Uncloaking hidden repeating fast radio bursts with unsupervised machine learning

ABSTRACT The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to li...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 509; no. 1; pp. 1227 - 1236
Main Authors Chen, Bo Han, Hashimoto, Tetsuya, Goto, Tomotsugu, Kim, Seong Jin, Santos, Daryl Joe D, On, Alvina Y L, Lu, Ting-Yi, Hsiao, Tiger Y-Y
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to limited observing periods and telescope sensitivities, some bursts may be misclassified as non-repeaters. Therefore, it is important to clearly distinguish FRBs into repeaters and non-repeaters, to better understand their origins. In this work, we classify repeaters and non-repeaters using unsupervised machine learning, without relying on expensive monitoring observations. We present a repeating FRB recognition method based on the Uniform Manifold Approximation and Projection (UMAP). The main goals of this work are to: (i) show that the unsupervised UMAP can classify repeating FRB population without any prior knowledge about their repetition, (ii) evaluate the assumption that non-repeating FRBs are contaminated by repeating FRBs, and (iii) recognize the FRB repeater candidates without monitoring observations and release a corresponding catalogue. We apply our method to the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) data base. We found that the unsupervised UMAP classification provides a repeating FRB completeness of 95 per cent and identifies 188 FRB repeater source candidates from 474 non-repeater sources. This work paves the way to a new classification of repeaters and non-repeaters based on a single epoch observation of FRBs.
AbstractList ABSTRACT The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the possibility that observed FRBs could be heterogeneous in origin; as some of them have been observed to repeat, and others have not. Due to limited observing periods and telescope sensitivities, some bursts may be misclassified as non-repeaters. Therefore, it is important to clearly distinguish FRBs into repeaters and non-repeaters, to better understand their origins. In this work, we classify repeaters and non-repeaters using unsupervised machine learning, without relying on expensive monitoring observations. We present a repeating FRB recognition method based on the Uniform Manifold Approximation and Projection (UMAP). The main goals of this work are to: (i) show that the unsupervised UMAP can classify repeating FRB population without any prior knowledge about their repetition, (ii) evaluate the assumption that non-repeating FRBs are contaminated by repeating FRBs, and (iii) recognize the FRB repeater candidates without monitoring observations and release a corresponding catalogue. We apply our method to the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) data base. We found that the unsupervised UMAP classification provides a repeating FRB completeness of 95 per cent and identifies 188 FRB repeater source candidates from 474 non-repeater sources. This work paves the way to a new classification of repeaters and non-repeaters based on a single epoch observation of FRBs.
Author Kim, Seong Jin
Santos, Daryl Joe D
Lu, Ting-Yi
Hashimoto, Tetsuya
Goto, Tomotsugu
Chen, Bo Han
Hsiao, Tiger Y-Y
On, Alvina Y L
Author_xml – sequence: 1
  givenname: Bo Han
  surname: Chen
  fullname: Chen, Bo Han
  email: 369grant2@gmail.com
– sequence: 2
  givenname: Tetsuya
  orcidid: 0000-0001-7228-1428
  surname: Hashimoto
  fullname: Hashimoto, Tetsuya
– sequence: 3
  givenname: Tomotsugu
  surname: Goto
  fullname: Goto, Tomotsugu
– sequence: 4
  givenname: Seong Jin
  orcidid: 0000-0001-9970-8145
  surname: Kim
  fullname: Kim, Seong Jin
– sequence: 5
  givenname: Daryl Joe D
  surname: Santos
  fullname: Santos, Daryl Joe D
– sequence: 6
  givenname: Alvina Y L
  orcidid: 0000-0003-4479-4415
  surname: On
  fullname: On, Alvina Y L
– sequence: 7
  givenname: Ting-Yi
  orcidid: 0000-0002-4965-6524
  surname: Lu
  fullname: Lu, Ting-Yi
– sequence: 8
  givenname: Tiger Y-Y
  surname: Hsiao
  fullname: Hsiao, Tiger Y-Y
BookMark eNqFkDFPwzAUhC1UJNrCyuyVIa0dO3Y9ogooUiUY6By92M_U0DqRnYD497QUZqaTTvfd8E3IKLYRCbnmbMaZEfN9TJDnuYemNEaekTEXqipKo9SIjBkTVbHQnF-QSc5vjDEpSjUmz5tody28h_hKt8E5jDRhh9AfCw-5pwlcaGkzpNxn-hn6LR1iHjpMHyGjo3uw2xCR7hBSPECX5NzDLuPVb07J5v7uZbkq1k8Pj8vbdWFLLfoClF9otpCglDNQWeEUVNpwVXltreTGKNt4qdBLxpQUmqPk0huNhpXcVWJKZqdfm9qcE_q6S2EP6avmrD76qH981H8-DsDNCWiH7r_tN9aPZuk
CitedBy_id crossref_primary_10_1093_mnras_stae1398
crossref_primary_10_1093_mnras_stac1689
crossref_primary_10_3390_universe9070330
crossref_primary_10_1093_mnras_stad930
crossref_primary_10_1093_mnras_stac3018
crossref_primary_10_1093_mnras_stac065
crossref_primary_10_1093_mnras_stac3206
crossref_primary_10_1093_mnras_stac3599
crossref_primary_10_1103_RevModPhys_95_035005
crossref_primary_10_1016_j_ascom_2024_100851
crossref_primary_10_3847_1538_4357_ac7f2c
crossref_primary_10_1093_mnras_stad1304
crossref_primary_10_1093_mnras_stad1942
crossref_primary_10_3847_1538_4357_ac958a
crossref_primary_10_1088_1538_3873_ac8f71
crossref_primary_10_3847_1538_4357_ad2a58
crossref_primary_10_3847_1538_4357_acaf06
crossref_primary_10_3390_universe9060251
crossref_primary_10_1093_pasj_psac101
crossref_primary_10_1093_mnras_stae1594
crossref_primary_10_1088_1674_4527_ac9111
Cites_doi 10.1038/s41550-019-0831-y
10.1016/j.physrep.2019.06.003
10.1038/nature15769
10.1126/science.1236789
10.1017/pasa.2016.35
10.1093/bioinformatics/btq134
10.1088/1538-3873/128/966/084503
10.1093/mnras/staa2490
10.1007/978-3-642-37456-2_14
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
DBID AAYXX
CITATION
DOI 10.1093/mnras/stab2994
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1236
ExternalDocumentID 10_1093_mnras_stab2994
10.1093/mnras/stab2994
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-a6f87084a66d9a5c3d6a579165f7cc41996cbf46ef40064371e414f97e9021d53
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Thu Sep 12 17:01:40 EDT 2024
Wed Aug 28 03:23:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: data analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-a6f87084a66d9a5c3d6a579165f7cc41996cbf46ef40064371e414f97e9021d53
ORCID 0000-0001-7228-1428
0000-0001-9970-8145
0000-0003-4479-4415
0000-0002-4965-6524
PageCount 10
ParticipantIDs crossref_primary_10_1093_mnras_stab2994
oup_primary_10_1093_mnras_stab2994
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References The CHIME/FRB Collaboration (2021111801240580200_bib15) 2021
Wagstaff (2021111801240580200_bib17) 2016; 128
Lorimer (2021111801240580200_bib8) 2007; 318
McInnes (2021111801240580200_bib10) 2018
Farah (2021111801240580200_bib5) 2020
Hashimoto (2021111801240580200_bib6) 2020; 498
Petroff (2021111801240580200_bib11) 2016; 33
Campello (2021111801240580200_bib4) 2013
Masui (2021111801240580200_bib9) 2015; 528
Thornton (2021111801240580200_bib16) 2013; 341
Platts (2021111801240580200_bib12) 2019; 821
Altmann (2021111801240580200_bib2) 2010; 26
Bishop (2021111801240580200_bib3) 2006
Pleunis (2021111801240580200_bib13) 2021
Agarwal (2021111801240580200_bib1) 2020
Ravi (2021111801240580200_bib14) 2019; 3
References_xml – volume: 3
  start-page: 928
  year: 2019
  ident: 2021111801240580200_bib14
  publication-title: Nature Astron.
  doi: 10.1038/s41550-019-0831-y
  contributor:
    fullname: Ravi
– volume: 318
  start-page: 777
  year: 2007
  ident: 2021111801240580200_bib8
  publication-title: Science
  doi: 10.1016/j.physrep.2019.06.003
  contributor:
    fullname: Lorimer
– volume: 528
  start-page: 523
  year: 2015
  ident: 2021111801240580200_bib9
  publication-title: Nature
  doi: 10.1038/nature15769
  contributor:
    fullname: Masui
– year: 2020
  ident: 2021111801240580200_bib1
  contributor:
    fullname: Agarwal
– volume: 341
  start-page: 53
  year: 2013
  ident: 2021111801240580200_bib16
  publication-title: Science
  doi: 10.1126/science.1236789
  contributor:
    fullname: Thornton
– volume: 33
  start-page: e045
  year: 2016
  ident: 2021111801240580200_bib11
  publication-title: PASA
  doi: 10.1017/pasa.2016.35
  contributor:
    fullname: Petroff
– volume: 26
  start-page: 1340
  year: 2010
  ident: 2021111801240580200_bib2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
  contributor:
    fullname: Altmann
– start-page: #236.03
  year: 2021
  ident: 2021111801240580200_bib13
  contributor:
    fullname: Pleunis
– volume: 128
  start-page: 084503
  year: 2016
  ident: 2021111801240580200_bib17
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1088/1538-3873/128/966/084503
  contributor:
    fullname: Wagstaff
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 2021111801240580200_bib3
  contributor:
    fullname: Bishop
– volume: 498
  start-page: 3927
  year: 2020
  ident: 2021111801240580200_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2490
  contributor:
    fullname: Hashimoto
– year: 2020
  ident: 2021111801240580200_bib5
  contributor:
    fullname: Farah
– start-page: 160
  volume-title: Advances in Knowledge Discovery and Data Mining
  year: 2013
  ident: 2021111801240580200_bib4
  doi: 10.1007/978-3-642-37456-2_14
  contributor:
    fullname: Campello
– year: 2018
  ident: 2021111801240580200_bib10
  contributor:
    fullname: McInnes
– volume: 821
  start-page: 1
  year: 2019
  ident: 2021111801240580200_bib12
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2019.06.003
  contributor:
    fullname: Platts
– start-page: 325
  volume-title: AAS Meeting Abstracts, #53
  year: 2021
  ident: 2021111801240580200_bib15
  contributor:
    fullname: The CHIME/FRB Collaboration
SSID ssj0004326
Score 2.5441897
Snippet ABSTRACT The origins of fast radio bursts (FRBs), astronomical transients with millisecond time-scales, remain unknown. One of the difficulties stems from the...
SourceID crossref
oup
SourceType Aggregation Database
Publisher
StartPage 1227
Title Uncloaking hidden repeating fast radio bursts with unsupervised machine learning
Volume 509
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7SkxfRqrS-CCJ6Wkqbx-4eS7EUoeqhhd6WbB5aaLNlsz34751kt74Q9LaP2cskm_kyk_k-hG5oTBVhREdKJSKikiZRkmoaJSxNFB1oqZhvcJ4-8smcPizYoiGLdr-U8FPSW9tSuB5gpRyWTs_86TnRYObOnhafHZAkCKsFAkbYAvQ_6Bl_fv4t_PiWti_RZHyIDhoYiIf1uB2hPW3bqDN0PjFdrN_wLQ7Xdd7BtVF3CuC2KEMOHF6OVktAmuHuGD3PrVwVQVUKv3pGEItLvfFYEB4Y4SpcCrUsMLjPVQ77zCveWrfd-GXCaYXX4UClxo2CxMsJmo_vZ6NJ1AglRBLQRxUJbuC3S6jgXKWCSaK4YDEAP2ZiKak_aCxzQ7k2tK7U9TXtU5PGOoUQrxg5RS1bWN1BOAZIJAxsUXNBwFjknuAdIAPx2i-C8i662_kv29R8GFldxyZZ8HS283QXXYN7_zA6-4_ROdof-KaDkPi4QK2q3OpLgAJVfhVmwTu0hbMv
link.rule.ids 315,783,787,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncloaking+hidden+repeating+fast+radio+bursts+with+unsupervised+machine+learning&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Chen%2C+Bo+Han&rft.au=Hashimoto%2C+Tetsuya&rft.au=Goto%2C+Tomotsugu&rft.au=Kim%2C+Seong+Jin&rft.date=2022-01-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=509&rft.issue=1&rft.spage=1227&rft.epage=1236&rft_id=info:doi/10.1093%2Fmnras%2Fstab2994&rft.externalDocID=10.1093%2Fmnras%2Fstab2994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon