10.1007/978-3-030-30146-0_27
– volume: 11
  start-page: 1
  year: 2017
  ident: 2024062312370099600_ref6
  article-title: Wiser: a multi-dimensional framework for searching and ranking web apis
  publication-title: ACM Trans. Web (TWEB)
  doi: 10.1145/3061710
– volume: 110
  start-page: 31
  year: 2015
  ident: 2024062312370099600_ref67
  article-title: Survey on collaborative filtering, content-based filtering and hybrid recommendation system
  publication-title: Int. J. Comput. Appl.
– volume: 78
  start-page: 12621
  year: 2022
  ident: 2024062312370099600_ref96
  article-title: Web services recommendation based on metapath-guided graph attention network
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04369-8
– volume: 196
  start-page: 116574
  year: 2022
  ident: 2024062312370099600_ref8
  article-title: Open apis recommendation with an ensemble-based multi-feature model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116574
– volume: 15
  start-page: 3330
  year: 2021
  ident: 2024062312370099600_ref91
  article-title: Mashup-oriented web api recommendation via multi-model fusion and multi-task learning
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3098756
– volume: 17
  start-page: 1
  year: 2021
  ident: 2024062312370099600_ref52
  article-title: Compatibility-aware web api recommendation for mashup creation via textual description mining
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– start-page: 391
  volume-title: Asia-Pacific services computing conference
  year: 2016
  ident: 2024062312370099600_ref43
  article-title: Using relational topic model and factorization machines to recommend web apis for mashup creation
– volume: 8
  start-page: 914
  year: 2023
  ident: 2024062312370099600_ref12
  article-title: Deep learning framework for multi-round service bundle recommendation in iterative mashup development
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/cit2.12135
– volume: 13
  start-page: 73
  year: 2017
  ident: 2024062312370099600_ref94
  article-title: Dltsr: a deep learning framework for recommendations of long-tail web services
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2017.2681666
– start-page: 225
  volume-title: 2017 IEEE international conference on services computing (SCC)
  year: 2017
  ident: 2024062312370099600_ref41
  article-title: Web api recommendation for mashup development using matrix factorization on integrated content and network-based service clustering
  doi: 10.1109/SCC.2017.36
– volume: 160
  start-page: 6
  year: 2017
  ident: 2024062312370099600_ref38
  article-title: A survey on recommendation system
  publication-title: Int. J. Comput. Appl.
– start-page: 1315
  volume-title: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2017
  ident: 2024062312370099600_ref16
  article-title: Leap: learning to prescribe effective and safe treatment combinations for multimorbidity
  doi: 10.1145/3097983.3098109
– volume: 18
  start-page: 4183
  year: 2021
  ident: 2024062312370099600_ref85
  article-title: Neural and attentional factorization machine-based web api recommendation for mashup development
  publication-title: IEEE Trans. Netw. Serv. Manage.
  doi: 10.1109/TNSM.2021.3125028
– start-page: 84
  volume-title: 2017 IEEE international conference on services computing (SCC)
  year: 2017
  ident: 2024062312370099600_ref44
  article-title: Integrating tag, topic, co-occurrence, and popularity to recommend web apis for mashup creation
  doi: 10.1109/SCC.2017.19
– volume: 27
  start-page: 3441
  year: 2021
  ident: 2024062312370099600_ref45
  article-title: Preference discovery from wireless social media data in apis recommendation
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-021-02543-z
– start-page: 237
  volume-title: Proceedings of the 7th ACM conference on recommender systems
  year: 2013
  ident: 2024062312370099600_ref114
  article-title: Online multi-task collaborative filtering for on-the-fly recommender systems
  doi: 10.1145/2507157.2507176
– start-page: 848
  volume-title: Proceedings of the international conference on web intelligence
  year: 2017
  ident: 2024062312370099600_ref93
  article-title: A deep learning approach for web service interactions
  doi: 10.1145/3106426.3106492
– volume: 204
  start-page: 106196
  year: 2020
  ident: 2024062312370099600_ref111
  article-title: Diversified service recommendation with high accuracy and efficiency
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106196
– volume: 7
  start-page: 16155
  year: 2019
  ident: 2024062312370099600_ref61
  article-title: Personalized service recommendation with mashup group preference in heterogeneous information network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894822
– volume: 2022
  start-page: 1
  year: 2022
  ident: 2024062312370099600_ref7
  article-title: Web service recommendation based on word embedding and node embedding
  publication-title: Mobile Inf. Syst.
– start-page: 550
  volume-title: International conference on collaborative computing: networking, applications and Worksharing
  year: 2021
  ident: 2024062312370099600_ref82
  article-title: A deep recommendation framework for completely new users in mashup creation
  doi: 10.1007/978-3-030-67537-0_33
– start-page: 452
  volume-title: 2016 IEEE international conference on web services (ICWS)
  year: 2016
  ident: 2024062312370099600_ref53
  article-title: Service package recommendation for mashup creation via mashup textual description mining
  doi: 10.1109/ICWS.2016.65
– start-page: 2447
  volume-title: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining
  year: 2018
  ident: 2024062312370099600_ref17
  article-title: Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation
  doi: 10.1145/3219819.3219961
– volume: 20
  start-page: 64
  year: 2016
  ident: 2024062312370099600_ref1
  article-title: From the service-oriented architecture to the web api economy
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2016.74
– volume: 85
  start-page: 105830
  year: 2019
  ident: 2024062312370099600_ref55
  article-title: Web service api recommendation for automated mashup creation using multi-objective evolutionary search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105830
– volume: 57
  start-page: 102231
  year: 2020
  ident: 2024062312370099600_ref92
  article-title: Discovering web services in social web service repositories using deep variational autoencoders
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102231
– volume: 12
  start-page: 175
  year: 2018
  ident: 2024062312370099600_ref15
  article-title: Web services: a comparison of soap and rest services
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v12n3p175
– start-page: 30
  volume-title: CCF conference on computer supported cooperative work and social computing
  year: 2019
  ident: 2024062312370099600_ref56
  article-title: Service discovery method for agile mashup development
– volume: 32
  start-page: 16647
  year: 2020
  ident: 2024062312370099600_ref79
  article-title: Network representation learning: a systematic literature review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04908-5
– start-page: 293
  volume-title: 2018 33rd IEEE/ACM international conference on automated software engineering (ASE)
  year: 2018
  ident: 2024062312370099600_ref81
  article-title: Api method recommendation without worrying about the task-api knowledge gap
– volume: 7
  start-page: 43697
  year: 2019
  ident: 2024062312370099600_ref9
  article-title: Web services classification based on wide & bi-lstm model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907546
– start-page: 29
  volume-title: INRA@ RecSys
  year: 2019
  ident: 2024062312370099600_ref113
  article-title: On-the-fly news recommendation using sequential patterns
– start-page: 330
  volume-title: 2020 IEEE international conference on web services (ICWS)
  year: 2020
  ident: 2024062312370099600_ref83
  article-title: Nafm: neural and attentional factorization machine for web api recommendation
  doi: 10.1109/ICWS49710.2020.00050
– start-page: 1
  volume-title: Proceedings of the 4th International Conference on Big Data and Internet of Things
  year: 2019
  ident: 2024062312370099600_ref26
  article-title: A comparative study on recommender systems approaches
  doi: 10.1145/3372938.3372941
– start-page: 406
  volume-title: Big Data: 7th CCF Conference, BigData 2019
  year: 2019
  ident: 2024062312370099600_ref35
  article-title: Web api recommendation with features ensemble and learning-to-rank
  doi: 10.1007/978-981-15-1899-7_29
– start-page: 265
  volume-title: 2019 IEEE international conference on web services (ICWS)
  year: 2019
  ident: 2024062312370099600_ref66
  article-title: Generative adversarial network based service recommendation in heterogeneous information networks
  doi: 10.1109/ICWS.2019.00053
– volume: 110
  start-page: 191
  year: 2018
  ident: 2024062312370099600_ref63
  article-title: Deep hybrid collaborative filtering for web service recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.039
– start-page: 163
  volume-title: 2023 IEEE 36th international symposium on computer-based medical systems (CBMS)
  year: 2023
  ident: 2024062312370099600_ref22
  article-title: Accurate and safe drug recommendations based on singular value decomposition
  doi: 10.1109/CBMS58004.2023.00210
– volume: 48
  start-page: 2157
  year: 2021
  ident: 2024062312370099600_ref49
  article-title: Boosting api recommendation with implicit feedback
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2021.3053111
– volume: 25
  start-page: 1809
  year: 2022
  ident: 2024062312370099600_ref42
  article-title: Edge-cloud-enabled matrix factorization for diversified apis recommendation in mashup creation
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00943-x
– volume: 68
  start-page: 105
  year: 2020
  ident: 2024062312370099600_ref90
  article-title: A deep neural network with multiplex interactions for cold-start service recommendation
  publication-title: IEEE Trans. Eng. Manage.
  doi: 10.1109/TEM.2019.2961376
– volume: 19
  start-page: 2930
  year: 2022
  ident: 2024062312370099600_ref80
  article-title: Keyword-driven service recommendation via deep reinforced steiner tree search
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3177411
– volume: 13
  start-page: 47
  year: 2017
  ident: 2024062312370099600_ref115
  article-title: Real-time recommendation algorithms for crowdsourcing systems
  publication-title: Appl. Comput. Inf.
– volume: 269
  start-page: 110512
  year: 2023
  ident: 2024062312370099600_ref103
  article-title: Motif-based graph attentional neural network for web service recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110512
– volume: 14
  start-page: 502
  year: 2018
  ident: 2024062312370099600_ref46
  article-title: Mashup recommendation by regularizing matrix factorization with api co-invocations
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2803171
– start-page: 119
  volume-title: 2017 16th IEEE international conference on machine learning and applications (ICMLA)
  year: 2017
  ident: 2024062312370099600_ref3
  article-title: Automatic generation and recommendation for api mashups
  doi: 10.1109/ICMLA.2017.0-169
– start-page: 189
  volume-title: 2019 IEEE international conference on services computing (SCC)
  year: 2019
  ident: 2024062312370099600_ref84
  article-title: Service recommendation based on attentional factorization machine
  doi: 10.1109/SCC.2019.00040
– volume: 34
  start-page: e7069
  year: 2022
  ident: 2024062312370099600_ref86
  article-title: Web api recommendation via combining graph attention representation and deep factorization machines quality prediction
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.7069
– start-page: 1805
  volume-title: Proceedings of the 19th ACM international conference on information and knowledge management
  year: 2010
  ident: 2024062312370099600_ref105
  article-title: On bootstrapping recommender systems
  doi: 10.1145/1871437.1871734
– volume: 7
  start-page: 168981
  year: 2019
  ident: 2024062312370099600_ref34
  article-title: Exploiting user tagging for web service co-clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950355
– volume: 186
  start-page: 115698
  year: 2021
  ident: 2024062312370099600_ref87
  article-title: Attentional matrix factorization with context and co-invocation for service recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115698
– volume: 49
  start-page: 1876
  year: 2022
  ident: 2024062312370099600_ref29
  article-title: Revisiting, benchmarking and exploring api recommendation: how far are we?
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2022.3197063
– start-page: 96
  volume-title: Web Services–ICWS 2020: 27th International Conference, Held as Part of the Services Conference Federation, SCF 2020
  year: 2020
  ident: 2024062312370099600_ref37
  article-title: Web api search: discover web api and its endpoint with natural language queries
  doi: 10.1007/978-3-030-59618-7_7
– volume: 10
  start-page: 771
  year: 2022
  ident: 2024062312370099600_ref78
  article-title: Popularity-aware and diverse web apis recommendation based on correlation graph
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3168595
– start-page: 179
  volume-title: 2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)
  year: 2023
  ident: 2024062312370099600_ref102
  article-title: Mrhn: Hypergraph convolutional network for web api recommendation
  doi: 10.1109/IRI58017.2023.00037
– volume: 7
  start-page: 14206
  year: 2019
  ident: 2024062312370099600_ref31
  article-title: Mining collaboration patterns between apis for mashup creation in web of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894297
– volume: 29
  start-page: 239
  year: 2019
  ident: 2024062312370099600_ref68
  article-title: Trends in content-based recommendation
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-019-09231-w
– start-page: 553
  volume-title: 2023 IEEE international conference on web services (ICWS)
  year: 2023
  ident: 2024062312370099600_ref104
  article-title: H-mgsr: a hierarchical motif-based graph attention neural network for service recommendation
  doi: 10.1109/ICWS60048.2023.00074
– volume: 26
  start-page: 45
  year: 2023
  ident: 2024062312370099600_ref14
  article-title: Web api service recommendation for mashup creation
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 90
  start-page: 40
  year: 2017
  ident: 2024062312370099600_ref32
  article-title: Domain-aware mashup service clustering based on lda topic model from multiple data sources
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2017.05.001
– start-page: 53
  volume-title: International conference on service-oriented computing
  year: 2019
  ident: 2024062312370099600_ref112
  article-title: integrating geographical and functional relevance to implicit data for web service recommendation
  doi: 10.1007/978-3-030-33702-5_4
– year: 2017
  ident: 2024062312370099600_ref19
  article-title: Safe medicine recommendation via medical knowledge graph embedding
– start-page: 129
  volume-title: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC)
  year: 2017
  ident: 2024062312370099600_ref117
  article-title: How software users recommend tools to each other
  doi: 10.1109/VLHCC.2017.8103460
– start-page: 715
  volume-title: Proceedings of the 17th ACM conference on recommender systems
  year: 2023
  ident: 2024062312370099600_ref106
  article-title: Bootstrapped personalized popularity for cold start recommender systems
  doi: 10.1145/3604915.3608820
– start-page: 130
  volume-title: 2019 IEEE 21st international conference on high performance computing and communications; IEEE 17th international conference on Smart City; IEEE 5th international conference on data science and systems (HPCC/SmartCity/DSS)
  year: 2019
  ident: 2024062312370099600_ref33
  article-title: Mdt: a multi-description topic based clustering approach for composite-service discovery
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00033
– volume-title: Managing Requirements Knowledge
  year: 2013
  ident: 2024062312370099600_ref28
  article-title: An Overview of Recommender Systems in Requirements Engineering
  doi: 10.1007/978-3-642-34419-0_14
– volume: 25
  start-page: 461
  year: 2022
  ident: 2024062312370099600_ref25
  article-title: Sequence-aware news recommendations by combining intra-with inter-session user information
  publication-title: Inf. Retr. J.
  doi: 10.1007/s10791-022-09415-w
– start-page: 285
  volume-title: 2017 IEEE international conference on web services (ICWS)
  year: 2017
  ident: 2024062312370099600_ref47
  article-title: Service recommendation based on targeted reconstruction of service descriptions
  doi: 10.1109/ICWS.2017.44
– volume: 32
  start-page: 999
  year: 2022
  ident: 2024062312370099600_ref20
  article-title: Safe, effective and explainable drug recommendation based on medical data integration
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-022-09342-x
– start-page: 19
  volume-title: IEEE/ACIS 23rd international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD)
  year: 2022
  ident: 2024062312370099600_ref57
  article-title: Goal-driven context-aware service recommendation for mashup development
– volume: 24
  start-page: 869
  year: 2021
  ident: 2024062312370099600_ref74
  article-title: A novel knowledge graph embedding based api recommendation method for mashup development
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00894-3
– start-page: 395
  volume-title: Proceedings of the 45th international ACM SIGIR conference on Research and Development in information retrieval
  year: 2022
  ident: 2024062312370099600_ref76
  article-title: Dawar: diversity-aware web apis recommendation for mashup creation based on correlation graph
  doi: 10.1145/3477495.3531962
– start-page: 176
  volume-title: Semantic-based collaborative filtering for enhancing recommendation
  year: 2014
  ident: 2024062312370099600_ref51
– volume: 8
  start-page: 685
  year: 2020
  ident: 2024062312370099600_ref73
  article-title: Data-driven web apis recommendation for building web applications
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2020.2975587
– volume: 2
  start-page: 8
  year: 2013
  ident: 2024062312370099600_ref40
  article-title: A survey of recommender systems: approaches and limitations
  publication-title: Int. J. Innov. Eng. Technol.
– start-page: 509
  volume-title: 2018 IEEE Intl Conf on parallel & distributed processing with applications, Ubiquitous Computing & Communications, big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom)
  year: 2018
  ident: 2024062312370099600_ref11
  article-title: Web service recommendation via combining doc2vec-based functionality clustering and deepfm-based score prediction
– start-page: 595
  volume-title: Proceedings of the fourth ACM international conference on web search and data mining
  year: 2011
  ident: 2024062312370099600_ref107
  article-title: Adaptive bootstrapping of recommender systems using decision trees
  doi: 10.1145/1935826.1935910
– volume: 11
  start-page: 119
  year: 2020
  ident: 2024062312370099600_ref110
  article-title: An evolutionary clustering approach based on temporal aspects for context-aware service recommendation
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1079-6
– volume: 6
  start-page: 1063
  year: 2019
  ident: 2024062312370099600_ref72
  article-title: Finding all you need: web apis recommendation in web of things through keywords search
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2019.2906925
– start-page: 1623
  volume-title: Proceedings of the 28th ACM international conference on information and knowledge management
  year: 2019
  ident: 2024062312370099600_ref18
  article-title: Order-free medicine combination prediction with graph convolutional reinforcement learning
  doi: 10.1145/3357384.3357965
– start-page: 912
  volume-title: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE)
  year: 2020
  ident: 2024062312370099600_ref2
  article-title: When apis are intentionally bypassed: an exploratory study of api workarounds
– year: 2022
  ident: 2024062312370099600_ref39
  article-title: 20 impressive api economy statistics. Nordic APIs
– start-page: 149
  volume-title: 2019 international conference on innovative trends in computer engineering (ITCE)
  year: 2019
  ident: 2024062312370099600_ref27
  article-title: Recommender systems challenges and solutions survey
  doi: 10.1109/ITCE.2019.8646645
– start-page: 317
  volume-title: Proceedings of the 44th international ACM SIGIR conference on Research and Development in information retrieval
  year: 2021
  ident: 2024062312370099600_ref108
  article-title: Bootstrapping user and item representations for one-class collaborative filtering
  doi: 10.1145/3404835.3462935
– volume: 15
  start-page: 3170
  year: 2022
  ident: 2024062312370099600_ref50
  article-title: Csbr: a compositional semantics-based service bundle recommendation approach for mashup development
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3085491
– start-page: 115
  volume-title: 2018 IEEE international conference on web services (ICWS)
  year: 2018
  ident: 2024062312370099600_ref65
  article-title: Factorization machine based service recommendation on heterogeneous information networks
  doi: 10.1109/ICWS.2018.00022
– volume: 51
  start-page: 2337
  year: 2021
  ident: 2024062312370099600_ref77
  article-title: Keywords-driven web apis group recommendation for automatic app service creation process
  publication-title: Softw.: Pract. Exp.
– volume: 30
  start-page: 1077
  year: 2018
  ident: 2024062312370099600_ref88
  article-title: Functional and contextual attention-based lstm for service recommendation in mashup creation
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2877363
– start-page: 1
  volume-title: Proceedings of the Australasian computer science week multiconference
  year: 2020
  ident: 2024062312370099600_ref13
  article-title: Attentional matrix factorization with document-context awareness and implicit api relationship for service recommendation
– volume: 79
  start-page: 8993
  year: 2023
  ident: 2024062312370099600_ref101
  article-title: Web service recommendation for mashup creation based on graph network
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-05011-3
– start-page: 261
  volume-title: 2023 26th international conference on computer supported cooperative work in design (CSCWD)
  year: 2023
  ident: 2024062312370099600_ref97
  article-title: Akgin: an api knowledge graph and intent network based mashup-oriented api recommendation method
  doi: 10.1109/CSCWD57460.2023.10152634
– volume: 17
  start-page: 6153
  year: 2021
  ident: 2024062312370099600_ref4
  article-title: Personalized apis recommendation with cognitive knowledge mining for industrial systems
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2020.3039500
– volume: 7
  start-page: 60242
  year: 2019
  ident: 2024062312370099600_ref109
  article-title: A hybrid approach to service recommendation based on network representation learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913947
– volume: 125
  start-page: 471
  year: 2021
  ident: 2024062312370099600_ref5
  article-title: Collaborative apis recommendation for artificial intelligence of things with information fusion
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.07.004
– start-page: 1126
  volume-title: Proceedings of the AAAI conference on artificial intelligence, Honolulu
  year: 2019
  ident: 2024062312370099600_ref24
  article-title: Gamenet: graph augmented memory networks for recommending medication combination
– volume: 149
  start-page: 113231
  year: 2020
  ident: 2024062312370099600_ref62
  article-title: A bayesian learning model for design-phase service mashup popularity prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113231
– volume-title: Proceedings of the International Conference on Intelligent Computing Systems (ICICS 2017–Dec 15th–16th 2017) organized by Sona College of Technology
  year: 2017
  ident: 2024062312370099600_ref70
  article-title: Survey: a hybrid approach to solve cold-start problem in online recommendation system
– volume: 6
  start-page: 3
  year: 2018
  ident: 2024062312370099600_ref71
  article-title: Network representation learning: a survey
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2850013
– volume: 7
  start-page: 9324
  year: 2019
  ident: 2024062312370099600_ref69
  article-title: Scientific paper recommendation: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890388
– start-page: 281
  volume-title: International symposium on intelligence computation and applications
  year: 2019
  ident: 2024062312370099600_ref58
  article-title: Rasop: an api recommendation method based on word embedding technology
– volume: 77
  start-page: 14280
  year: 2021
  ident: 2024062312370099600_ref95
  article-title: Deep knowledge-aware framework for web service recommendation
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-03832-2
– volume: 2020
  start-page: 1
  year: 2020
  ident: 2024062312370099600_ref10
  article-title: Hyoasam: a hybrid open api selection approach for mashup development
  publication-title: Math. Probl. Eng.
– volume: 66
  start-page: 1
  year: 2023
  ident: 2024062312370099600_ref98
  article-title: Deep learning-based open api recommendation for mashup development
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-021-3531-0
SSID ssj0002096
Score 2.3705294
Snippet Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1920
Title API Recommendation For Mashup Creation: A Comprehensive Survey
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLZYedkL47JpHRdZExIPVSBxnaTZA1LFRWyi0yRA9K2yY5sW9aaQoIlfz3HspAkDAXuJEtc5UX0-nYt9LgjtgtLjUgTEAV-5Aw6Kih3m89CRYL2yUDIa5ln8vd_B2RX91ff7i5CgPLsk5fvxw7N5Jf_DVRgDvuos2XdwtiQKA3AP_IUrcBiub-Jx989PbffNJhNpeyO1TmdJq8fuhtm8dWTtwSL5fDJP5NDGq19kyX39RLdo79CqflkjYTyc3ek2ErmSYkLK6k8s4SMT3DNOFzi7tpvQfcDew3BUDPezfBc-Y7qDyE11v4FQHRdFqluQ-vicBsScpkgjNmngOroQfFWu2qdR9eQ6F5JgVLoVhetFpmDTP8LcFLqCRbydjuGG_2XCszHXtbrZT_RZGWVoztfbA0NhYN__gJYJuBSkgZa7x73zi1JvEzfv5lb-v7LEZ_vAUDiwFGomjE6LrFgkl6toxboSuGtwsYaW5HQdfSr4iK3U3kCHABNchwkGmGADE1zA5Afu4hpIsAHJZ3R1enJ5dObYthlODLZo6nBwinUGVxQRruI41CVAiesL6UlPceVHwuNBGKq2APdY-dRTTMmI8Y7PuUeFbH9BjelsKr8izCiYK4pFKhKUxp7quFKJIGAC7BrQom4TOcVKDGJbU163NhkPnl_7Jtor589NNZUXZ36HhX1l0rc3k9tEHxdY3kKNNMnkNliTKd-xMHgExGN6QQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=API+Recommendation+For+Mashup+Creation%3A+A+Comprehensive+Survey&rft.jtitle=Computer+journal&rft.au=Alhosaini%2C+Hadeel&rft.au=Alharbi%2C+Sultan&rft.au=Wang%2C+Xianzhi&rft.au=Xu%2C+Guandong&rft.date=2024-06-22&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=5&rft.spage=1920&rft.epage=1940&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon