Uncloaking hidden repeating fast radio bursts with unsupervised machine learning
ABSTRACT The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to li...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 509; no. 1; pp. 1227 - 1236 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to limited observing periods and telescope sensitivities, some bursts may be misclassified as non-repeaters. Therefore, it is important to clearly distinguish FRBs into repeaters and non-repeaters, to better understand their origins. In this work, we classify repeaters and non-repeaters using unsupervised machine learning, without relying on expensive monitoring observations. We present a repeating FRB recognition method based on the Uniform Manifold Approximation and Projection (UMAP). The main goals of this work are to: (i) show that the unsupervised UMAP can classify repeating FRB population without any prior knowledge about their repetition, (ii) evaluate the assumption that non-repeating FRBs are contaminated by repeating FRBs, and (iii) recognize the FRB repeater candidates without monitoring observations and release a corresponding catalogue. We apply our method to the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) data base. We found that the unsupervised UMAP classification provides a repeating FRB completeness of 95 per cent and identifies 188 FRB repeater source candidates from 474 non-repeater sources. This work paves the way to a new classification of repeaters and non-repeaters based on a single epoch observation of FRBs. |
---|---|
AbstractList | ABSTRACT
The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to limited observing periods and telescope sensitivities, some bursts may be misclassified as non-repeaters. Therefore, it is important to clearly distinguish FRBs into repeaters and non-repeaters, to better understand their origins. In this work, we classify repeaters and non-repeaters using unsupervised machine learning, without relying on expensive monitoring observations. We present a repeating FRB recognition method based on the Uniform Manifold Approximation and Projection (UMAP). The main goals of this work are to: (i) show that the unsupervised UMAP can classify repeating FRB population without any prior knowledge about their repetition, (ii) evaluate the assumption that non-repeating FRBs are contaminated by repeating FRBs, and (iii) recognize the FRB repeater candidates without monitoring observations and release a corresponding catalogue. We apply our method to the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) data base. We found that the unsupervised UMAP classification provides a repeating FRB completeness of 95 per cent and identifies 188 FRB repeater source candidates from 474 non-repeater sources. This work paves the way to a new classification of repeaters and non-repeaters based on a single epoch observation of FRBs. |
Author | Kim, Seong Jin Santos, Daryl Joe D Lu, Ting-Yi Hashimoto, Tetsuya Goto, Tomotsugu Chen, Bo Han Hsiao, Tiger Y-Y On, Alvina Y L |
Author_xml | – sequence: 1 givenname: Bo Han surname: Chen fullname: Chen, Bo Han email: 369grant2@gmail.com – sequence: 2 givenname: Tetsuya orcidid: 0000-0001-7228-1428 surname: Hashimoto fullname: Hashimoto, Tetsuya – sequence: 3 givenname: Tomotsugu surname: Goto fullname: Goto, Tomotsugu – sequence: 4 givenname: Seong Jin orcidid: 0000-0001-9970-8145 surname: Kim fullname: Kim, Seong Jin – sequence: 5 givenname: Daryl Joe D surname: Santos fullname: Santos, Daryl Joe D – sequence: 6 givenname: Alvina Y L orcidid: 0000-0003-4479-4415 surname: On fullname: On, Alvina Y L – sequence: 7 givenname: Ting-Yi orcidid: 0000-0002-4965-6524 surname: Lu fullname: Lu, Ting-Yi – sequence: 8 givenname: Tiger Y-Y surname: Hsiao fullname: Hsiao, Tiger Y-Y |
BookMark | eNqFkDFPwzAUhC1UJNrCyuyVIa0dO3Y9ogooUiUY6By92M_U0DqRnYD497QUZqaTTvfd8E3IKLYRCbnmbMaZEfN9TJDnuYemNEaekTEXqipKo9SIjBkTVbHQnF-QSc5vjDEpSjUmz5tody28h_hKt8E5jDRhh9AfCw-5pwlcaGkzpNxn-hn6LR1iHjpMHyGjo3uw2xCR7hBSPECX5NzDLuPVb07J5v7uZbkq1k8Pj8vbdWFLLfoClF9otpCglDNQWeEUVNpwVXltreTGKNt4qdBLxpQUmqPk0huNhpXcVWJKZqdfm9qcE_q6S2EP6avmrD76qH981H8-DsDNCWiH7r_tN9aPZuk |
CitedBy_id | crossref_primary_10_1093_mnras_stae1398 crossref_primary_10_1093_mnras_stac1689 crossref_primary_10_3390_universe9070330 crossref_primary_10_1093_mnras_stad930 crossref_primary_10_1093_mnras_stac3018 crossref_primary_10_1093_mnras_stac065 crossref_primary_10_1093_mnras_stac3206 crossref_primary_10_1093_mnras_stac3599 crossref_primary_10_1103_RevModPhys_95_035005 crossref_primary_10_1016_j_ascom_2024_100851 crossref_primary_10_3847_1538_4357_ac7f2c crossref_primary_10_1093_mnras_stad1304 crossref_primary_10_1093_mnras_stad1942 crossref_primary_10_3847_1538_4357_ac958a crossref_primary_10_1088_1538_3873_ac8f71 crossref_primary_10_3847_1538_4357_ad2a58 crossref_primary_10_3847_1538_4357_acaf06 crossref_primary_10_3390_universe9060251 crossref_primary_10_1093_pasj_psac101 crossref_primary_10_1093_mnras_stae1594 crossref_primary_10_1088_1674_4527_ac9111 |
Cites_doi | 10.1038/s41550-019-0831-y 10.1016/j.physrep.2019.06.003 10.1038/nature15769 10.1126/science.1236789 10.1017/pasa.2016.35 10.1093/bioinformatics/btq134 10.1088/1538-3873/128/966/084503 10.1093/mnras/staa2490 10.1007/978-3-642-37456-2_14 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
Copyright_xml | – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/mnras/stab2994 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1236 |
ExternalDocumentID | 10_1093_mnras_stab2994 10.1093/mnras/stab2994 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-a6f87084a66d9a5c3d6a579165f7cc41996cbf46ef40064371e414f97e9021d53 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Thu Sep 12 17:01:40 EDT 2024 Wed Aug 28 03:23:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | methods: data analysis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-a6f87084a66d9a5c3d6a579165f7cc41996cbf46ef40064371e414f97e9021d53 |
ORCID | 0000-0001-7228-1428 0000-0001-9970-8145 0000-0003-4479-4415 0000-0002-4965-6524 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1093_mnras_stab2994 oup_primary_10_1093_mnras_stab2994 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | The CHIME/FRB Collaboration (2021111801240580200_bib15) 2021 Wagstaff (2021111801240580200_bib17) 2016; 128 Lorimer (2021111801240580200_bib8) 2007; 318 McInnes (2021111801240580200_bib10) 2018 Farah (2021111801240580200_bib5) 2020 Hashimoto (2021111801240580200_bib6) 2020; 498 Petroff (2021111801240580200_bib11) 2016; 33 Campello (2021111801240580200_bib4) 2013 Masui (2021111801240580200_bib9) 2015; 528 Thornton (2021111801240580200_bib16) 2013; 341 Platts (2021111801240580200_bib12) 2019; 821 Altmann (2021111801240580200_bib2) 2010; 26 Bishop (2021111801240580200_bib3) 2006 Pleunis (2021111801240580200_bib13) 2021 Agarwal (2021111801240580200_bib1) 2020 Ravi (2021111801240580200_bib14) 2019; 3 |
References_xml | – volume: 3 start-page: 928 year: 2019 ident: 2021111801240580200_bib14 publication-title: Nature Astron. doi: 10.1038/s41550-019-0831-y contributor: fullname: Ravi – volume: 318 start-page: 777 year: 2007 ident: 2021111801240580200_bib8 publication-title: Science doi: 10.1016/j.physrep.2019.06.003 contributor: fullname: Lorimer – volume: 528 start-page: 523 year: 2015 ident: 2021111801240580200_bib9 publication-title: Nature doi: 10.1038/nature15769 contributor: fullname: Masui – year: 2020 ident: 2021111801240580200_bib1 contributor: fullname: Agarwal – volume: 341 start-page: 53 year: 2013 ident: 2021111801240580200_bib16 publication-title: Science doi: 10.1126/science.1236789 contributor: fullname: Thornton – volume: 33 start-page: e045 year: 2016 ident: 2021111801240580200_bib11 publication-title: PASA doi: 10.1017/pasa.2016.35 contributor: fullname: Petroff – volume: 26 start-page: 1340 year: 2010 ident: 2021111801240580200_bib2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 contributor: fullname: Altmann – start-page: #236.03 year: 2021 ident: 2021111801240580200_bib13 contributor: fullname: Pleunis – volume: 128 start-page: 084503 year: 2016 ident: 2021111801240580200_bib17 publication-title: Publ. Astron. Soc. Pac. doi: 10.1088/1538-3873/128/966/084503 contributor: fullname: Wagstaff – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 2021111801240580200_bib3 contributor: fullname: Bishop – volume: 498 start-page: 3927 year: 2020 ident: 2021111801240580200_bib6 publication-title: MNRAS doi: 10.1093/mnras/staa2490 contributor: fullname: Hashimoto – year: 2020 ident: 2021111801240580200_bib5 contributor: fullname: Farah – start-page: 160 volume-title: Advances in Knowledge Discovery and Data Mining year: 2013 ident: 2021111801240580200_bib4 doi: 10.1007/978-3-642-37456-2_14 contributor: fullname: Campello – year: 2018 ident: 2021111801240580200_bib10 contributor: fullname: McInnes – volume: 821 start-page: 1 year: 2019 ident: 2021111801240580200_bib12 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2019.06.003 contributor: fullname: Platts – start-page: 325 volume-title: AAS Meeting Abstracts, #53 year: 2021 ident: 2021111801240580200_bib15 contributor: fullname: The CHIME/FRB Collaboration |
SSID | ssj0004326 |
Score | 2.5441897 |
Snippet | ABSTRACT
The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the... |
SourceID | crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 1227 |
Title | Uncloaking hidden repeating fast radio bursts with unsupervised machine learning |
Volume | 509 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7SkxfRqrS-CCJ6Wkqbx-4eS7EUoeqhhd6WbB5aaLNlsz34751kt74Q9LaP2cskm_kyk_k-hG5oTBVhREdKJSKikiZRkmoaJSxNFB1oqZhvcJ4-8smcPizYoiGLdr-U8FPSW9tSuB5gpRyWTs_86TnRYObOnhafHZAkCKsFAkbYAvQ_6Bl_fv4t_PiWti_RZHyIDhoYiIf1uB2hPW3bqDN0PjFdrN_wLQ7Xdd7BtVF3CuC2KEMOHF6OVktAmuHuGD3PrVwVQVUKv3pGEItLvfFYEB4Y4SpcCrUsMLjPVQ77zCveWrfd-GXCaYXX4UClxo2CxMsJmo_vZ6NJ1AglRBLQRxUJbuC3S6jgXKWCSaK4YDEAP2ZiKak_aCxzQ7k2tK7U9TXtU5PGOoUQrxg5RS1bWN1BOAZIJAxsUXNBwFjknuAdIAPx2i-C8i662_kv29R8GFldxyZZ8HS283QXXYN7_zA6-4_ROdof-KaDkPi4QK2q3OpLgAJVfhVmwTu0hbMv |
link.rule.ids | 315,783,787,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncloaking+hidden+repeating+fast+radio+bursts+with+unsupervised+machine+learning&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Chen%2C+Bo+Han&rft.au=Hashimoto%2C+Tetsuya&rft.au=Goto%2C+Tomotsugu&rft.au=Kim%2C+Seong+Jin&rft.date=2022-01-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=509&rft.issue=1&rft.spage=1227&rft.epage=1236&rft_id=info:doi/10.1093%2Fmnras%2Fstab2994&rft.externalDocID=10.1093%2Fmnras%2Fstab2994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |