Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials
The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometr...
Saved in:
Published in | European journal of applied mathematics Vol. 33; no. 3; pp. 560 - 585 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792521000127 |
Cover
Loading…
Abstract | The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain. |
---|---|
AbstractList | The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain. |
Author | LIM, MIKYOUNG KIM, MINWOO CHERKAEV, ELENA |
Author_xml | – sequence: 1 givenname: ELENA surname: CHERKAEV fullname: CHERKAEV, ELENA – sequence: 2 givenname: MINWOO surname: KIM fullname: KIM, MINWOO – sequence: 3 givenname: MIKYOUNG orcidid: 0000-0001-5284-8896 surname: LIM fullname: LIM, MIKYOUNG |
BookMark | eNp9kEtOwzAYhC1UJErhAOwssQ7YTuIHu6qCglQBErCOHPePcNXYwXYl2HEHTsE5uAknIaGsQGI1i5lv_sc-GjnvAKEjSk4ooeL0jqiSC8VKRgkhlIkdNKYFV1lRsHKExoOdDf4e2o9x1UdyItQY1XPwLaRgDY4QLEQMz5120XqHfYPTI-Br2LTauc_Xt1tvndHh4x37DoJOPpzhadetrdFpAJLHxredjzYBbnXqC_U6HqDdphc4_NEJerg4v59dZoub-dVsusgME3nKtGGKl7VUS05ACqUFGCProuESRNnfWNRCC5Y3hTSqMZorQRgQVhvN8qWs8wk63vZ2wT9tIKZq5TfB9SMrJmkuOCl7fILENmWCjzFAUxmbvtdPQdt1RUk1PLT689CepL_ILthWh5d_mC-5-nwl |
CitedBy_id | crossref_primary_10_1098_rspa_2023_0195 crossref_primary_10_1007_s00033_022_01929_z crossref_primary_10_1137_22M1522395 crossref_primary_10_1137_24M1646479 |
Cites_doi | 10.1007/978-3-319-02585-8 10.1007/s00208-020-02041-1 10.1007/s00205-006-0045-1 10.1007/BF01444293 10.1142/S0129055X14500056 10.1137/20M1348698 10.1088/1742-6596/12/1/002 10.1017/S0956792506006541 10.1112/jlms/jdw003 10.1016/0022-1236(84)90066-1 10.1007/s00205-007-0087-z 10.1512/iumj.2006.55.2681 10.1215/ijm/1258138354 10.1137/17M115459X 10.1007/b98245 10.1216/JIE-2019-31-4-505 10.1137/15M1025943 10.1007/s00205-017-1129-9 10.1007/978-3-642-84659-5 10.1016/j.anihpc.2016.07.004 10.1090/S0002-9939-1992-1092919-1 10.1007/978-3-662-02770-7 10.1016/0022-5096(93)90001-V 10.1137/0150005 10.1007/BF02937431 10.1216/JIE-2018-30-4-473 10.1007/978-3-642-90850-7 10.4171/RMI/998 10.1007/s00205-012-0605-5 10.1090/proc/14785 10.1007/s11854-014-0026-5 10.1112/blms/3.3.329 10.1007/s00205-016-1051-6 10.1088/1367-2630/aa6278 10.1002/mma.3195 10.1007/BF01456720 10.1103/PhysRevE.53.6169 10.1090/conm/362/06606 10.1016/j.matpur.2017.09.003 10.1007/BF01203320 10.1007/BF01238216 10.1515/9783110560961 10.1103/PhysRevB.72.155412 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792521000127 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 585 |
ExternalDocumentID | 10_1017_S0956792521000127 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB AAYXX ABBXD ABBZL ABEFU ABGDZ ABHFL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ABZUI ACAJB ACBMC ACDLN ACEJA ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACOZI ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AGQPQ AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AMVHM ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ GROUPED_DOAJ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c273t-ac2965b89d60e879a7ecc8b4f68e750174b7a723f48c9fca69702e02bca23d8b3 |
IEDL.DBID | BENPR |
ISSN | 0956-7925 |
IngestDate | Fri Jul 25 19:30:09 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-ac2965b89d60e879a7ecc8b4f68e750174b7a723f48c9fca69702e02bca23d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5284-8896 |
PQID | 2813760572 |
PQPubID | 37129 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2813760572 crossref_citationtrail_10_1017_S0956792521000127 crossref_primary_10_1017_S0956792521000127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-00 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0956792521000127_ref24 S0956792521000127_ref26 S0956792521000127_ref25 S0956792521000127_ref20 S0956792521000127_ref22 S0956792521000127_ref21 S0956792521000127_ref8 S0956792521000127_ref9 S0956792521000127_ref17 S0956792521000127_ref3 S0956792521000127_ref4 S0956792521000127_ref5 S0956792521000127_ref18 S0956792521000127_ref2 Abramowitz (S0956792521000127_ref1) 1964; 55 S0956792521000127_ref50 S0956792521000127_ref13 S0956792521000127_ref57 S0956792521000127_ref12 S0956792521000127_ref56 S0956792521000127_ref15 S0956792521000127_ref58 S0956792521000127_ref14 S0956792521000127_ref53 Pólya (S0956792521000127_ref51) 1951; 27 S0956792521000127_ref52 S0956792521000127_ref11 S0956792521000127_ref55 Ammari (S0956792521000127_ref7) 2007; 25 S0956792521000127_ref54 S0956792521000127_ref49 Jeffrey (S0956792521000127_ref30) 1973; 335 S0956792521000127_ref40 Duren (S0956792521000127_ref23) 1983; 259 Blumenfeld (S0956792521000127_ref16) 1914; 122 Kiryatski (S0956792521000127_ref42) 1990; 30 S0956792521000127_ref46 S0956792521000127_ref45 S0956792521000127_ref48 S0956792521000127_ref47 S0956792521000127_ref41 S0956792521000127_ref44 S0956792521000127_ref43 S0956792521000127_ref39 S0956792521000127_ref38 Ammari (S0956792521000127_ref6) 2007; 162 S0956792521000127_ref35 S0956792521000127_ref34 S0956792521000127_ref37 S0956792521000127_ref36 S0956792521000127_ref31 S0956792521000127_ref33 S0956792521000127_ref32 Carathéodory (S0956792521000127_ref19) 1913; 73 S0956792521000127_ref28 S0956792521000127_ref27 S0956792521000127_ref29 Ammari (S0956792521000127_ref10) 2005; 41 |
References_xml | – ident: S0956792521000127_ref4 doi: 10.1007/978-3-319-02585-8 – ident: S0956792521000127_ref21 doi: 10.1007/s00208-020-02041-1 – ident: S0956792521000127_ref41 doi: 10.1007/s00205-006-0045-1 – volume: 41 start-page: 119 year: 2005 ident: S0956792521000127_ref10 article-title: Boundary layer techniques for deriving the effective properties of composite materials publication-title: Asymptot. Anal. – ident: S0956792521000127_ref55 – ident: S0956792521000127_ref25 doi: 10.1007/BF01444293 – ident: S0956792521000127_ref27 doi: 10.1142/S0129055X14500056 – ident: S0956792521000127_ref32 – ident: S0956792521000127_ref34 doi: 10.1137/20M1348698 – ident: S0956792521000127_ref22 – ident: S0956792521000127_ref8 doi: 10.1088/1742-6596/12/1/002 – volume: 30 start-page: 261 year: 1990 ident: S0956792521000127_ref42 article-title: Some functionals on a class of univalent functions publication-title: Litovsk. Mat. Sb. – ident: S0956792521000127_ref2 doi: 10.1017/S0956792506006541 – ident: S0956792521000127_ref35 doi: 10.1112/jlms/jdw003 – ident: S0956792521000127_ref57 doi: 10.1016/0022-1236(84)90066-1 – ident: S0956792521000127_ref52 – ident: S0956792521000127_ref14 – volume: 122 start-page: 2011 year: 1914 ident: S0956792521000127_ref16 article-title: Über Poincarésche Fundamentalfunktionen publication-title: Sitz. Wien. Akad. Wiss. Math. Nat. Klasse Abt. IIa – ident: S0956792521000127_ref38 doi: 10.1007/s00205-007-0087-z – ident: S0956792521000127_ref9 doi: 10.1512/iumj.2006.55.2681 – ident: S0956792521000127_ref46 doi: 10.1215/ijm/1258138354 – ident: S0956792521000127_ref20 doi: 10.1137/17M115459X – ident: S0956792521000127_ref5 doi: 10.1007/b98245 – ident: S0956792521000127_ref45 doi: 10.1216/JIE-2019-31-4-505 – ident: S0956792521000127_ref12 doi: 10.1137/15M1025943 – ident: S0956792521000127_ref37 doi: 10.1007/s00205-017-1129-9 – ident: S0956792521000127_ref31 doi: 10.1007/978-3-642-84659-5 – ident: S0956792521000127_ref28 doi: 10.1016/j.anihpc.2016.07.004 – ident: S0956792521000127_ref24 doi: 10.1090/S0002-9939-1992-1092919-1 – ident: S0956792521000127_ref53 doi: 10.1007/978-3-662-02770-7 – volume: 55 volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1964 ident: S0956792521000127_ref1 – ident: S0956792521000127_ref47 doi: 10.1016/0022-5096(93)90001-V – ident: S0956792521000127_ref54 doi: 10.1137/0150005 – volume: 27 volume-title: Isoperimetric Inequalities in Mathematical Physics year: 1951 ident: S0956792521000127_ref51 – ident: S0956792521000127_ref15 – ident: S0956792521000127_ref29 doi: 10.1007/BF02937431 – ident: S0956792521000127_ref13 doi: 10.1216/JIE-2018-30-4-473 – ident: S0956792521000127_ref40 doi: 10.1007/978-3-642-90850-7 – ident: S0956792521000127_ref39 doi: 10.4171/RMI/998 – ident: S0956792521000127_ref3 doi: 10.1007/s00205-012-0605-5 – ident: S0956792521000127_ref33 doi: 10.1090/proc/14785 – ident: S0956792521000127_ref49 doi: 10.1007/s11854-014-0026-5 – ident: S0956792521000127_ref44 doi: 10.1112/blms/3.3.329 – ident: S0956792521000127_ref50 doi: 10.1007/s00205-016-1051-6 – volume: 335 start-page: 355 year: 1973 ident: S0956792521000127_ref30 article-title: Conduction through a random suspension of spheres publication-title: Proc. R. Soc. London Ser. A Math. Phys. Sci. – ident: S0956792521000127_ref58 doi: 10.1088/1367-2630/aa6278 – ident: S0956792521000127_ref36 doi: 10.1002/mma.3195 – volume: 25 start-page: 2 year: 2007 ident: S0956792521000127_ref7 article-title: A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids publication-title: J. Comput. Math. – volume: 73 start-page: 305 year: 1913 ident: S0956792521000127_ref19 article-title: Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis publication-title: Math. Ann. doi: 10.1007/BF01456720 – ident: S0956792521000127_ref26 doi: 10.1103/PhysRevE.53.6169 – ident: S0956792521000127_ref18 doi: 10.1090/conm/362/06606 – volume: 162 volume-title: Polarization and Moment Tensors year: 2007 ident: S0956792521000127_ref6 – ident: S0956792521000127_ref11 doi: 10.1016/j.matpur.2017.09.003 – ident: S0956792521000127_ref17 doi: 10.1007/BF01203320 – volume: 259 volume-title: Univalent Functions year: 1983 ident: S0956792521000127_ref23 – ident: S0956792521000127_ref43 doi: 10.1007/BF01238216 – ident: S0956792521000127_ref56 doi: 10.1515/9783110560961 – ident: S0956792521000127_ref48 doi: 10.1103/PhysRevB.72.155412 |
SSID | ssj0013079 |
Score | 2.3168845 |
Snippet | The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 560 |
SubjectTerms | Applied mathematics Composite materials Conformal mapping Domains Inclusions Operators (mathematics) Polarization Series expansion Tensors |
Title | Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials |
URI | https://www.proquest.com/docview/2813760572 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSsMwFA663eiF-IvTOXLhlRBMs7ZJvZEp-0HYGOJgdyVJUxC0nWsFL30Hn8Ln8E18EpM2XRnCbtOUQs7Jycn3nX4HgEvhSexEsUAexhLp-xdFgqoICeEyfe9RfhwZvGM88Ucz92HuzS3gltmyyiomFoE6SqXByK8Jc0z9hkfJ7eINma5Rhl21LTS2QVOHYOY1QPOuP5k-1jwCrtX2aEC8itcsRKP1oBkjTknArp9M64G5OG0G-2DPpomwV9r1AGyp5BDsjlcaq9kREEOVvpp-WBIaN1IZVB96axv0C6Yx1DPhRBmIPvn9_Jqmz4nky59vmC5UwazfwF7NXcM8haa43FRwKai_UPrlMZgN-k_3I2Q7JiCp05AccUkC3xMsiHysGA041RZiwo19pnRqoG8fgnJKurHLZBBLrk2DicJESE66ERPdE9BI0kSdAhhxLqnDjbwgcaWjhHBcpaM0d9048BltAVytViitnLjpavESlnVjNPy3wC1wtXplUWppbJrcrkwQ2m2VhbUTnG1-fA52iPlPoYBL2qCRL9_Vhc4ectEB22ww7FhH-QOygMVC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB6F5FA4VP1DQCndQ3upZNXe2N51pQrRkpCUJIoqkLiZ3fVYqlTskBjR3voOfQoufYm-SZ-ks_4hipC4cV2v_2Zndn6-2RmANzowrpek2glc1zjkfwlHC0wcrX1Jfg-GaWLjHeNJODj1v5wFZy3405yFsWmVzZ5YbtRJbmyM_D2Xns3fCATfn106tmuURVebFhoVWxzjz2ty2RYfh4e0vm857_dOPg-cuquAY0hVF44yPAoDLaMkdFGKSAn6C6n9NJRI6pMsdC2U4N3UlyZKjaLPdzm6XBvFu4nUXXruGnTIzIhIijqfepPp1yVu4S6r-4mIBw2OWhappkE7xr0K8F3VhKuKoNRu_SfwuDZL2UHFR0-hhdkz2Bjf1nRdPAd9hPmF7b9lmGVbXDD8QVuJjbaxPGU0k03QQgLZv1-_p_m3zKj53xuWz7BE8j-wgyVWzoqc2WR2mzGGjN5QycELOH0QWm5CO8sz3AKWKGWEp2w5Q-4bD7X2fCStoHw_jUIptsFtqBWbuny57aLxPa7y1ER8h8Db8O72lllVu-O-ybvNEsS1GC_iJdPt3H_5NTwanIxH8Wg4OX4J69yekShDNbvQLuZX-Iosl0Lv1ezC4PyhOfQ_gvoBrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+series+expansion+of+the+Neumann%E2%80%93Poincar%C3%A9+operator%3A+Application+to+composite+materials&rft.jtitle=European+journal+of+applied+mathematics&rft.au=Cherkaev%2C+Elena&rft.au=Kim%2C+Minwoo&rft.au=Lim%2C+Mikyoung&rft.date=2022-06-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=33&rft.issue=3&rft.spage=560&rft.epage=585&rft_id=info:doi/10.1017%2FS0956792521000127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |