DCS-Gait: A Class-Level Domain Adaptation Approach for Cross-Scene and Cross-State Gait Recognition Using Wi-Fi CSI
Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challe...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 19; pp. 2997 - 3007 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challenge of reliably identifying subjects across different scenes or states. To overcome this challenge, this paper proposes DCS-Gait, a domain adaptation solution for cross-scene and cross-state gait recognition based on Wi-Fi CSI. DCS-Gait leverages a novel data distribution measurement called Cross-Attention Metric to align the class-level data distribution differences, enabling the model to learn invariant features across scenes and states. To address the issue of data annotation, we employ a pre-training method to obtain pseudo labels for the dataset. Additionally, a combined matching filtering technique is utilized to generate high-quality pseudo labels for unrecognized data, which can be further employed for supervised model training. We evaluated the effectiveness of DCS-Gait on a large test set consisting of 34 subjects, 2 scenes, and 3 different states, and the results demonstrate significant improvements over the state-of-the-art baselines in both cross-scene and cross-state gait recognition tasks. DCS-Gait provides a promising and reliable solution for accurate cross-scene and cross-state gait recognition in real-world settings. |
---|---|
AbstractList | Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challenge of reliably identifying subjects across different scenes or states. To overcome this challenge, this paper proposes DCS-Gait, a domain adaptation solution for cross-scene and cross-state gait recognition based on Wi-Fi CSI. DCS-Gait leverages a novel data distribution measurement called Cross-Attention Metric to align the class-level data distribution differences, enabling the model to learn invariant features across scenes and states. To address the issue of data annotation, we employ a pre-training method to obtain pseudo labels for the dataset. Additionally, a combined matching filtering technique is utilized to generate high-quality pseudo labels for unrecognized data, which can be further employed for supervised model training. We evaluated the effectiveness of DCS-Gait on a large test set consisting of 34 subjects, 2 scenes, and 3 different states, and the results demonstrate significant improvements over the state-of-the-art baselines in both cross-scene and cross-state gait recognition tasks. DCS-Gait provides a promising and reliable solution for accurate cross-scene and cross-state gait recognition in real-world settings. |
Author | Chen, Xiaojiang Wu, Wenjie Chang, Xiaojun Peng, Jinye Xu, Pengfei Li, Haobo Liang, Ying |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0001-8977-2856 surname: Liang fullname: Liang, Ying organization: School of Information Science and Technology, Northwest University, Xi'an, China – sequence: 2 givenname: Wenjie orcidid: 0000-0001-6292-3925 surname: Wu fullname: Wu, Wenjie organization: School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China – sequence: 3 givenname: Haobo orcidid: 0000-0001-5061-3663 surname: Li fullname: Li, Haobo organization: College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, China – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-7778-8807 surname: Chang fullname: Chang, Xiaojun organization: Australian Artificial Intelligence Institute, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 5 givenname: Xiaojiang orcidid: 0000-0002-1180-6806 surname: Chen fullname: Chen, Xiaojiang organization: School of Information Science and Technology, Northwest University, Xi'an, China – sequence: 6 givenname: Jinye surname: Peng fullname: Peng, Jinye organization: School of Information Science and Technology, Northwest University, Xi'an, China – sequence: 7 givenname: Pengfei orcidid: 0000-0001-8701-2669 surname: Xu fullname: Xu, Pengfei organization: School of Information Science and Technology, Northwest University, Xi'an, China |
BookMark | eNp9kM1PwjAYxhuDiYD-Ad6aeB72Y-tab2QIkpCYOIjHpes6LBkttsPE_95N0IMHT-_zJs_zfvxGYGCd1QDcYjTBGIn79XKeTwgi8YTShHGSXoAhThIWMUTw4FdjegVGIewQimPM-BCEWZZHC2naBziFWSNDiFb6Qzdw5vbSWDit5KGVrXGdPBy8k-oN1s7DzLvOmittNZS2-uk7q4b9OPiildta853cBGO38NVEcwOzfHkNLmvZBH1zrmOwmT-us6do9bxYZtNVpEhK20iIWFRUJhgTwWqFFI5rKVBZU6YQK5GqdFrKMhYxqzhXJKkoKQktqUorXtKKjsHdaW539_tRh7bYuaO33cqCCIIJx5yjzoVPLtW_4HVdHLzZS_9ZYFT0bIuebdGzLc5su0z6J6PMiVLrpWn-SX4Bba5-ow |
CitedBy_id | crossref_primary_10_1007_s13042_024_02266_5 crossref_primary_10_1109_ACCESS_2024_3443231 |
Cites_doi | 10.1109/SAHCN.2018.8397108 10.1109/DCOSS.2016.30 10.1007/s11760-021-02050-w 10.3390/s18020468 10.1109/TCDS.2020.3048883 10.1109/ACCESS.2020.3009123 10.1109/CVPR42600.2020.00400 10.1109/ICDM.2019.00088 10.1145/2971648.2971670 10.1016/0167-6393(95)00009-D 10.1007/978-3-319-49409-8_35 10.1145/2994374.2994377 10.1109/ICCV.2019.00096 10.1109/IPSN.2016.7460727 10.1109/tnnls.2022.3154723 10.1109/ICCV.2019.01021 10.1109/GLOCOM.2016.7841847 10.3390/s17030478 10.1145/3375799 10.1109/ACCESS.2020.2966142 10.1016/j.patrec.2022.07.015 10.1109/CVPR.2019.00503 10.1109/TNNLS.2020.2988928 10.1109/CVPR42600.2020.00875 10.1007/s10489-021-02925-y 10.1109/TCSVT.2022.3161515 10.1109/BIOSIG55365.2022.9897053 10.1109/IECON.2018.8591820 10.1109/ICCSE.2019.8845356 10.1145/3472810 10.1109/ICCV.2019.00018 10.1109/ICASSP.2000.859153 10.1109/TSMCB.2007.903540 10.1109/TUFFC.2022.3198503 10.1109/JIOT.2020.3040782 10.1109/RadarConf2147009.2021.9455175 10.1016/j.patcog.2005.03.016 10.1109/CVPR.2018.00768 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00146 10.3390/electronics8101069 10.1109/IWQoS54832.2022.9812893 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2024.3356827 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 3007 |
ExternalDocumentID | 10_1109_TIFS_2024_3356827 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH AAYXX ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIG RNS 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c273t-9949d3a511296fc0c14fa90bf36c06b0cde7bab4946d88c25d32b23b3c7d8b3d3 |
ISSN | 1556-6013 |
IngestDate | Mon Jun 30 02:08:02 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Tue Jul 01 01:34:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-9949d3a511296fc0c14fa90bf36c06b0cde7bab4946d88c25d32b23b3c7d8b3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6292-3925 0000-0001-8977-2856 0000-0002-7778-8807 0000-0002-1180-6806 0000-0001-8701-2669 0000-0001-5061-3663 |
PQID | 2921281880 |
PQPubID | 85506 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2921281880 crossref_primary_10_1109_TIFS_2024_3356827 crossref_citationtrail_10_1109_TIFS_2024_3356827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 Beckmann (ref22) 1987 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 Vaswani (ref46); 30 ref24 Ganin (ref43) ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref44 ref21 Wang (ref18) 2018 ref28 van der Maaten (ref48) 2008; 9 ref27 ref29 ref8 ref7 Liang (ref38) ref9 ref4 ref3 ref6 ref5 Long (ref34) ref40 |
References_xml | – ident: ref30 doi: 10.1109/SAHCN.2018.8397108 – ident: ref2 doi: 10.1109/DCOSS.2016.30 – ident: ref6 doi: 10.1007/s11760-021-02050-w – ident: ref14 doi: 10.3390/s18020468 – ident: ref39 doi: 10.1109/TCDS.2020.3048883 – ident: ref33 doi: 10.1109/ACCESS.2020.3009123 – ident: ref41 doi: 10.1109/CVPR42600.2020.00400 – ident: ref42 doi: 10.1109/ICDM.2019.00088 – ident: ref23 doi: 10.1145/2971648.2971670 – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref46 article-title: Attention is all you need – ident: ref3 doi: 10.1016/0167-6393(95)00009-D – ident: ref35 doi: 10.1007/978-3-319-49409-8_35 – ident: ref28 doi: 10.1145/2994374.2994377 – ident: ref19 doi: 10.1109/ICCV.2019.00096 – ident: ref47 doi: 10.1109/IPSN.2016.7460727 – ident: ref13 doi: 10.1109/tnnls.2022.3154723 – ident: ref21 doi: 10.1109/ICCV.2019.01021 – ident: ref29 doi: 10.1109/GLOCOM.2016.7841847 – ident: ref12 doi: 10.3390/s17030478 – start-page: 6028 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref38 article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation – ident: ref1 doi: 10.1145/3375799 – ident: ref15 doi: 10.1109/ACCESS.2020.2966142 – ident: ref16 doi: 10.1016/j.patrec.2022.07.015 – ident: ref36 doi: 10.1109/CVPR.2019.00503 – ident: ref44 doi: 10.1109/TNNLS.2020.2988928 – start-page: 97 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref34 article-title: Learning transferable features with deep adaptation networks – ident: ref37 doi: 10.1109/CVPR42600.2020.00875 – ident: ref10 doi: 10.1007/s10489-021-02925-y – ident: ref17 doi: 10.1109/TCSVT.2022.3161515 – ident: ref11 doi: 10.1109/BIOSIG55365.2022.9897053 – ident: ref24 doi: 10.1109/IECON.2018.8591820 – ident: ref31 doi: 10.1109/ICCSE.2019.8845356 – ident: ref5 doi: 10.1145/3472810 – ident: ref45 doi: 10.1109/ICCV.2019.00018 – ident: ref4 doi: 10.1109/ICASSP.2000.859153 – ident: ref9 doi: 10.1109/TSMCB.2007.903540 – ident: ref7 doi: 10.1109/TUFFC.2022.3198503 – year: 2018 ident: ref18 article-title: CSI-Net: Unified human body characterization and pose recognition publication-title: arXiv:1810.03064 – ident: ref27 doi: 10.1109/JIOT.2020.3040782 – ident: ref25 doi: 10.1109/RadarConf2147009.2021.9455175 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref48 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref8 doi: 10.1016/j.patcog.2005.03.016 – ident: ref20 doi: 10.1109/CVPR.2018.00768 – ident: ref32 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00146 – start-page: 1180 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref43 article-title: Unsupervised domain adaptation by backpropagation – ident: ref40 doi: 10.3390/electronics8101069 – volume-title: The Scattering of Electromagnetic Waves From Rough Surfaces year: 1987 ident: ref22 – ident: ref26 doi: 10.1109/IWQoS54832.2022.9812893 |
SSID | ssj0044168 |
Score | 2.4016654 |
Snippet | Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2997 |
SubjectTerms | Adaptation Annotations Gait recognition Labels Training |
Title | DCS-Gait: A Class-Level Domain Adaptation Approach for Cross-Scene and Cross-State Gait Recognition Using Wi-Fi CSI |
URI | https://www.proquest.com/docview/2921281880 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcoEDjwLTlsLowImOgiv5JW6ZQGgZ4JJ0CCePJMsz7oDTIc6lf4k_yerlqBQYysUTa-x1kv28u5K-3UXoRcGzhmqqiUi5ICk4SHjnBCeUNYloWMNdbtXHT_nJWfp-mS1Hox8Ra2nTy7G6_G1eyf9oFcZAryZL9gaaHYTCAHwG_cIRNAzHf9Lxm-mcvBNt79PLTSBMPhgWEMTF34RZyajFhacTTnzxcMsrnBrfSOYKDJ3dPfDnJvA8MgJNNOl4RXCnYxV8bsmsPZrOT-Nw1kwVTZeJ0HLc7j34WqyBxGgY8r4S9No3yxtYQK1frf4SHKhxDxvL-9Pdeau3F1oXKVZyFfER3L3LVqzON128fOHypYOtzXIC80Fn33Q85pKmBwPNYwvLHZ_Xe2uWuKa51z2BLaS6OJ3Nx-axY8ayvKTF1u2Frf5fvOHAUbSzo4RXRkRlRFRexC10m8Kc5NglCwa3D2Gly7sMv8pvoYOIV9e-xdUg6GoMYAObxQN0z89I8MTB6yEa6W4X3Q_dPrA3_rvoblS68hFaB-y9xhMcIQ875OEt8nBAHgYw4Ah5GCCBI-RhIw5HyMMWedgiDwPyHqOz2dvF9IT4Bh5EwUvfE85TXjNhY_q8UYk6ThvBE9mwXCW5TFStCylkytO8LktFs5pRSZlkqqhLyWr2BO10q07vIayLQuYUhNUlSzNVCsEbmTUgQXDBc7qPkvCPVspXtzdNVr5Wf9TjPno53HLhSrv87eLDoKbKW4B1RTk1G9HgAg9uIuspumNO3ULeIdrpv2_0Mwhte_ncQuonsFieoQ |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCS-Gait%3A+A+Class-Level+Domain+Adaptation+Approach+for+Cross-Scene+and+Cross-State+Gait+Recognition+Using+Wi-Fi+CSI&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Liang%2C+Ying&rft.au=Wu%2C+Wenjie&rft.au=Li%2C+Haobo&rft.au=Chang%2C+Xiaojun&rft.date=2024&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=19&rft.spage=2997&rft.epage=3007&rft_id=info:doi/10.1109%2FTIFS.2024.3356827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2024_3356827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |