Ensemble of Deep Features for Breast Cancer Histopathological Image Classification

Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 6; pp. 2126 - 2136
Main Authors Atwan, Jaffar, Almansour, Nedaa, Hashem Ryalat, Mohammad, Sahran, Shahnorbanun, Aldabbas, Hamza, Albashish, Dheeb
Format Journal Article
LanguageEnglish
Published Oxford University Press 24.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to confront several difficult problems, such as the need for sufficient training data for DL models, which reduces the classification findings. In this study, an ensemble deep transfer convolutional neural network is presented to address this problem. The pre-trained models (ResNet50 and MobileNet) are employed to extract high-level features by freezing the front layer parameters while fine-tuning the last layers. In the proposed ensemble framework, KNN, SVM, logistic regression and neural networks are used as base classifiers. The majority vote and product approaches are used to integrate the predictions of each separate classifier. In the benchmark BreaKHis dataset, the suggested ensemble model is compared to some current approaches. It demonstrates that while the ensemble model obtains a considerable accuracy of 97.72% for the multiclass classification test, it achieves an accuracy of 99.2% for the binary task. The suggested ensemble model’s effectiveness in extracting useful features for BR images is demonstrated by comparison with existing cutting-edge models.
AbstractList Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to confront several difficult problems, such as the need for sufficient training data for DL models, which reduces the classification findings. In this study, an ensemble deep transfer convolutional neural network is presented to address this problem. The pre-trained models (ResNet50 and MobileNet) are employed to extract high-level features by freezing the front layer parameters while fine-tuning the last layers. In the proposed ensemble framework, KNN, SVM, logistic regression and neural networks are used as base classifiers. The majority vote and product approaches are used to integrate the predictions of each separate classifier. In the benchmark BreaKHis dataset, the suggested ensemble model is compared to some current approaches. It demonstrates that while the ensemble model obtains a considerable accuracy of 97.72% for the multiclass classification test, it achieves an accuracy of 99.2% for the binary task. The suggested ensemble model’s effectiveness in extracting useful features for BR images is demonstrated by comparison with existing cutting-edge models.
Author Aldabbas, Hamza
Sahran, Shahnorbanun
Hashem Ryalat, Mohammad
Atwan, Jaffar
Albashish, Dheeb
Almansour, Nedaa
Author_xml – sequence: 1
  givenname: Jaffar
  surname: Atwan
  fullname: Atwan, Jaffar
  email: Jaffaratwan@bau.edu.jo
– sequence: 2
  givenname: Nedaa
  surname: Almansour
  fullname: Almansour, Nedaa
– sequence: 3
  givenname: Mohammad
  surname: Hashem Ryalat
  fullname: Hashem Ryalat, Mohammad
– sequence: 4
  givenname: Shahnorbanun
  surname: Sahran
  fullname: Sahran, Shahnorbanun
– sequence: 5
  givenname: Hamza
  surname: Aldabbas
  fullname: Aldabbas, Hamza
– sequence: 6
  givenname: Dheeb
  surname: Albashish
  fullname: Albashish, Dheeb
BookMark eNqFkEFLAzEQhYNUsK1ePefqYdtJNs02R11bWygIouclTSZ1y-5mSVLQf2-1PQniaeAx3-Pxjcig8x0ScstgwkDlU-PbfddMtx_aMl5ckCETEjIOshiQIQCDTEgOV2QU4x4AOCg5JC-LLmK7bZB6Rx8Re7pEnQ4BI3U-0IeAOiZa6s5goKs6Jt_r9O4bv6uNbui61TukZaNjrN0xSbXvrsml003Em_Mdk7fl4rVcZZvnp3V5v8kML_KUSZXbXBScO6MYcsv0zKBAcI6hRmsFc7lQFrlUcg7KzrjURnBmzVyr2ZEeE3HqNcHHGNBVpk4_C1LQdVMxqL69VCcv1dnLEZv8wvpQtzp8_g3cnQB_6P_7_QKizHpI
CitedBy_id crossref_primary_10_1093_comjnl_bxae099
crossref_primary_10_1007_s00521_024_10849_0
Cites_doi 10.1007/978-3-030-17938-0_19
10.1016/j.ins.2019.08.072
10.1016/j.bspc.2020.102192
10.1158/1055-9965.EPI-16-0858
10.1007/s13755-018-0057-x
10.1109/TBME.2015.2496264
10.1016/j.neucom.2019.09.044
10.1016/j.artmed.2018.04.002
10.1007/s10278-019-00307-y
10.1155/2013/829461
10.3390/s23020570
10.1016/j.patrec.2019.03.022
10.1016/j.icte.2018.10.007
10.1155/2022/1056490
10.3390/s21082852
10.3390/s20164373
10.1016/j.ymeth.2019.06.014
10.1007/s00500-022-07612-9
10.1007/s11042-018-6082-6
10.1016/j.artmed.2019.101743
10.1109/CCDC.2019.8833431
10.7717/peerj-cs.1031
10.1038/s41598-022-19278-2
10.1001/jama.2015.1405
10.1007/s00521-022-06995-y
ContentType Journal Article
Copyright The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
Copyright_xml – notice: The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxad127
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 2136
ExternalDocumentID 10_1093_comjnl_bxad127
10.1093/comjnl/bxad127
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-693d34722fc91e2d1a5ce4e0ff1eaedd41f349de2696809d526ac421dc8a95693
ISSN 0010-4620
IngestDate Tue Jul 01 02:55:11 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
Mon Jun 30 08:34:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ensemble learning
transfer learning
deep convolutional neural networks
breast cancer classification
deep features extraction
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-693d34722fc91e2d1a5ce4e0ff1eaedd41f349de2696809d526ac421dc8a95693
PageCount 11
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxad127
crossref_primary_10_1093_comjnl_bxad127
oup_primary_10_1093_comjnl_bxad127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-24
PublicationDateYYYYMMDD 2024-06-24
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-24
  day: 24
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Albashish (2024062414154608600_ref29)
Benhammou (2024062414154608600_ref11) 2020; 375
Albashish (2024062414154608600_ref5) 2022; 8
Shi (2024062414154608600_ref10) 2019; 78
Talo (2024062414154608600_ref24) 2019; 101
Boumaraf (2024062414154608600_ref20) 2021; 63
Loukas (2024062414154608600_ref33) 2013; 2013
Xiang (2024062414154608600_ref21) 2019
Elmore (2024062414154608600_ref3) 2015; 313
Qasem (2024062414154608600_ref31) 2022; 34
Mukhlif (2024062414154608600_ref8) 2023; 23
Kassani (2024062414154608600_ref26) 2019
Yan (2024062414154608600_ref18) 2020; 173
Kundle (2024062414154608600_ref19) 2021; 1A
Cascianelli (2024062414154608600_ref12) 2018
Sharma (2024062414154608600_ref17) 2020; 33
Szegedy (2024062414154608600_ref22) 2016
Sahran (2024062414154608600_ref28) 2018; 87
Khan (2024062414154608600_ref7) 2019; 125
Mehra (2024062414154608600_ref6) 2018; 4
Hameed (2024062414154608600_ref2) 2020; 20
Albashish (2024062414154608600_ref32) 2023; 27
Li (2024062414154608600_ref9) 2020
Zhang (2024062414154608600_ref4) 2019
Howard (2024062414154608600_ref25) 2017
Srinivasu (2024062414154608600_ref27) 2021; 21
Deniz (2024062414154608600_ref14) 2018; 6
Torre (2024062414154608600_ref1) 2017; 26
Spanhol (2024062414154608600_ref13) 2016
Elemam (2024062414154608600_ref30) 2022; 2022
Spanhol (2024062414154608600_ref15) 2015; 63
Hameed (2024062414154608600_ref23) 2022; 12
Kumar (2024062414154608600_ref16) 2020; 508
References_xml – start-page: 204
  volume-title: Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering
  year: 2019
  ident: 2024062414154608600_ref4
  article-title: Classifying breast cancer histopathological images using a robust artificial neural network architecture
  doi: 10.1007/978-3-030-17938-0_19
– year: 2017
  ident: 2024062414154608600_ref25
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
– volume: 508
  start-page: 405
  year: 2020
  ident: 2024062414154608600_ref16
  article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.072
– volume: 63
  start-page: 102192
  year: 2021
  ident: 2024062414154608600_ref20
  article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102192
– volume: 26
  start-page: 444
  year: 2017
  ident: 2024062414154608600_ref1
  article-title: Global cancer in women: burden and trends
  publication-title: Cancer Epidemiol. Prev. Biomarkers
  doi: 10.1158/1055-9965.EPI-16-0858
– volume: 6
  start-page: 1
  year: 2018
  ident: 2024062414154608600_ref14
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-018-0057-x
– volume: 63
  start-page: 1455
  year: 2015
  ident: 2024062414154608600_ref15
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 375
  start-page: 9
  year: 2020
  ident: 2024062414154608600_ref11
  article-title: Breakhis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.044
– start-page: 1
  volume-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN)
  year: 2020
  ident: 2024062414154608600_ref9
  article-title: Breast cancer histopathological image classification based on deep second-order pooling network
– start-page: 21
  volume-title: Proceedings of International Conference on Intelligence Interactive Multimedia Systems and Services
  year: 2018
  ident: 2024062414154608600_ref12
  article-title: Dimensionality reduction strategies for CNN-based classification of histopathological images
– volume: 87
  start-page: 78
  year: 2018
  ident: 2024062414154608600_ref28
  article-title: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.04.002
– volume: 33
  start-page: 632
  year: 2020
  ident: 2024062414154608600_ref17
  article-title: Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00307-y
– volume: 1A
  start-page: 1
  year: 2021
  ident: 2024062414154608600_ref19
  article-title: A review on classifification of breast cancer using histopathological images using deep learning
  publication-title: Library Philos. Practice
– volume: 2013
  start-page: 1
  year: 2013
  ident: 2024062414154608600_ref33
  article-title: Breast cancer characterization based on image classification of tissue sections visualized under low magnification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/829461
– start-page: 2560
  volume-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN)
  year: 2016
  ident: 2024062414154608600_ref13
  article-title: Breast cancer histopathological image classification using convolutional neural networks
– volume: 23
  start-page: 570
  year: 2023
  ident: 2024062414154608600_ref8
  article-title: Incorporating a novel dual transfer learning approach for medical images
  publication-title: Sensors
  doi: 10.3390/s23020570
– volume: 125
  start-page: 1
  year: 2019
  ident: 2024062414154608600_ref7
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.03.022
– volume: 4
  start-page: 247
  year: 2018
  ident: 2024062414154608600_ref6
  article-title: Breast cancer histology images classification: training from scratch or transfer learning
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.007
– volume: 2022
  start-page: 1
  year: 2022
  ident: 2024062414154608600_ref30
  article-title: A highly discriminative hybrid feature selection algorithm for cancer diagnosis
  publication-title: Sci. World J.
  doi: 10.1155/2022/1056490
– volume: 21
  start-page: 2852
  year: 2021
  ident: 2024062414154608600_ref27
  article-title: Classification of skin disease using deep learning neural networks with mobilenet v2 and LSTM
  publication-title: Sensors
  doi: 10.3390/s21082852
– volume: 20
  start-page: 4373
  year: 2020
  ident: 2024062414154608600_ref2
  article-title: Breast cancer histopathology image classification using an ensemble of deep learning models
  publication-title: Sensors
  doi: 10.3390/s20164373
– year: 2019
  ident: 2024062414154608600_ref26
  article-title: Classification of histopathological biopsy images using ensemble of deep learning networks
– volume: 173
  start-page: 52
  year: 2020
  ident: 2024062414154608600_ref18
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.06.014
– volume: 27
  start-page: 4779
  year: 2023
  ident: 2024062414154608600_ref32
  article-title: Weighted heterogeneous ensemble for the classification of intrusion detection using ant colony optimization for continuous search spaces
  publication-title: Soft Computing
  doi: 10.1007/s00500-022-07612-9
– start-page: e13438
  ident: 2024062414154608600_ref29
  article-title: Enhanced meta-heuristic methods for industrial winding process modelling
  publication-title: Expert Syst.
– volume: 78
  start-page: 1017
  year: 2019
  ident: 2024062414154608600_ref10
  article-title: A deep CNN based transfer learning method for false positive reduction
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6082-6
– volume: 101
  start-page: 101743
  year: 2019
  ident: 2024062414154608600_ref24
  article-title: Automated classification of histopathology images using transfer learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101743
– start-page: 4616
  volume-title: Proceedings of the 2019 Chinese Control and Decision Conference (CCDC)
  year: 2019
  ident: 2024062414154608600_ref21
  article-title: Breast cancer diagnosis from histopathological image based on deep learning
  doi: 10.1109/CCDC.2019.8833431
– start-page: 2818
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR
  year: 2016
  ident: 2024062414154608600_ref22
  article-title: Rethinking the inception architecture for computer vision
– volume: 8
  start-page: e1031
  year: 2022
  ident: 2024062414154608600_ref5
  article-title: Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1031
– volume: 12
  start-page: 15600
  year: 2022
  ident: 2024062414154608600_ref23
  article-title: Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19278-2
– volume: 313
  start-page: 1122
  year: 2015
  ident: 2024062414154608600_ref3
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA
  doi: 10.1001/jama.2015.1405
– volume: 34
  start-page: 10093
  year: 2022
  ident: 2024062414154608600_ref31
  article-title: An improved ensemble pruning for mammogram classification using modified bees algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06995-y
SSID ssj0002096
Score 2.3705814
Snippet Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 2126
Title Ensemble of Deep Features for Breast Cancer Histopathological Image Classification
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9MKFb0QpoBVC4hCZ2uvN1j6GtqhUwKG0Um_R7JcMip0qdVTgL_CnmfWuHYcGUbhYtrUeJZ6nmZ312zeEvDJMuayXRpBbiDgDG8nY8giTDZYPwgorG5bvJ3F0xo_Px-eDwc8ea2lZyzfqx8Z9Jf_jVbyHfnW7ZP_Bs51RvIHn6F88oofxeCMfH1aXppSeHnhgzMXITeiWWEA35MG3jm9ej_adXxdeD8T1H-6i3fvS8XWarpiOL7RyUStcEBo-jPq_xWGjvvKrpsdgLXTk3smsxLSHQxuAGQ2wim6XhSlHJ99hBp4dMi-gLEF3yztQLMJCbAFFNV9IqJZVf0GCcUec8vug2yCLoZ0L5j-3GB9XuYgjpxTfD7zh6suGKMpELyOzxGukXIv2XgkL_fe1muGJ_AY68UoD68LavyW8joboP8CnU29hGp6_RbYY1hxsSLYmBx8_fO4SO4ubdm_d_-s0QNNdb2E3WFib47h9k70py-k9cifUGnTigXOfDEz1gNxt3UpDWH9ITloc0bmlDke0xRFFHFGPI-pxRK_hiDY4ous4ekTO3h2e7h9FoddGpHACW0ciT3XqhEOtyhPDdAJjZbiJrU0MGK15YlOea8OcmFKc6zEToDhLtMoAS-w8fUyG1bwyTwjVMjewN5YpoIUky2DPililQiqmRQbZNonatzNVQYje9UOZTTf7Y5u87sZfeAmWP458iS_7L4Oe3tjcDrm9wvczMqwXS_Mcp6C1fBGg8Qv4cY_L
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+of+Deep+Features+for+Breast+Cancer+Histopathological+Image+Classification&rft.jtitle=Computer+journal&rft.au=Atwan%2C+Jaffar&rft.au=Almansour%2C+Nedaa&rft.au=Hashem+Ryalat%2C+Mohammad&rft.au=Sahran%2C+Shahnorbanun&rft.date=2024-06-24&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=6&rft.spage=2126&rft.epage=2136&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon