On a reaction–diffusion system modelling infectious diseases without lifetime immunity

In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 33; no. 5; pp. 803 - 827
Main Author YIN, HONG-MING
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.10.2022
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792521000231

Cover

Abstract In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.
AbstractList In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.
In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.
Author YIN, HONG-MING
Author_xml – sequence: 1
  givenname: HONG-MING
  orcidid: 0000-0001-9119-6392
  surname: YIN
  fullname: YIN, HONG-MING
BookMark eNp9kM1KxDAUhYMoODP6AO4Crqv5a5IuZfAPBmahgruSpolmaJMxSZHZ-Q6-oU9iy7hScHUvnO-cyz1zcOiDNwCcYXSBERaXD6gquahISTBCiFB8AGaY8apgjJSHYDbJxaQfg3lKG4QwRaKagee1hwpGo3R2wX99fLbO2iGNO0y7lE0P-9CarnP-BTpvzYQNCbYuGZVMgu8uv4Yhw85Zk11voOv7wbu8OwFHVnXJnP7MBXi6uX5c3hWr9e398mpVaCJoLqRGrdWSo7YqGZGYGyqIFqRhQlZcG0GYElRRZLloxkcltroSjAkqkcJNQxfgfJ-7jeFtMCnXmzBEP56sxzgqOKdUjhTeUzqGlKKx9Ta6XsVdjVE9FVj_KXD0iF8e7bKaaspRue4f5zcD4Hcc
CitedBy_id crossref_primary_10_3934_mbe_2023872
crossref_primary_10_3390_sym15112025
Cites_doi 10.1038/280455a0
10.1088/1361-6544/ab8772
10.3934/dcdsb.2012.17.2829
10.1016/S0025-5564(02)00108-6
10.1007/978-1-4899-3614-1
10.1098/rspa.1927.0118
10.1007/BF00163027
10.1007/978-1-4615-3034-3
10.1137/120876642
10.1137/S0036144500371907
10.1007/BF02415082
10.1016/j.na.2017.03.007
10.3934/mbe.2011.8.733
10.1006/jdeq.1996.0157
10.1142/3302
10.1016/S0140-6736(11)60273-0
10.1016/0025-5564(92)90081-7
10.1016/S0025-5564(99)00030-9
10.3934/dcdsb.2016.21.1297
10.57262/ade/1356651736
10.1016/j.na.2017.02.022
10.1007/978-3-642-18460-4
10.1016/0022-1236(89)90005-0
10.1016/j.mbs.2011.04.001
10.1080/17513758.2014.974696
10.1080/03605300903089867
10.1038/280361a0
10.1216/JIE-1989-2-1-31
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792521000231
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 827
ExternalDocumentID 10_1017_S0956792521000231
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABEFU
ABGDZ
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMVHM
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c273t-8c0dfc860d9542816e372c72b47896ce724a73a30f67b01781fc97447380a1bb3
IEDL.DBID 8FG
ISSN 0956-7925
IngestDate Fri Jul 25 19:35:07 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-8c0dfc860d9542816e372c72b47896ce724a73a30f67b01781fc97447380a1bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9119-6392
PQID 2813766338
PQPubID 37129
PageCount 25
ParticipantIDs proquest_journals_2813766338
crossref_primary_10_1017_S0956792521000231
crossref_citationtrail_10_1017_S0956792521000231
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Evans (S0956792521000231_ref10) 2010; 19
S0956792521000231_ref13
Hethcote (S0956792521000231_ref11) 2000; 42
S0956792521000231_ref12
Li (S0956792521000231_ref17) 1999; 160
Lou (S0956792521000231_ref20) 1996; 131
Yamazaki (S0956792521000231_ref35) 2018; 10
Yamazaki (S0956792521000231_ref34) 2017; 14
S0956792521000231_ref19
Andrew (S0956792521000231_ref2) 2011; 377
Morgan (S0956792521000231_ref22) 2020; 33
May (S0956792521000231_ref21) 1979; 280
Yamazaki (S0956792521000231_ref33) 2016; 21
Yin (S0956792521000231_ref37) 2017; 159
Eisenberg (S0956792521000231_ref9) 2002; 180
Chadam (S0956792521000231_ref8) 1989; 2
Caceres (S0956792521000231_ref5) 2017; 159
van de Driessche (S0956792521000231_ref31) 2002; 180
Thieme (S0956792521000231_ref27) 1992; 111
Ladyzenskaja (S0956792521000231_ref16) 1968; 23
Vaidya (S0956792521000231_ref30) 2012; 17
S0956792521000231_ref23
Temam (S0956792521000231_ref25) 1988; 68
Anderson (S0956792521000231_ref1) 1979; 280
Troianiello (S0956792521000231_ref29) 1987
S0956792521000231_ref26
Shuai (S0956792521000231_ref24) 2013; 73
Kuznetsov (S0956792521000231_ref15) 1994; 32
Bocccardo (S0956792521000231_ref4) 1989; 87
Yin (S0956792521000231_ref36) 1997; 10
Campanato (S0956792521000231_ref6) 1966; 73
Wang (S0956792521000231_ref32) 2015; 9
Klements (S0956792521000231_ref14) 2020; 37
Tian (S0956792521000231_ref28) 2011; 232
Caputo (S0956792521000231_ref7) 2009; 34
Liao (S0956792521000231_ref18) 2011; 8
Bendahmane (S0956792521000231_ref3) 2002; 7
References_xml – volume: 68
  volume-title: Applied Mathematical Sciences
  year: 1988
  ident: S0956792521000231_ref25
– volume: 280
  start-page: 455
  year: 1979
  ident: S0956792521000231_ref21
  article-title: Population biology of infectious disease II
  publication-title: Nature
  doi: 10.1038/280455a0
– volume: 33
  start-page: 3105
  year: 2020
  ident: S0956792521000231_ref22
  article-title: Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab8772
– volume: 17
  start-page: 2829
  year: 2012
  ident: S0956792521000231_ref30
  article-title: Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment
  publication-title: Discrete Contin. Dyn. Ser. B
  doi: 10.3934/dcdsb.2012.17.2829
– volume: 23
  year: 1968
  ident: S0956792521000231_ref16
  article-title: Linear and Quasilinear Equations of Parabolic Type
  publication-title: AMS Translation Series
– volume: 180
  start-page: 29
  year: 2002
  ident: S0956792521000231_ref31
  article-title: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(02)00108-6
– volume-title: Elliptic Differential Equations and Obstacle Problems
  year: 1987
  ident: S0956792521000231_ref29
  doi: 10.1007/978-1-4899-3614-1
– ident: S0956792521000231_ref13
  doi: 10.1098/rspa.1927.0118
– volume: 180
  start-page: 29
  year: 2002
  ident: S0956792521000231_ref9
  article-title: A Cholera model in a patchy environment with water and human movement
  publication-title: Math. Biosci.
– volume: 32
  start-page: 109
  year: 1994
  ident: S0956792521000231_ref15
  article-title: Bifurcation analysis of periodic SEIR and SIR epidemic models
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00163027
– ident: S0956792521000231_ref23
  doi: 10.1007/978-1-4615-3034-3
– volume: 73
  start-page: 1513
  year: 2013
  ident: S0956792521000231_ref24
  article-title: Global stability of infectious disease models using lyapunov functions
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/120876642
– volume: 42
  start-page: 599
  year: 2000
  ident: S0956792521000231_ref11
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500371907
– ident: S0956792521000231_ref26
– volume: 73
  start-page: 55
  year: 1966
  ident: S0956792521000231_ref6
  article-title: Equazioni paraboliche del second ordine e space
  publication-title: Ann. Math. Pura Appl.
  doi: 10.1007/BF02415082
– volume: 10
  start-page: 200
  year: 2018
  ident: S0956792521000231_ref35
  article-title: Global well-posedness of infectious disease models without life-time immunity: the cases of Cholera and avian influenza
  publication-title: Math. Med. Biol.
– volume: 159
  start-page: 62
  year: 2017
  ident: S0956792521000231_ref5
  article-title: Close-to-equilibrium behavior of quadratic reaction-diffusion systems with detailed balance
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.03.007
– volume: 8
  start-page: 733
  year: 2011
  ident: S0956792521000231_ref18
  article-title: Stability analysis and application of a mathematical cholera model
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2011.8.733
– volume: 131
  start-page: 791
  year: 1996
  ident: S0956792521000231_ref20
  article-title: Diffusion, self-diffusion and cross-diffusion
  publication-title: J. Differ. Equations
  doi: 10.1006/jdeq.1996.0157
– ident: S0956792521000231_ref19
  doi: 10.1142/3302
– volume: 19
  volume-title: AMS Graduate Studies in Mathematics
  year: 2010
  ident: S0956792521000231_ref10
– volume: 377
  start-page: 1248
  year: 2011
  ident: S0956792521000231_ref2
  article-title: Transmission dynamics and control of cholera in Haiti: an epidemic model
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60273-0
– volume: 111
  start-page: 99
  year: 1992
  ident: S0956792521000231_ref27
  article-title: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(92)90081-7
– volume: 160
  start-page: 191
  year: 1999
  ident: S0956792521000231_ref17
  article-title: Liancheng Wang and, Janos Karsai, Global dynamics of a SEIR model with varying total population size
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(99)00030-9
– volume: 21
  start-page: 1297
  year: 2016
  ident: S0956792521000231_ref33
  article-title: Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion Cholera epidemic model
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2016.21.1297
– volume: 7
  start-page: 743
  year: 2002
  ident: S0956792521000231_ref3
  article-title: Existence of solutions for reaction-diffusion systems with
  publication-title: Adv. Differ. Equations
  doi: 10.57262/ade/1356651736
– volume: 10
  start-page: 31
  year: 1997
  ident: S0956792521000231_ref36
  article-title: $L^{2,u}$
  publication-title: J. Partial Differ. Equations
– volume: 159
  start-page: 482
  year: 2017
  ident: S0956792521000231_ref37
  article-title: On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.02.022
– ident: S0956792521000231_ref12
  doi: 10.1007/978-3-642-18460-4
– volume: 37
  start-page: 281
  year: 2020
  ident: S0956792521000231_ref14
  article-title: Global classical solutions to quadratic systems with mass control in arbitrary dimensions
  publication-title: Ann. I. H. Poincare AN
– volume: 87
  start-page: 149
  year: 1989
  ident: S0956792521000231_ref4
  article-title: Nonlinear elliptic and parabolic equations involving measure data
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(89)90005-0
– volume: 232
  start-page: 31
  year: 2011
  ident: S0956792521000231_ref28
  article-title: Global stability for Cholera epidemic models
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2011.04.001
– volume: 9
  start-page: 233
  year: 2015
  ident: S0956792521000231_ref32
  article-title: Analysis of Cholera epidemics with bacterial growth and spatial movement
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2014.974696
– volume: 34
  start-page: 1228
  year: 2009
  ident: S0956792521000231_ref7
  article-title: Global regularity of solutions to systems of reaction-diffusion with sub-quadratic growth in any space dimension
  publication-title: Commun. Partial Differ. Equations
  doi: 10.1080/03605300903089867
– volume: 14
  start-page: 559
  year: 2017
  ident: S0956792521000231_ref34
  article-title: Global stability and uniform persistence of the reaction-convection-diffusion Cholera epidemic model
  publication-title: Math. Biosci. Eng.
– volume: 280
  start-page: 361
  year: 1979
  ident: S0956792521000231_ref1
  article-title: Population biology of infectious diseases I
  publication-title: Nature
  doi: 10.1038/280361a0
– volume: 2
  start-page: 31
  year: 1989
  ident: S0956792521000231_ref8
  article-title: An iteration procedure for a class of integrodifferential equations of parabolic type
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/JIE-1989-2-1-31
SSID ssj0013079
Score 2.3086035
Snippet In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 803
SubjectTerms Applied mathematics
Asymptotic properties
Bacteria
Biological models (mathematics)
Cholera
Coronaviruses
COVID-19
Elliptic functions
Energy methods
Epidemics
Immunity
Infectious diseases
Influenza
Mathematical models
Medical research
Pandemics
Partial differential equations
Viruses
Title On a reaction–diffusion system modelling infectious diseases without lifetime immunity
URI https://www.proquest.com/docview/2813766338
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA66XfQgfuJ0jhw8CcE2SZv0JCqbQ3CKONitJGkKA9mmbQ_e_A_-Q3-JSZpuDGHXtCk0yfuR9-N5ALjUNBY0zCTSGSGIqiRDxuhxlFHNE238Ay1dle8oHo7p4ySa-IBb4csqG53oFHU2VzZGfo15aGQhNjeqm8UHsqxRNrvqKTS2QTs0lsaecz54WGURghXWHktw1GQ1HWS0GbRjOHSYL-G6XVpXy87WDPbBnncS4W29qwdgS88Owe7TEmG1OAKT5xkU0Hh8ri_h9_vHMp1UNvQFa3Bm6DhubLM5bAquqgL6fEwBbfx1XpXwfZpryy8Pp65RpPw6BuNB_-1-iDxLAlLG9SgRV0GWKx4HWRKZu0QYa8KwYlhSxpNYaYapYESQII-ZNL_Ow1yZSwRlhAcilJKcgNZsPtOnABLjTWCsOZM4oSISUhjrbT5k5FqpSNEOCJo1SpWHELdMFu9pXSvG0n_L2gFXyymLGj9j08vdZuFTL0pFutr4s82Pz8EOtr0JrtKuC1rlZ6UvjMdQyp47Fj3QvuuPXl7_AK-ivn0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PagH8Ylvc9CLUGzTtGkPIj5ZX6vILuytNmkWFqSrtkW8-R_8H_4of4mTtHVZhL15TdscppPMl8zM9wHsKubHzEmEpRLXtZgMEwuDXmAlTAWhQnyghKnybfnNDrvqet0J-Kp7YXRZZb0nmo06GUh9R35AAwfXgo8nqqPnF0urRunsai2hUbrFtXp_wyNbdnh5hv93j9KL8_Zp06pUBSyJoTq3AmknPRn4dhJ6iL0dX7mcSk4F40HoS8Upi7kbu3bP50KL1zs9iaCbcTewY0cIF-edhCmmO1obMHVy3rp_GOYt7CG7Hw-pV-dRDUk1Duox6hiWGWc0Eo4GAhPdLuZhroKl5Lj0owWYUOkizN7-crpmS9C9S0lMEGOaTojvj0-trVLoyzZS0kETo6qj29tJXeJVZKTKAGVE3_gOipw89XtKK9qTvmlNyd-XofMvFlyBRjpI1SoQF_ELpSrggoYs9mIRI17AiXAnkdKTbA3s2kaRrEjLtXbGU1RWp_Hoj1nXYP_3k-eSsWPcy5u14aNq8WbR0NXWxz_egelm-_YmurlsXW_ADNWdEabObxMa-WuhthCv5GK7chICj__tlz8nMPk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+reaction%E2%80%93diffusion+system+modelling+infectious+diseases+without+lifetime+immunity&rft.jtitle=European+journal+of+applied+mathematics&rft.au=Hong-Ming%2C+Yin&rft.date=2022-10-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=33&rft.issue=5&rft.spage=803&rft.epage=827&rft_id=info:doi/10.1017%2FS0956792521000231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon