DCS-Gait: A Class-Level Domain Adaptation Approach for Cross-Scene and Cross-State Gait Recognition Using Wi-Fi CSI

Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 19; pp. 2997 - 3007
Main Authors Liang, Ying, Wu, Wenjie, Li, Haobo, Chang, Xiaojun, Chen, Xiaojiang, Peng, Jinye, Xu, Pengfei
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challenge of reliably identifying subjects across different scenes or states. To overcome this challenge, this paper proposes DCS-Gait, a domain adaptation solution for cross-scene and cross-state gait recognition based on Wi-Fi CSI. DCS-Gait leverages a novel data distribution measurement called Cross-Attention Metric to align the class-level data distribution differences, enabling the model to learn invariant features across scenes and states. To address the issue of data annotation, we employ a pre-training method to obtain pseudo labels for the dataset. Additionally, a combined matching filtering technique is utilized to generate high-quality pseudo labels for unrecognized data, which can be further employed for supervised model training. We evaluated the effectiveness of DCS-Gait on a large test set consisting of 34 subjects, 2 scenes, and 3 different states, and the results demonstrate significant improvements over the state-of-the-art baselines in both cross-scene and cross-state gait recognition tasks. DCS-Gait provides a promising and reliable solution for accurate cross-scene and cross-state gait recognition in real-world settings.
AbstractList Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challenge of reliably identifying subjects across different scenes or states. To overcome this challenge, this paper proposes DCS-Gait, a domain adaptation solution for cross-scene and cross-state gait recognition based on Wi-Fi CSI. DCS-Gait leverages a novel data distribution measurement called Cross-Attention Metric to align the class-level data distribution differences, enabling the model to learn invariant features across scenes and states. To address the issue of data annotation, we employ a pre-training method to obtain pseudo labels for the dataset. Additionally, a combined matching filtering technique is utilized to generate high-quality pseudo labels for unrecognized data, which can be further employed for supervised model training. We evaluated the effectiveness of DCS-Gait on a large test set consisting of 34 subjects, 2 scenes, and 3 different states, and the results demonstrate significant improvements over the state-of-the-art baselines in both cross-scene and cross-state gait recognition tasks. DCS-Gait provides a promising and reliable solution for accurate cross-scene and cross-state gait recognition in real-world settings.
Author Chen, Xiaojiang
Wu, Wenjie
Chang, Xiaojun
Peng, Jinye
Xu, Pengfei
Li, Haobo
Liang, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0001-8977-2856
  surname: Liang
  fullname: Liang, Ying
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
– sequence: 2
  givenname: Wenjie
  orcidid: 0000-0001-6292-3925
  surname: Wu
  fullname: Wu, Wenjie
  organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
– sequence: 3
  givenname: Haobo
  orcidid: 0000-0001-5061-3663
  surname: Li
  fullname: Li, Haobo
  organization: College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China
– sequence: 4
  givenname: Xiaojun
  orcidid: 0000-0002-7778-8807
  surname: Chang
  fullname: Chang, Xiaojun
  organization: Australian Artificial Intelligence Institute, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 5
  givenname: Xiaojiang
  orcidid: 0000-0002-1180-6806
  surname: Chen
  fullname: Chen, Xiaojiang
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
– sequence: 6
  givenname: Jinye
  surname: Peng
  fullname: Peng, Jinye
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
– sequence: 7
  givenname: Pengfei
  orcidid: 0000-0001-8701-2669
  surname: Xu
  fullname: Xu, Pengfei
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
BookMark eNp9kM1PwjAYxhuDiYD-Ad6aeB72Y-tab2QIkpCYOIjHpes6LBkttsPE_95N0IMHT-_zJs_zfvxGYGCd1QDcYjTBGIn79XKeTwgi8YTShHGSXoAhThIWMUTw4FdjegVGIewQimPM-BCEWZZHC2naBziFWSNDiFb6Qzdw5vbSWDit5KGVrXGdPBy8k-oN1s7DzLvOmittNZS2-uk7q4b9OPiildta853cBGO38NVEcwOzfHkNLmvZBH1zrmOwmT-us6do9bxYZtNVpEhK20iIWFRUJhgTwWqFFI5rKVBZU6YQK5GqdFrKMhYxqzhXJKkoKQktqUorXtKKjsHdaW539_tRh7bYuaO33cqCCIIJx5yjzoVPLtW_4HVdHLzZS_9ZYFT0bIuebdGzLc5su0z6J6PMiVLrpWn-SX4Bba5-ow
CitedBy_id crossref_primary_10_1007_s13042_024_02266_5
crossref_primary_10_1109_ACCESS_2024_3443231
Cites_doi 10.1109/SAHCN.2018.8397108
10.1109/DCOSS.2016.30
10.1007/s11760-021-02050-w
10.3390/s18020468
10.1109/TCDS.2020.3048883
10.1109/ACCESS.2020.3009123
10.1109/CVPR42600.2020.00400
10.1109/ICDM.2019.00088
10.1145/2971648.2971670
10.1016/0167-6393(95)00009-D
10.1007/978-3-319-49409-8_35
10.1145/2994374.2994377
10.1109/ICCV.2019.00096
10.1109/IPSN.2016.7460727
10.1109/tnnls.2022.3154723
10.1109/ICCV.2019.01021
10.1109/GLOCOM.2016.7841847
10.3390/s17030478
10.1145/3375799
10.1109/ACCESS.2020.2966142
10.1016/j.patrec.2022.07.015
10.1109/CVPR.2019.00503
10.1109/TNNLS.2020.2988928
10.1109/CVPR42600.2020.00875
10.1007/s10489-021-02925-y
10.1109/TCSVT.2022.3161515
10.1109/BIOSIG55365.2022.9897053
10.1109/IECON.2018.8591820
10.1109/ICCSE.2019.8845356
10.1145/3472810
10.1109/ICCV.2019.00018
10.1109/ICASSP.2000.859153
10.1109/TSMCB.2007.903540
10.1109/TUFFC.2022.3198503
10.1109/JIOT.2020.3040782
10.1109/RadarConf2147009.2021.9455175
10.1016/j.patcog.2005.03.016
10.1109/CVPR.2018.00768
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00146
10.3390/electronics8101069
10.1109/IWQoS54832.2022.9812893
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2024.3356827
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 3007
ExternalDocumentID 10_1109_TIFS_2024_3356827
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c273t-9949d3a511296fc0c14fa90bf36c06b0cde7bab4946d88c25d32b23b3c7d8b3d3
ISSN 1556-6013
IngestDate Mon Jun 30 02:08:02 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Tue Jul 01 01:34:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-9949d3a511296fc0c14fa90bf36c06b0cde7bab4946d88c25d32b23b3c7d8b3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6292-3925
0000-0001-8977-2856
0000-0002-7778-8807
0000-0002-1180-6806
0000-0001-8701-2669
0000-0001-5061-3663
PQID 2921281880
PQPubID 85506
PageCount 11
ParticipantIDs proquest_journals_2921281880
crossref_primary_10_1109_TIFS_2024_3356827
crossref_citationtrail_10_1109_TIFS_2024_3356827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
Beckmann (ref22) 1987
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
Vaswani (ref46); 30
ref24
Ganin (ref43)
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref44
ref21
Wang (ref18) 2018
ref28
van der Maaten (ref48) 2008; 9
ref27
ref29
ref8
ref7
Liang (ref38)
ref9
ref4
ref3
ref6
ref5
Long (ref34)
ref40
References_xml – ident: ref30
  doi: 10.1109/SAHCN.2018.8397108
– ident: ref2
  doi: 10.1109/DCOSS.2016.30
– ident: ref6
  doi: 10.1007/s11760-021-02050-w
– ident: ref14
  doi: 10.3390/s18020468
– ident: ref39
  doi: 10.1109/TCDS.2020.3048883
– ident: ref33
  doi: 10.1109/ACCESS.2020.3009123
– ident: ref41
  doi: 10.1109/CVPR42600.2020.00400
– ident: ref42
  doi: 10.1109/ICDM.2019.00088
– ident: ref23
  doi: 10.1145/2971648.2971670
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Attention is all you need
– ident: ref3
  doi: 10.1016/0167-6393(95)00009-D
– ident: ref35
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref28
  doi: 10.1145/2994374.2994377
– ident: ref19
  doi: 10.1109/ICCV.2019.00096
– ident: ref47
  doi: 10.1109/IPSN.2016.7460727
– ident: ref13
  doi: 10.1109/tnnls.2022.3154723
– ident: ref21
  doi: 10.1109/ICCV.2019.01021
– ident: ref29
  doi: 10.1109/GLOCOM.2016.7841847
– ident: ref12
  doi: 10.3390/s17030478
– start-page: 6028
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation
– ident: ref1
  doi: 10.1145/3375799
– ident: ref15
  doi: 10.1109/ACCESS.2020.2966142
– ident: ref16
  doi: 10.1016/j.patrec.2022.07.015
– ident: ref36
  doi: 10.1109/CVPR.2019.00503
– ident: ref44
  doi: 10.1109/TNNLS.2020.2988928
– start-page: 97
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref34
  article-title: Learning transferable features with deep adaptation networks
– ident: ref37
  doi: 10.1109/CVPR42600.2020.00875
– ident: ref10
  doi: 10.1007/s10489-021-02925-y
– ident: ref17
  doi: 10.1109/TCSVT.2022.3161515
– ident: ref11
  doi: 10.1109/BIOSIG55365.2022.9897053
– ident: ref24
  doi: 10.1109/IECON.2018.8591820
– ident: ref31
  doi: 10.1109/ICCSE.2019.8845356
– ident: ref5
  doi: 10.1145/3472810
– ident: ref45
  doi: 10.1109/ICCV.2019.00018
– ident: ref4
  doi: 10.1109/ICASSP.2000.859153
– ident: ref9
  doi: 10.1109/TSMCB.2007.903540
– ident: ref7
  doi: 10.1109/TUFFC.2022.3198503
– year: 2018
  ident: ref18
  article-title: CSI-Net: Unified human body characterization and pose recognition
  publication-title: arXiv:1810.03064
– ident: ref27
  doi: 10.1109/JIOT.2020.3040782
– ident: ref25
  doi: 10.1109/RadarConf2147009.2021.9455175
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref48
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref8
  doi: 10.1016/j.patcog.2005.03.016
– ident: ref20
  doi: 10.1109/CVPR.2018.00768
– ident: ref32
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00146
– start-page: 1180
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref43
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref40
  doi: 10.3390/electronics8101069
– volume-title: The Scattering of Electromagnetic Waves From Rough Surfaces
  year: 1987
  ident: ref22
– ident: ref26
  doi: 10.1109/IWQoS54832.2022.9812893
SSID ssj0044168
Score 2.4016654
Snippet Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2997
SubjectTerms Adaptation
Annotations
Gait recognition
Labels
Training
Title DCS-Gait: A Class-Level Domain Adaptation Approach for Cross-Scene and Cross-State Gait Recognition Using Wi-Fi CSI
URI https://www.proquest.com/docview/2921281880
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcoEDjwLTlsLowImOgiv5JW6ZQGgZ4JJ0CCePJMsz7oDTIc6lf4k_yerlqBQYysUTa-x1kv28u5K-3UXoRcGzhmqqiUi5ICk4SHjnBCeUNYloWMNdbtXHT_nJWfp-mS1Hox8Ra2nTy7G6_G1eyf9oFcZAryZL9gaaHYTCAHwG_cIRNAzHf9Lxm-mcvBNt79PLTSBMPhgWEMTF34RZyajFhacTTnzxcMsrnBrfSOYKDJ3dPfDnJvA8MgJNNOl4RXCnYxV8bsmsPZrOT-Nw1kwVTZeJ0HLc7j34WqyBxGgY8r4S9No3yxtYQK1frf4SHKhxDxvL-9Pdeau3F1oXKVZyFfER3L3LVqzON128fOHypYOtzXIC80Fn33Q85pKmBwPNYwvLHZ_Xe2uWuKa51z2BLaS6OJ3Nx-axY8ayvKTF1u2Frf5fvOHAUbSzo4RXRkRlRFRexC10m8Kc5NglCwa3D2Gly7sMv8pvoYOIV9e-xdUg6GoMYAObxQN0z89I8MTB6yEa6W4X3Q_dPrA3_rvoblS68hFaB-y9xhMcIQ875OEt8nBAHgYw4Ah5GCCBI-RhIw5HyMMWedgiDwPyHqOz2dvF9IT4Bh5EwUvfE85TXjNhY_q8UYk6ThvBE9mwXCW5TFStCylkytO8LktFs5pRSZlkqqhLyWr2BO10q07vIayLQuYUhNUlSzNVCsEbmTUgQXDBc7qPkvCPVspXtzdNVr5Wf9TjPno53HLhSrv87eLDoKbKW4B1RTk1G9HgAg9uIuspumNO3ULeIdrpv2_0Mwhte_ncQuonsFieoQ
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCS-Gait%3A+A+Class-Level+Domain+Adaptation+Approach+for+Cross-Scene+and+Cross-State+Gait+Recognition+Using+Wi-Fi+CSI&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liang%2C+Ying&rft.au=Wu%2C+Wenjie&rft.au=Li%2C+Haobo&rft.au=Chang%2C+Xiaojun&rft.date=2024&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=19&rft.spage=2997&rft.epage=3007&rft_id=info:doi/10.1109%2FTIFS.2024.3356827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2024_3356827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon