Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials

The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometr...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 33; no. 3; pp. 560 - 585
Main Authors CHERKAEV, ELENA, KIM, MINWOO, LIM, MIKYOUNG
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.06.2022
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792521000127

Cover

Loading…
Abstract The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.
AbstractList The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.
Author LIM, MIKYOUNG
KIM, MINWOO
CHERKAEV, ELENA
Author_xml – sequence: 1
  givenname: ELENA
  surname: CHERKAEV
  fullname: CHERKAEV, ELENA
– sequence: 2
  givenname: MINWOO
  surname: KIM
  fullname: KIM, MINWOO
– sequence: 3
  givenname: MIKYOUNG
  orcidid: 0000-0001-5284-8896
  surname: LIM
  fullname: LIM, MIKYOUNG
BookMark eNp9kEtOwzAYhC1UJErhAOwssQ7YTuIHu6qCglQBErCOHPePcNXYwXYl2HEHTsE5uAknIaGsQGI1i5lv_sc-GjnvAKEjSk4ooeL0jqiSC8VKRgkhlIkdNKYFV1lRsHKExoOdDf4e2o9x1UdyItQY1XPwLaRgDY4QLEQMz5120XqHfYPTI-Br2LTauc_Xt1tvndHh4x37DoJOPpzhadetrdFpAJLHxredjzYBbnXqC_U6HqDdphc4_NEJerg4v59dZoub-dVsusgME3nKtGGKl7VUS05ACqUFGCProuESRNnfWNRCC5Y3hTSqMZorQRgQVhvN8qWs8wk63vZ2wT9tIKZq5TfB9SMrJmkuOCl7fILENmWCjzFAUxmbvtdPQdt1RUk1PLT689CepL_ILthWh5d_mC-5-nwl
CitedBy_id crossref_primary_10_1098_rspa_2023_0195
crossref_primary_10_1007_s00033_022_01929_z
crossref_primary_10_1137_22M1522395
crossref_primary_10_1137_24M1646479
Cites_doi 10.1007/978-3-319-02585-8
10.1007/s00208-020-02041-1
10.1007/s00205-006-0045-1
10.1007/BF01444293
10.1142/S0129055X14500056
10.1137/20M1348698
10.1088/1742-6596/12/1/002
10.1017/S0956792506006541
10.1112/jlms/jdw003
10.1016/0022-1236(84)90066-1
10.1007/s00205-007-0087-z
10.1512/iumj.2006.55.2681
10.1215/ijm/1258138354
10.1137/17M115459X
10.1007/b98245
10.1216/JIE-2019-31-4-505
10.1137/15M1025943
10.1007/s00205-017-1129-9
10.1007/978-3-642-84659-5
10.1016/j.anihpc.2016.07.004
10.1090/S0002-9939-1992-1092919-1
10.1007/978-3-662-02770-7
10.1016/0022-5096(93)90001-V
10.1137/0150005
10.1007/BF02937431
10.1216/JIE-2018-30-4-473
10.1007/978-3-642-90850-7
10.4171/RMI/998
10.1007/s00205-012-0605-5
10.1090/proc/14785
10.1007/s11854-014-0026-5
10.1112/blms/3.3.329
10.1007/s00205-016-1051-6
10.1088/1367-2630/aa6278
10.1002/mma.3195
10.1007/BF01456720
10.1103/PhysRevE.53.6169
10.1090/conm/362/06606
10.1016/j.matpur.2017.09.003
10.1007/BF01203320
10.1007/BF01238216
10.1515/9783110560961
10.1103/PhysRevB.72.155412
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792521000127
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 585
ExternalDocumentID 10_1017_S0956792521000127
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABEFU
ABGDZ
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMVHM
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c273t-ac2965b89d60e879a7ecc8b4f68e750174b7a723f48c9fca69702e02bca23d8b3
IEDL.DBID BENPR
ISSN 0956-7925
IngestDate Fri Jul 25 19:30:09 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-ac2965b89d60e879a7ecc8b4f68e750174b7a723f48c9fca69702e02bca23d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5284-8896
PQID 2813760572
PQPubID 37129
PageCount 26
ParticipantIDs proquest_journals_2813760572
crossref_citationtrail_10_1017_S0956792521000127
crossref_primary_10_1017_S0956792521000127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792521000127_ref24
S0956792521000127_ref26
S0956792521000127_ref25
S0956792521000127_ref20
S0956792521000127_ref22
S0956792521000127_ref21
S0956792521000127_ref8
S0956792521000127_ref9
S0956792521000127_ref17
S0956792521000127_ref3
S0956792521000127_ref4
S0956792521000127_ref5
S0956792521000127_ref18
S0956792521000127_ref2
Abramowitz (S0956792521000127_ref1) 1964; 55
S0956792521000127_ref50
S0956792521000127_ref13
S0956792521000127_ref57
S0956792521000127_ref12
S0956792521000127_ref56
S0956792521000127_ref15
S0956792521000127_ref58
S0956792521000127_ref14
S0956792521000127_ref53
Pólya (S0956792521000127_ref51) 1951; 27
S0956792521000127_ref52
S0956792521000127_ref11
S0956792521000127_ref55
Ammari (S0956792521000127_ref7) 2007; 25
S0956792521000127_ref54
S0956792521000127_ref49
Jeffrey (S0956792521000127_ref30) 1973; 335
S0956792521000127_ref40
Duren (S0956792521000127_ref23) 1983; 259
Blumenfeld (S0956792521000127_ref16) 1914; 122
Kiryatski (S0956792521000127_ref42) 1990; 30
S0956792521000127_ref46
S0956792521000127_ref45
S0956792521000127_ref48
S0956792521000127_ref47
S0956792521000127_ref41
S0956792521000127_ref44
S0956792521000127_ref43
S0956792521000127_ref39
S0956792521000127_ref38
Ammari (S0956792521000127_ref6) 2007; 162
S0956792521000127_ref35
S0956792521000127_ref34
S0956792521000127_ref37
S0956792521000127_ref36
S0956792521000127_ref31
S0956792521000127_ref33
S0956792521000127_ref32
Carathéodory (S0956792521000127_ref19) 1913; 73
S0956792521000127_ref28
S0956792521000127_ref27
S0956792521000127_ref29
Ammari (S0956792521000127_ref10) 2005; 41
References_xml – ident: S0956792521000127_ref4
  doi: 10.1007/978-3-319-02585-8
– ident: S0956792521000127_ref21
  doi: 10.1007/s00208-020-02041-1
– ident: S0956792521000127_ref41
  doi: 10.1007/s00205-006-0045-1
– volume: 41
  start-page: 119
  year: 2005
  ident: S0956792521000127_ref10
  article-title: Boundary layer techniques for deriving the effective properties of composite materials
  publication-title: Asymptot. Anal.
– ident: S0956792521000127_ref55
– ident: S0956792521000127_ref25
  doi: 10.1007/BF01444293
– ident: S0956792521000127_ref27
  doi: 10.1142/S0129055X14500056
– ident: S0956792521000127_ref32
– ident: S0956792521000127_ref34
  doi: 10.1137/20M1348698
– ident: S0956792521000127_ref22
– ident: S0956792521000127_ref8
  doi: 10.1088/1742-6596/12/1/002
– volume: 30
  start-page: 261
  year: 1990
  ident: S0956792521000127_ref42
  article-title: Some functionals on a class of univalent functions
  publication-title: Litovsk. Mat. Sb.
– ident: S0956792521000127_ref2
  doi: 10.1017/S0956792506006541
– ident: S0956792521000127_ref35
  doi: 10.1112/jlms/jdw003
– ident: S0956792521000127_ref57
  doi: 10.1016/0022-1236(84)90066-1
– ident: S0956792521000127_ref52
– ident: S0956792521000127_ref14
– volume: 122
  start-page: 2011
  year: 1914
  ident: S0956792521000127_ref16
  article-title: Über Poincarésche Fundamentalfunktionen
  publication-title: Sitz. Wien. Akad. Wiss. Math. Nat. Klasse Abt. IIa
– ident: S0956792521000127_ref38
  doi: 10.1007/s00205-007-0087-z
– ident: S0956792521000127_ref9
  doi: 10.1512/iumj.2006.55.2681
– ident: S0956792521000127_ref46
  doi: 10.1215/ijm/1258138354
– ident: S0956792521000127_ref20
  doi: 10.1137/17M115459X
– ident: S0956792521000127_ref5
  doi: 10.1007/b98245
– ident: S0956792521000127_ref45
  doi: 10.1216/JIE-2019-31-4-505
– ident: S0956792521000127_ref12
  doi: 10.1137/15M1025943
– ident: S0956792521000127_ref37
  doi: 10.1007/s00205-017-1129-9
– ident: S0956792521000127_ref31
  doi: 10.1007/978-3-642-84659-5
– ident: S0956792521000127_ref28
  doi: 10.1016/j.anihpc.2016.07.004
– ident: S0956792521000127_ref24
  doi: 10.1090/S0002-9939-1992-1092919-1
– ident: S0956792521000127_ref53
  doi: 10.1007/978-3-662-02770-7
– volume: 55
  volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: S0956792521000127_ref1
– ident: S0956792521000127_ref47
  doi: 10.1016/0022-5096(93)90001-V
– ident: S0956792521000127_ref54
  doi: 10.1137/0150005
– volume: 27
  volume-title: Isoperimetric Inequalities in Mathematical Physics
  year: 1951
  ident: S0956792521000127_ref51
– ident: S0956792521000127_ref15
– ident: S0956792521000127_ref29
  doi: 10.1007/BF02937431
– ident: S0956792521000127_ref13
  doi: 10.1216/JIE-2018-30-4-473
– ident: S0956792521000127_ref40
  doi: 10.1007/978-3-642-90850-7
– ident: S0956792521000127_ref39
  doi: 10.4171/RMI/998
– ident: S0956792521000127_ref3
  doi: 10.1007/s00205-012-0605-5
– ident: S0956792521000127_ref33
  doi: 10.1090/proc/14785
– ident: S0956792521000127_ref49
  doi: 10.1007/s11854-014-0026-5
– ident: S0956792521000127_ref44
  doi: 10.1112/blms/3.3.329
– ident: S0956792521000127_ref50
  doi: 10.1007/s00205-016-1051-6
– volume: 335
  start-page: 355
  year: 1973
  ident: S0956792521000127_ref30
  article-title: Conduction through a random suspension of spheres
  publication-title: Proc. R. Soc. London Ser. A Math. Phys. Sci.
– ident: S0956792521000127_ref58
  doi: 10.1088/1367-2630/aa6278
– ident: S0956792521000127_ref36
  doi: 10.1002/mma.3195
– volume: 25
  start-page: 2
  year: 2007
  ident: S0956792521000127_ref7
  article-title: A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids
  publication-title: J. Comput. Math.
– volume: 73
  start-page: 305
  year: 1913
  ident: S0956792521000127_ref19
  article-title: Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis
  publication-title: Math. Ann.
  doi: 10.1007/BF01456720
– ident: S0956792521000127_ref26
  doi: 10.1103/PhysRevE.53.6169
– ident: S0956792521000127_ref18
  doi: 10.1090/conm/362/06606
– volume: 162
  volume-title: Polarization and Moment Tensors
  year: 2007
  ident: S0956792521000127_ref6
– ident: S0956792521000127_ref11
  doi: 10.1016/j.matpur.2017.09.003
– ident: S0956792521000127_ref17
  doi: 10.1007/BF01203320
– volume: 259
  volume-title: Univalent Functions
  year: 1983
  ident: S0956792521000127_ref23
– ident: S0956792521000127_ref43
  doi: 10.1007/BF01238216
– ident: S0956792521000127_ref56
  doi: 10.1515/9783110560961
– ident: S0956792521000127_ref48
  doi: 10.1103/PhysRevB.72.155412
SSID ssj0013079
Score 2.3168845
Snippet The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 560
SubjectTerms Applied mathematics
Composite materials
Conformal mapping
Domains
Inclusions
Operators (mathematics)
Polarization
Series expansion
Tensors
Title Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials
URI https://www.proquest.com/docview/2813760572
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSsMwFA663eiF-IvTOXLhlRBMs7ZJvZEp-0HYGOJgdyVJUxC0nWsFL30Hn8Ln8E18EpM2XRnCbtOUQs7Jycn3nX4HgEvhSexEsUAexhLp-xdFgqoICeEyfe9RfhwZvGM88Ucz92HuzS3gltmyyiomFoE6SqXByK8Jc0z9hkfJ7eINma5Rhl21LTS2QVOHYOY1QPOuP5k-1jwCrtX2aEC8itcsRKP1oBkjTknArp9M64G5OG0G-2DPpomwV9r1AGyp5BDsjlcaq9kREEOVvpp-WBIaN1IZVB96axv0C6Yx1DPhRBmIPvn9_Jqmz4nky59vmC5UwazfwF7NXcM8haa43FRwKai_UPrlMZgN-k_3I2Q7JiCp05AccUkC3xMsiHysGA041RZiwo19pnRqoG8fgnJKurHLZBBLrk2DicJESE66ERPdE9BI0kSdAhhxLqnDjbwgcaWjhHBcpaM0d9048BltAVytViitnLjpavESlnVjNPy3wC1wtXplUWppbJrcrkwQ2m2VhbUTnG1-fA52iPlPoYBL2qCRL9_Vhc4ectEB22ww7FhH-QOygMVC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB6F5FA4VP1DQCndQ3upZNXe2N51pQrRkpCUJIoqkLiZ3fVYqlTskBjR3voOfQoufYm-SZ-ks_4hipC4cV2v_2Zndn6-2RmANzowrpek2glc1zjkfwlHC0wcrX1Jfg-GaWLjHeNJODj1v5wFZy3405yFsWmVzZ5YbtRJbmyM_D2Xns3fCATfn106tmuURVebFhoVWxzjz2ty2RYfh4e0vm857_dOPg-cuquAY0hVF44yPAoDLaMkdFGKSAn6C6n9NJRI6pMsdC2U4N3UlyZKjaLPdzm6XBvFu4nUXXruGnTIzIhIijqfepPp1yVu4S6r-4mIBw2OWhappkE7xr0K8F3VhKuKoNRu_SfwuDZL2UHFR0-hhdkz2Bjf1nRdPAd9hPmF7b9lmGVbXDD8QVuJjbaxPGU0k03QQgLZv1-_p_m3zKj53xuWz7BE8j-wgyVWzoqc2WR2mzGGjN5QycELOH0QWm5CO8sz3AKWKGWEp2w5Q-4bD7X2fCStoHw_jUIptsFtqBWbuny57aLxPa7y1ER8h8Db8O72lllVu-O-ybvNEsS1GC_iJdPt3H_5NTwanIxH8Wg4OX4J69yekShDNbvQLuZX-Iosl0Lv1ezC4PyhOfQ_gvoBrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+series+expansion+of+the+Neumann%E2%80%93Poincar%C3%A9+operator%3A+Application+to+composite+materials&rft.jtitle=European+journal+of+applied+mathematics&rft.au=Cherkaev%2C+Elena&rft.au=Kim%2C+Minwoo&rft.au=Lim%2C+Mikyoung&rft.date=2022-06-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=33&rft.issue=3&rft.spage=560&rft.epage=585&rft_id=info:doi/10.1017%2FS0956792521000127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon