Liquefaction behavior of fiber-reinforced calcareous sands in unidirectional and multidirectional simple shear tests

A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigat...

Full description

Saved in:
Bibliographic Details
Published inGeotextiles and geomembranes Vol. 50; no. 4; pp. 794 - 806
Main Authors Zhou, Lin, Chen, Jian-Feng, Peng, Ming, Zhu, Yan
Format Journal Article
LanguageEnglish
Published Essex Elsevier Ltd 01.08.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions. •The effect of fibers on the liquefaction behavior of calcareous sands is investigated.•The liquefaction resistance of calcareous sands significantly increases by increasing the fiber content and fiber length.•The multidirectional loading increases the liquefaction susceptibility of fiber-reinforced calcareous sands.•A modified pore pressure prediction model considering the effect of fiber contents is proposed.
AbstractList A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions.
A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions. •The effect of fibers on the liquefaction behavior of calcareous sands is investigated.•The liquefaction resistance of calcareous sands significantly increases by increasing the fiber content and fiber length.•The multidirectional loading increases the liquefaction susceptibility of fiber-reinforced calcareous sands.•A modified pore pressure prediction model considering the effect of fiber contents is proposed.
Author Peng, Ming
Chen, Jian-Feng
Zhou, Lin
Zhu, Yan
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhou
  fullname: Zhou, Lin
  email: sunzourise@126.com
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 2
  givenname: Jian-Feng
  surname: Chen
  fullname: Chen, Jian-Feng
  email: jf_chen@tongji.edu.cn
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 3
  givenname: Ming
  surname: Peng
  fullname: Peng, Ming
  email: pengming@tongji.edu.cn
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 4
  givenname: Yan
  surname: Zhu
  fullname: Zhu, Yan
  email: zy_tmgc@163.com
  organization: China Shipbuilding NDRI Engineering Co., LTD, Shanghai, 200090, China
BookMark eNqNkMtKxDAUhoMoOF6ewYDr1iTNpO3CxSDeYMCNrsNpeqoZ2mZMUtG3NzMjgm50deDnfOfyHZH90Y1IyBlnOWdcXazyZ3QR3wcccsGEyJnMGSv2yIxXZZ0V80rukxkTSmWcS3lIjkJYMcZkWVczEpf2dcIOTLRupA2-wJt1nrqOdrZBn3m0Y-e8wZYa6A14dFOgAcY2UDvSabSt9biloacppsPUxx9hsMO6RxpeEDyNGGI4IQcd9AFPv-oxebq5fry6y5YPt_dXi2VmRFnErGKY9hYSUNUpaRpZcgCuAKSa18qYDnhjZC3m2BRtacq6kwUWDaCRIMqqOCbnu7lr79KXIeqVm3y6KWihKilYpep56rrcdRnvQvDYaWMjbI6PHmyvOdMb0Xqlv0XrjWjNpE6iE1_-4tfeDuA__kEudiQmCW8WvQ7G4pie3urTrbN_zvgE2XakHw
CitedBy_id crossref_primary_10_1007_s10064_024_03862_z
crossref_primary_10_1080_1064119X_2024_2401171
crossref_primary_10_1016_j_oceaneng_2023_116598
crossref_primary_10_1007_s11440_024_02402_z
crossref_primary_10_1080_02726351_2023_2257153
crossref_primary_10_1016_j_geotexmem_2024_01_006
crossref_primary_10_1088_1755_1315_1330_1_012022
crossref_primary_10_1007_s11771_024_5808_z
crossref_primary_10_1016_j_soildyn_2025_109346
crossref_primary_10_1680_jgeot_22_00386
crossref_primary_10_1680_jgein_24_00103
crossref_primary_10_1088_1755_1315_1335_1_012002
crossref_primary_10_1016_j_trgeo_2023_101041
crossref_primary_10_1016_j_soildyn_2024_109190
crossref_primary_10_1007_s12517_022_10966_x
crossref_primary_10_3390_geotechnics4040052
crossref_primary_10_1080_1064119X_2024_2326957
crossref_primary_10_1007_s40891_023_00459_6
crossref_primary_10_1016_j_apor_2024_104219
crossref_primary_10_1016_j_geotexmem_2023_11_002
crossref_primary_10_1080_1064119X_2023_2214933
crossref_primary_10_1016_j_soildyn_2025_109277
crossref_primary_10_1007_s11440_024_02368_y
crossref_primary_10_1007_s40515_023_00281_7
crossref_primary_10_1016_j_soildyn_2024_109098
crossref_primary_10_1016_j_soildyn_2023_108086
crossref_primary_10_1016_j_geotexmem_2023_06_002
Cites_doi 10.1016/j.geotexmem.2021.05.005
10.1016/j.soildyn.2020.106145
10.1680/gein.2008.15.5.322
10.1016/j.trgeo.2021.100626
10.1680/geot.2008.58.4.259
10.1061/(ASCE)1090-0241(2008)134:10(1490)
10.1680/jgein.21.00026
10.1016/S0267-7261(97)00018-3
10.1016/j.geotexmem.2009.10.001
10.1680/jgein.17.00029
10.1016/j.sandf.2013.06.003
10.1680/jgein.20.00045
10.1016/0266-1144(94)90055-8
10.1016/j.sandf.2021.07.003
10.1016/j.geotexmem.2011.03.002
10.1016/j.soildyn.2017.11.004
10.1680/geot.1998.48.4.527
10.1016/j.proeng.2016.08.688
10.1016/j.soildyn.2021.106812
10.1016/j.soildyn.2017.11.013
10.1680/geot.1987.37.1.3
10.1007/s11368-021-02974-3
10.1007/s11069-012-0433-9
10.1061/(ASCE)GT.1943-5606.0000645
10.1007/s10064-020-02069-2
10.1016/j.compgeo.2017.08.020
10.1007/s10706-012-9563-9
10.1016/S0267-7261(02)00127-6
10.1016/j.soildyn.2016.09.002
10.1061/(ASCE)MT.1943-5533.0003856
10.1080/13632469.2018.1469441
10.1061/JSFEAQ.0000913
10.1680/geot.2007.57.4.371
10.1016/j.geotexmem.2012.10.005
10.1016/j.soildyn.2013.09.001
10.1016/j.soildyn.2014.07.011
10.1016/j.geotexmem.2015.05.004
10.1061/AJGEB6.0000034
10.1016/j.soildyn.2012.03.011
10.1016/j.conbuildmat.2021.122722
10.1016/j.soildyn.2011.06.006
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Aug 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2022
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.geotexmem.2022.04.003
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3584
EndPage 806
ExternalDocumentID 10_1016_j_geotexmem_2022_04_003
S0266114422000450
GroupedDBID --K
--M
.-4
..I
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SSM
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c273t-80eced34ae69c27bb471aa16aa46596ccfa1bc4925eb3d7c79f43e3baec4a2783
IEDL.DBID .~1
ISSN 0266-1144
IngestDate Fri Jul 25 05:05:25 EDT 2025
Tue Jul 01 03:25:21 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Fri Feb 23 02:41:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Liquefaction resistance
Pore pressure prediction model
Cyclic simple shear tests
Fiber-reinforced calcareous sands
Stiffness degradation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-80eced34ae69c27bb471aa16aa46596ccfa1bc4925eb3d7c79f43e3baec4a2783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2684208695
PQPubID 2045473
PageCount 13
ParticipantIDs proquest_journals_2684208695
crossref_citationtrail_10_1016_j_geotexmem_2022_04_003
crossref_primary_10_1016_j_geotexmem_2022_04_003
elsevier_sciencedirect_doi_10_1016_j_geotexmem_2022_04_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Essex
PublicationPlace_xml – name: Essex
PublicationTitle Geotextiles and geomembranes
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Seed, Martin, Lysmer (bib36) 1975
Zhang, Yang, Yang, Li, Liu (bib48) 2021; 148
Jin, Guo (bib20) 2021; 147
Polito, Green, Lee (bib32) 2008; 134
Chompoorat, Thanawong, Likitlersuang (bib11) 2021; 80
Ma, Chen, Li, Wu, Liu (bib29) 2019; 41
Mao, Fahey, Randolph (bib25) 2000
Gu, Wang, Cai, Yang, Gao (bib16) 2012; 40
Chen, Shen, Arulrajah, Wu, Hou, Xu (bib7) 2015; 43
Booker, Rahman, Seed (bib3) 1976
Altun, Goktepe, Lav (bib1) 2008; 15
Krishnaswamy, Thomas Isaac (bib21) 1994; 13
Correia, Rocha, Lodi, Mccartney (bib9) 2021; 49
Mase, Likitlersuang, Tobita, Chaiprakaikeow, Soralump (bib28) 2018; 24
Tanapalungkorn, Mase, Latcharote, Likitlersuang (bib43) 2020; 133
Moayed, Alibolandi (bib27) 2018; 104
Arpajirakul, Pungrasmi, Likitlersuang (bib2) 2021; 282
Lee, Albaisa (bib22) 1974; 100
Likitlersuang, Teachavorasinskun, Surarak, Oh, Balasubramaniam (bib24) 2013; 53
Behzad Fatahi (bib6) 2021; 50
Ye, Cheng, Liu, Zhang, Lu (bib47) 2017; 24
Hyodo, Hyde, Aramaki (bib17) 1998; 48
Sukkarak, Jongpradist, Kongkitkul, Jamsawang, Likitlersuang (bib40) 2021; 28
Pyke, Seed, Chan (bib31) 1975; 101
Zhou, Ding (bib50) 2021; 33
Pan, Yang (bib33) 2018; 13
Yang, Li, Yang (bib45) 2007; 57
Eskisar, Karakan, Altun (bib15) 2016; 161
Yang, Pan (bib46) 2017; 92
Ren, Zhang, Wang, Zhao, Xu (bib34) 2018; 95
Sukkarak, Tanapalungkorn, Likitlersuang, Ueda (bib39) 2021; 61
Zhang, Yang, Yang, Yang, Li, Liu (bib49) 2021; 28
Noorzad, Amini Fardad (bib30) 2014; 66
Vercueil, Billet, Cordary (bib44) 1997; 16
Huang, Yu (bib19) 2013; 65
Dobry, Ladd, Yokel, Chung, Powell (bib13) 1982
Dyvik, Berre, Lacasse, Raadim (bib14) 1987; 37
Chindaprasirt, Jamsawang, Sukontasukkul, Jongpradist, Likitlersuang (bib12) 2021; 30
Boominathan, Hari (bib4) 2002; 22
Maheshwari, Singh, Saran (bib26) 2012; 138
Tang, Shi, Zhao (bib41) 2010; 28
Hamidi, Hooresfand (bib18) 2013; 36
Salem, Elmamlouk, Agaiby (bib38) 2013; 55
Seed, Lee (bib35) 1966; 92
Thay, Likitlersuang, Pipatpongsa (bib42) 2013; 31
Bhattacharya, Hyodo, Goda, Tazoh, Taylor (bib5) 2011; 21
Su, Li (bib37) 2008; 58
Chegenizadeh, Keramatikerman, Nikraz (bib8) 2018; 104
Liu, Wang, Kamai, Zhang, Yang, Shi (bib23) 2011; 29
Chompoorat, Thepumong, Taesinlapachai, Likitlersuang (bib10) 2021; 21
Dyvik (10.1016/j.geotexmem.2022.04.003_bib14) 1987; 37
Arpajirakul (10.1016/j.geotexmem.2022.04.003_bib2) 2021; 282
Mao (10.1016/j.geotexmem.2022.04.003_bib25) 2000
Su (10.1016/j.geotexmem.2022.04.003_bib37) 2008; 58
Chompoorat (10.1016/j.geotexmem.2022.04.003_bib10) 2021; 21
Moayed (10.1016/j.geotexmem.2022.04.003_bib27) 2018; 104
Hamidi (10.1016/j.geotexmem.2022.04.003_bib18) 2013; 36
Ren (10.1016/j.geotexmem.2022.04.003_bib34) 2018; 95
Salem (10.1016/j.geotexmem.2022.04.003_bib38) 2013; 55
Sukkarak (10.1016/j.geotexmem.2022.04.003_bib40) 2021; 28
Dobry (10.1016/j.geotexmem.2022.04.003_bib13) 1982
Chegenizadeh (10.1016/j.geotexmem.2022.04.003_bib8) 2018; 104
Chindaprasirt (10.1016/j.geotexmem.2022.04.003_bib12) 2021; 30
Vercueil (10.1016/j.geotexmem.2022.04.003_bib44) 1997; 16
Chompoorat (10.1016/j.geotexmem.2022.04.003_bib11) 2021; 80
Krishnaswamy (10.1016/j.geotexmem.2022.04.003_bib21) 1994; 13
Yang (10.1016/j.geotexmem.2022.04.003_bib46) 2017; 92
Maheshwari (10.1016/j.geotexmem.2022.04.003_bib26) 2012; 138
Likitlersuang (10.1016/j.geotexmem.2022.04.003_bib24) 2013; 53
Lee (10.1016/j.geotexmem.2022.04.003_bib22) 1974; 100
Eskisar (10.1016/j.geotexmem.2022.04.003_bib15) 2016; 161
Gu (10.1016/j.geotexmem.2022.04.003_bib16) 2012; 40
Zhou (10.1016/j.geotexmem.2022.04.003_bib50) 2021; 33
Liu (10.1016/j.geotexmem.2022.04.003_bib23) 2011; 29
Seed (10.1016/j.geotexmem.2022.04.003_bib35) 1966; 92
Zhang (10.1016/j.geotexmem.2022.04.003_bib48) 2021; 148
Booker (10.1016/j.geotexmem.2022.04.003_bib3) 1976
Hyodo (10.1016/j.geotexmem.2022.04.003_bib17) 1998; 48
Bhattacharya (10.1016/j.geotexmem.2022.04.003_bib5) 2011; 21
Pyke (10.1016/j.geotexmem.2022.04.003_bib31) 1975; 101
Tang (10.1016/j.geotexmem.2022.04.003_bib41) 2010; 28
Pan (10.1016/j.geotexmem.2022.04.003_bib33) 2018; 13
Ma (10.1016/j.geotexmem.2022.04.003_bib29) 2019; 41
Mase (10.1016/j.geotexmem.2022.04.003_bib28) 2018; 24
Chen (10.1016/j.geotexmem.2022.04.003_bib7) 2015; 43
Seed (10.1016/j.geotexmem.2022.04.003_bib36) 1975
Thay (10.1016/j.geotexmem.2022.04.003_bib42) 2013; 31
Tanapalungkorn (10.1016/j.geotexmem.2022.04.003_bib43) 2020; 133
Altun (10.1016/j.geotexmem.2022.04.003_bib1) 2008; 15
Sukkarak (10.1016/j.geotexmem.2022.04.003_bib39) 2021; 61
Yang (10.1016/j.geotexmem.2022.04.003_bib45) 2007; 57
Correia (10.1016/j.geotexmem.2022.04.003_bib9) 2021; 49
Boominathan (10.1016/j.geotexmem.2022.04.003_bib4) 2002; 22
Huang (10.1016/j.geotexmem.2022.04.003_bib19) 2013; 65
Polito (10.1016/j.geotexmem.2022.04.003_bib32) 2008; 134
Jin (10.1016/j.geotexmem.2022.04.003_bib20) 2021; 147
Noorzad (10.1016/j.geotexmem.2022.04.003_bib30) 2014; 66
Behzad Fatahi (10.1016/j.geotexmem.2022.04.003_bib6) 2021; 50
Ye (10.1016/j.geotexmem.2022.04.003_bib47) 2017; 24
Zhang (10.1016/j.geotexmem.2022.04.003_bib49) 2021; 28
References_xml – year: 1982
  ident: bib13
  article-title: Prediction of Pore Water Pressure Buildup and Liquefaction of Sands during Earthquakes by the Cyclic Strain Method
– volume: 21
  start-page: 2719
  year: 2021
  end-page: 2730
  ident: bib10
  article-title: Repurposing of stabilised dredged lakebed sediment in road base construction
  publication-title: J. Soils Sediments
– volume: 37
  start-page: 3
  year: 1987
  end-page: 10
  ident: bib14
  article-title: Comparison of truly undrained and constant volume direct simple shear tests
  publication-title: Geotechnique
– volume: 66
  start-page: 281
  year: 2014
  end-page: 292
  ident: bib30
  article-title: Liquefaction resistance of babolsar sand reinforced with randomly distributed fibers under cyclic loading
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 43
  start-page: 515
  year: 2015
  end-page: 523
  ident: bib7
  article-title: Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber reinforced and cement-stabilized Shanghai soft clay
  publication-title: Geotext. Geomembranes
– volume: 100
  start-page: 387
  year: 1974
  end-page: 406
  ident: bib22
  article-title: Earthquake induced settlements in saturated sands
  publication-title: J. Geotech. Eng. Div.
– volume: 53
  start-page: 498
  year: 2013
  end-page: 509
  ident: bib24
  article-title: Small strain stiffness and stiffness degradation curve of bangkok clays
  publication-title: Soils Found.
– volume: 33
  year: 2021
  ident: bib50
  article-title: Seismic response of reinforced retaining walls with saturated calcareous sand backfill subjected to acid rain erosion
  publication-title: J. Mater. Civ. Eng.
– year: 1975
  ident: bib36
  article-title: The generation and dissipation of pore water pressures during soil liquefaction
  publication-title: Rep. No. EERC 75-26. Berkeley, CA: Univ. of California
– volume: 36
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib18
  article-title: Effect of fiber reinforcement on triaxial shear behavior of cement treated sand
  publication-title: Geotext. Geomembranes
– volume: 61
  start-page: 1302
  year: 2021
  end-page: 1318
  ident: bib39
  article-title: Liquefaction analysis of sandy soil during strong earthquake in northern Thailand
  publication-title: Soils Found.
– volume: 57
  start-page: 371
  year: 2007
  end-page: 384
  ident: bib45
  article-title: Undrained anisotropy and rotational shear in granular soil
  publication-title: Geotechnique
– volume: 13
  start-page: 473
  year: 2018
  end-page: 487
  ident: bib33
  article-title: Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand
  publication-title: Acta. Geotech.
– volume: 282
  start-page: 122722
  year: 2021
  ident: bib2
  article-title: Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement
  publication-title: Construct. Build. Mater.
– volume: 24
  start-page: 625
  year: 2017
  end-page: 636
  ident: bib47
  article-title: Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres
  publication-title: Geosynth. Int.
– year: 1976
  ident: bib3
  article-title: GADFLEA—a computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading
  publication-title: Rep. no. EERC 76-24, Earthquake Engineering Research Center
– volume: 101
  start-page: 379
  year: 1975
  end-page: 398
  ident: bib31
  article-title: Settlement of sands under multidirectional shaking
  publication-title: J. Geotech. Eng.
– volume: 15
  start-page: 322
  year: 2008
  end-page: 332
  ident: bib1
  article-title: Liquefaction resistance of sand reinforced with geosynthetics
  publication-title: Geosynth. Int.
– volume: 104
  start-page: 395
  year: 2018
  end-page: 402
  ident: bib27
  article-title: Effect of geotextile reinforcement on cyclic undrained behavior of sand
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 95
  start-page: 211
  year: 2018
  end-page: 230
  ident: bib34
  article-title: Dynamic assessment of saturated reinforced-soil retaining wall
  publication-title: Comput. Geotech.
– volume: 28
  start-page: 54
  year: 2010
  end-page: 62
  ident: bib41
  article-title: Interfacial shear strength of fiber reinforced soil
  publication-title: Geotext. Geomembranes
– volume: 16
  start-page: 417
  year: 1997
  end-page: 425
  ident: bib44
  article-title: Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 40
  start-page: 118
  year: 2012
  end-page: 128
  ident: bib16
  article-title: Undrained cyclic triaxial behavior of saturated clays under variable confining pressure
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 49
  start-page: 1419
  year: 2021
  end-page: 1426
  ident: bib9
  article-title: Shear strength behavior of clayey soil reinforced with polypropylene fibers under drained and undrained conditions
  publication-title: Geotext. Geomembranes
– volume: 134
  start-page: 1490
  year: 2008
  end-page: 1500
  ident: bib32
  article-title: Pore pressure generation models for sands and silty soils subjected to cyclic loading
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 24
  start-page: 1181
  year: 2018
  end-page: 1204
  ident: bib28
  article-title: Local site investigation of liquefied soils caused by earthquake in northern Thailand
  publication-title: J. Earthq. Eng.
– volume: 133
  start-page: 106145
  year: 2020
  ident: bib43
  article-title: Verification of attenuation models based on strong ground motion data in northern Thailand
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 30
  start-page: 100626
  year: 2021
  ident: bib12
  article-title: Comparative mechanical performances of cement-treated sand reinforced with fiber for road and pavement applications
  publication-title: Transp. Geotech.
– volume: 31
  start-page: 67
  year: 2013
  end-page: 82
  ident: bib42
  article-title: Monotonic and cyclic behavior of chiang mai sand under simple shear mode
  publication-title: Geotech. Geol. Eng.
– volume: 28
  start-page: 450
  year: 2021
  end-page: 463
  ident: bib40
  article-title: Investigation on load-carrying capacity of geogrid-encased deep cement mixing piles
  publication-title: Geosynth. Int.
– volume: 161
  start-page: 538
  year: 2016
  end-page: 542
  ident: bib15
  article-title: Effects of fiber reinforcement on liquefaction behaviour of poorly graded sands
  publication-title: Pro. Eng.
– volume: 138
  start-page: 831
  year: 2012
  end-page: 840
  ident: bib26
  article-title: Effects of reinforcement on liquefaction resistance of Solani sand
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 147
  year: 2021
  ident: bib20
  article-title: Effect of phase difference on the liquefaction behavior of sand in multidirectional simple shear tests
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 92
  start-page: 68
  year: 2017
  end-page: 78
  ident: bib46
  article-title: Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 22
  start-page: 1027
  year: 2002
  end-page: 1033
  ident: bib4
  article-title: Liquefaction strength of fly ash reinforced with randomly distributed fibers
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 29
  start-page: 462
  year: 2011
  end-page: 471
  ident: bib23
  article-title: Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests
  publication-title: Geotext. Geomembranes
– volume: 58
  start-page: 259
  year: 2008
  end-page: 267
  ident: bib37
  article-title: Impact of multidirectional shaking on liquefaction potential of level sand deposits
  publication-title: Geotechnique
– volume: 48
  start-page: 527
  year: 1998
  end-page: 543
  ident: bib17
  article-title: Liquefaction of crushable soils
  publication-title: Geotechnique
– volume: 21
  start-page: 1618
  year: 2011
  end-page: 1628
  ident: bib5
  article-title: Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 148
  start-page: 106812
  year: 2021
  ident: bib48
  article-title: Pore water pressure model for sands reinforced with randomly distributed fibers based on cyclic triaxial tests
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 50
  start-page: 69
  year: 2021
  end-page: 81
  ident: bib6
  article-title: Liquefaction and post-liquefaction resistance of sand reinforced with recycled geofibre
  publication-title: Geotext. Geomembranes
– volume: 80
  start-page: 2617
  year: 2021
  end-page: 2628
  ident: bib11
  article-title: Swell-shrink behaviour of cement with fly ash-stabilised lakebed sediment
  publication-title: Bull. Eng. Eeol. Environ.
– volume: 41
  start-page: 981
  year: 2019
  end-page: 988
  ident: bib29
  article-title: Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading
  publication-title: Chin. J. Geotech. Eng.
– volume: 28
  start-page: 316
  year: 2021
  end-page: 326
  ident: bib49
  article-title: Liquefaction behavior of fiber-reinforced sand based on cyclic triaxial tests
  publication-title: Geosynth. Int.
– volume: 104
  start-page: 372
  year: 2018
  end-page: 377
  ident: bib8
  article-title: Liquefaction resistance of fibre reinforced low-plasticity silt
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 13
  start-page: 23
  year: 1994
  end-page: 41
  ident: bib21
  article-title: Liquefaction potential of reinforced sand
  publication-title: Geotext. Geomembranes
– volume: 55
  start-page: 83
  year: 2013
  end-page: 91
  ident: bib38
  article-title: Static and cyclic behavior of north coast calcareous sand in Egypt
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 65
  start-page: 2375
  year: 2013
  end-page: 2384
  ident: bib19
  article-title: Review of soil liquefaction characteristics during major earthquakes of the twenty-first century
  publication-title: Nat. Hazards
– start-page: 16
  year: 2000
  end-page: 17
  ident: bib25
  article-title: Pore pressure generation in cyclic simple shear tests on calcareous sediments
  publication-title: Developments in Theoretical Geomechanics—Proceedings of the. John Booker Memorial Symposium, Sydney, Australia
– volume: 92
  year: 1966
  ident: bib35
  article-title: Liquefaction of saturated sands during cyclic loading
  publication-title: J. Soil Mech. Found Div.
– volume: 49
  start-page: 1419
  issue: 2021
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib9
  article-title: Shear strength behavior of clayey soil reinforced with polypropylene fibers under drained and undrained conditions
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2021.05.005
– volume: 133
  start-page: 106145
  year: 2020
  ident: 10.1016/j.geotexmem.2022.04.003_bib43
  article-title: Verification of attenuation models based on strong ground motion data in northern Thailand
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106145
– volume: 15
  start-page: 322
  year: 2008
  ident: 10.1016/j.geotexmem.2022.04.003_bib1
  article-title: Liquefaction resistance of sand reinforced with geosynthetics
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.2008.15.5.322
– volume: 30
  start-page: 100626
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib12
  article-title: Comparative mechanical performances of cement-treated sand reinforced with fiber for road and pavement applications
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2021.100626
– volume: 58
  start-page: 259
  issue: 4
  year: 2008
  ident: 10.1016/j.geotexmem.2022.04.003_bib37
  article-title: Impact of multidirectional shaking on liquefaction potential of level sand deposits
  publication-title: Geotechnique
  doi: 10.1680/geot.2008.58.4.259
– volume: 134
  start-page: 1490
  year: 2008
  ident: 10.1016/j.geotexmem.2022.04.003_bib32
  article-title: Pore pressure generation models for sands and silty soils subjected to cyclic loading
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2008)134:10(1490)
– volume: 28
  start-page: 450
  issue: 5
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib40
  article-title: Investigation on load-carrying capacity of geogrid-encased deep cement mixing piles
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.21.00026
– volume: 16
  start-page: 417
  issue: 7–8
  year: 1997
  ident: 10.1016/j.geotexmem.2022.04.003_bib44
  article-title: Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/S0267-7261(97)00018-3
– volume: 28
  start-page: 54
  year: 2010
  ident: 10.1016/j.geotexmem.2022.04.003_bib41
  article-title: Interfacial shear strength of fiber reinforced soil
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2009.10.001
– volume: 24
  start-page: 625
  issue: 6
  year: 2017
  ident: 10.1016/j.geotexmem.2022.04.003_bib47
  article-title: Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.17.00029
– volume: 53
  start-page: 498
  issue: 4
  year: 2013
  ident: 10.1016/j.geotexmem.2022.04.003_bib24
  article-title: Small strain stiffness and stiffness degradation curve of bangkok clays
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2013.06.003
– year: 1982
  ident: 10.1016/j.geotexmem.2022.04.003_bib13
– volume: 28
  start-page: 316
  issue: 3
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib49
  article-title: Liquefaction behavior of fiber-reinforced sand based on cyclic triaxial tests
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.20.00045
– volume: 13
  start-page: 23
  issue: 1
  year: 1994
  ident: 10.1016/j.geotexmem.2022.04.003_bib21
  article-title: Liquefaction potential of reinforced sand
  publication-title: Geotext. Geomembranes
  doi: 10.1016/0266-1144(94)90055-8
– volume: 61
  start-page: 1302
  issue: 5
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib39
  article-title: Liquefaction analysis of sandy soil during strong earthquake in northern Thailand
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2021.07.003
– year: 1976
  ident: 10.1016/j.geotexmem.2022.04.003_bib3
  article-title: GADFLEA—a computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading
– volume: 29
  start-page: 462
  issue: 5
  year: 2011
  ident: 10.1016/j.geotexmem.2022.04.003_bib23
  article-title: Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2011.03.002
– volume: 104
  start-page: 372
  year: 2018
  ident: 10.1016/j.geotexmem.2022.04.003_bib8
  article-title: Liquefaction resistance of fibre reinforced low-plasticity silt
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2017.11.004
– volume: 48
  start-page: 527
  issue: 4
  year: 1998
  ident: 10.1016/j.geotexmem.2022.04.003_bib17
  article-title: Liquefaction of crushable soils
  publication-title: Geotechnique
  doi: 10.1680/geot.1998.48.4.527
– volume: 161
  start-page: 538
  year: 2016
  ident: 10.1016/j.geotexmem.2022.04.003_bib15
  article-title: Effects of fiber reinforcement on liquefaction behaviour of poorly graded sands
  publication-title: Pro. Eng.
  doi: 10.1016/j.proeng.2016.08.688
– volume: 148
  start-page: 106812
  issue: 2
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib48
  article-title: Pore water pressure model for sands reinforced with randomly distributed fibers based on cyclic triaxial tests
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2021.106812
– volume: 104
  start-page: 395
  year: 2018
  ident: 10.1016/j.geotexmem.2022.04.003_bib27
  article-title: Effect of geotextile reinforcement on cyclic undrained behavior of sand
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2017.11.013
– volume: 147
  issue: 2
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib20
  article-title: Effect of phase difference on the liquefaction behavior of sand in multidirectional simple shear tests
  publication-title: J. Geotech. Geoenviron. Eng.
– year: 1975
  ident: 10.1016/j.geotexmem.2022.04.003_bib36
  article-title: The generation and dissipation of pore water pressures during soil liquefaction
– volume: 37
  start-page: 3
  issue: 1
  year: 1987
  ident: 10.1016/j.geotexmem.2022.04.003_bib14
  article-title: Comparison of truly undrained and constant volume direct simple shear tests
  publication-title: Geotechnique
  doi: 10.1680/geot.1987.37.1.3
– volume: 21
  start-page: 2719
  issue: 7
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib10
  article-title: Repurposing of stabilised dredged lakebed sediment in road base construction
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-021-02974-3
– volume: 65
  start-page: 2375
  issue: 3
  year: 2013
  ident: 10.1016/j.geotexmem.2022.04.003_bib19
  article-title: Review of soil liquefaction characteristics during major earthquakes of the twenty-first century
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0433-9
– volume: 138
  start-page: 831
  issue: 7
  year: 2012
  ident: 10.1016/j.geotexmem.2022.04.003_bib26
  article-title: Effects of reinforcement on liquefaction resistance of Solani sand
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000645
– volume: 41
  start-page: 981
  issue: 5
  year: 2019
  ident: 10.1016/j.geotexmem.2022.04.003_bib29
  article-title: Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading
  publication-title: Chin. J. Geotech. Eng.
– volume: 101
  start-page: 379
  issue: GT4
  year: 1975
  ident: 10.1016/j.geotexmem.2022.04.003_bib31
  article-title: Settlement of sands under multidirectional shaking
  publication-title: J. Geotech. Eng.
– volume: 80
  start-page: 2617
  issue: 3
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib11
  article-title: Swell-shrink behaviour of cement with fly ash-stabilised lakebed sediment
  publication-title: Bull. Eng. Eeol. Environ.
  doi: 10.1007/s10064-020-02069-2
– volume: 95
  start-page: 211
  year: 2018
  ident: 10.1016/j.geotexmem.2022.04.003_bib34
  article-title: Dynamic assessment of saturated reinforced-soil retaining wall
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2017.08.020
– volume: 31
  start-page: 67
  issue: 1
  year: 2013
  ident: 10.1016/j.geotexmem.2022.04.003_bib42
  article-title: Monotonic and cyclic behavior of chiang mai sand under simple shear mode
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-012-9563-9
– volume: 22
  start-page: 1027
  issue: 9
  year: 2002
  ident: 10.1016/j.geotexmem.2022.04.003_bib4
  article-title: Liquefaction strength of fly ash reinforced with randomly distributed fibers
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/S0267-7261(02)00127-6
– volume: 92
  start-page: 68
  issue: 1
  year: 2017
  ident: 10.1016/j.geotexmem.2022.04.003_bib46
  article-title: Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2016.09.002
– volume: 33
  issue: 8
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib50
  article-title: Seismic response of reinforced retaining walls with saturated calcareous sand backfill subjected to acid rain erosion
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003856
– volume: 24
  start-page: 1181
  issue: 7
  year: 2018
  ident: 10.1016/j.geotexmem.2022.04.003_bib28
  article-title: Local site investigation of liquefied soils caused by earthquake in northern Thailand
  publication-title: J. Earthq. Eng.
  doi: 10.1080/13632469.2018.1469441
– volume: 92
  year: 1966
  ident: 10.1016/j.geotexmem.2022.04.003_bib35
  article-title: Liquefaction of saturated sands during cyclic loading
  publication-title: J. Soil Mech. Found Div.
  doi: 10.1061/JSFEAQ.0000913
– volume: 57
  start-page: 371
  issue: 4
  year: 2007
  ident: 10.1016/j.geotexmem.2022.04.003_bib45
  article-title: Undrained anisotropy and rotational shear in granular soil
  publication-title: Geotechnique
  doi: 10.1680/geot.2007.57.4.371
– volume: 13
  start-page: 473
  issue: 2
  year: 2018
  ident: 10.1016/j.geotexmem.2022.04.003_bib33
  article-title: Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand
  publication-title: Acta. Geotech.
– volume: 36
  start-page: 1
  year: 2013
  ident: 10.1016/j.geotexmem.2022.04.003_bib18
  article-title: Effect of fiber reinforcement on triaxial shear behavior of cement treated sand
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2012.10.005
– volume: 55
  start-page: 83
  issue: 12
  year: 2013
  ident: 10.1016/j.geotexmem.2022.04.003_bib38
  article-title: Static and cyclic behavior of north coast calcareous sand in Egypt
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2013.09.001
– volume: 66
  start-page: 281
  year: 2014
  ident: 10.1016/j.geotexmem.2022.04.003_bib30
  article-title: Liquefaction resistance of babolsar sand reinforced with randomly distributed fibers under cyclic loading
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2014.07.011
– volume: 43
  start-page: 515
  year: 2015
  ident: 10.1016/j.geotexmem.2022.04.003_bib7
  article-title: Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber reinforced and cement-stabilized Shanghai soft clay
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2015.05.004
– start-page: 16
  year: 2000
  ident: 10.1016/j.geotexmem.2022.04.003_bib25
  article-title: Pore pressure generation in cyclic simple shear tests on calcareous sediments
– volume: 100
  start-page: 387
  issue: 4
  year: 1974
  ident: 10.1016/j.geotexmem.2022.04.003_bib22
  article-title: Earthquake induced settlements in saturated sands
  publication-title: J. Geotech. Eng. Div.
  doi: 10.1061/AJGEB6.0000034
– volume: 50
  start-page: 69
  issue: 1
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib6
  article-title: Liquefaction and post-liquefaction resistance of sand reinforced with recycled geofibre
  publication-title: Geotext. Geomembranes
– volume: 40
  start-page: 118
  issue: 9
  year: 2012
  ident: 10.1016/j.geotexmem.2022.04.003_bib16
  article-title: Undrained cyclic triaxial behavior of saturated clays under variable confining pressure
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2012.03.011
– volume: 282
  start-page: 122722
  year: 2021
  ident: 10.1016/j.geotexmem.2022.04.003_bib2
  article-title: Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122722
– volume: 21
  start-page: 1618
  year: 2011
  ident: 10.1016/j.geotexmem.2022.04.003_bib5
  article-title: Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2011.06.006
SSID ssj0004798
Score 2.4627457
Snippet A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 794
SubjectTerms Cyclic simple shear tests
Deformation
Fiber reinforced materials
Fiber reinforced plastics
Fiber reinforcement
Fiber-reinforced calcareous sands
Liquefaction
Liquefaction resistance
Pore pressure prediction model
Pore water pressure
Prediction models
Pressure
Sand
Sand & gravel
Shear tests
Simple shear tests
Specific gravity
Stiffness
Stiffness degradation
Title Liquefaction behavior of fiber-reinforced calcareous sands in unidirectional and multidirectional simple shear tests
URI https://dx.doi.org/10.1016/j.geotexmem.2022.04.003
https://www.proquest.com/docview/2684208695
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BToNAEN009aAejFaN1drswSuWwgKut6axqRp70Sa9bZZlMRiFptDEk9_uzAK11UMPHpmwC5lZZt6QmTeEXMXS8wIppdWPAb4xSJOt0GWuZWuXK9V3ZGTGtz1N_PGUPcy8WYMM614YLKusfH_p0423riS9Spu9eZL0nm2MLZAPOI4BJpi3MxbgKb_--inzYIGZh4s3W3j3Ro3Xq84K_fmhsSXdcQznaT0962-E-uWrTQAaHZKDCjnSQflyR6Sh0xbZrRuL8xbZX-MWPCaQZcI2Vd8CrbvxaRbTGItErIU2nKmgAApmwgKwbJnTHDt_aZLSZZqUmjG_CimIqak9XBfmCVIL0xyHYlOArEV-Qqaju5fh2KpGLFgKcEsB8UnDc1wmtc9BEoYQq6Ts-1Iy3-O-UrHshwoJDCHpjgIV8Ji52g2lVkzikI5T0kyzVJ8RemMDtAS8oWyNjDOx5DqIPNeOXR5JzsM28Wu1ClXxj-MYjHdRF5q9iZU9BNpD2AypS9vEXi2clxQc25fc1nYTG6dJQKDYvrhTW1pUH3QukBTHgfSPe-f_2fuC7OFVWUHYIc1isdSXgGqKsGuObZfsDO4fx5NvGeT7jA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLamcRgcEAwQjwE5cK3W9Um4IcQ0GOzCJnGL0ixFRdAi2kn8fOw0HQwOHLimdVrZqf25sj8DnKUyDGMppTNIEb4FmCY7iR_4jqt9rtTAk3Mzvu1-Eo1mwe1j-NiCq6YXhsoqre-vfbrx1nalb7XZf8uy_oNLsQXzAc8zwATz9jVipwrbsHZ5Mx5NvtojYzMSl-53SGClzOtJF5X-eNXUle55hva0GaD1O0j9cNcmBg23YNOCR3ZZv982tHTehU7TW1x2YeMbveAOYKKJ29jWBdY05LMiZSnViTjv2tCmog4YWopqwIpFyUpq_mVZzhZ5VivH_C1kuMxM-eH3xTIjdmFW0lxshqi1KndhNryeXo0cO2XBUQhdKgxRGp_jB1JHHFeSBMOVlINIyiAKeaRUKgeJIg5DzLvnsYp5GvjaT6RWgaQ5HXvQzotc7wM7dxFdIuRQribSmVRyHc9D3019PpecJwcQNWoVylKQ0ySMF9HUmj2LpT0E2UO4AbGXHoC7FHyrWTj-Frlo7CZWDpTAWPG3cK-xtLDfdCmIF8fDDJCHh__Z-xQ6o-n9nbi7mYyPYJ2u1AWFPWhX7wt9jCCnSk7sIf4EqiT-PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquefaction+behavior+of+fiber-reinforced+calcareous+sands+in+unidirectional+and+multidirectional+simple+shear+tests&rft.jtitle=Geotextiles+and+geomembranes&rft.au=Zhou%2C+Lin&rft.au=Chen%2C+Jian-Feng&rft.au=Peng%2C+Ming&rft.au=Zhu%2C+Yan&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0266-1144&rft.eissn=1879-3584&rft.volume=50&rft.issue=4&rft.spage=794&rft.epage=806&rft_id=info:doi/10.1016%2Fj.geotexmem.2022.04.003&rft.externalDocID=S0266114422000450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-1144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-1144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-1144&client=summon