Ensemble of Deep Features for Breast Cancer Histopathological Image Classification
Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to...
Saved in:
Published in | Computer journal Vol. 67; no. 6; pp. 2126 - 2136 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
24.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to confront several difficult problems, such as the need for sufficient training data for DL models, which reduces the classification findings. In this study, an ensemble deep transfer convolutional neural network is presented to address this problem. The pre-trained models (ResNet50 and MobileNet) are employed to extract high-level features by freezing the front layer parameters while fine-tuning the last layers. In the proposed ensemble framework, KNN, SVM, logistic regression and neural networks are used as base classifiers. The majority vote and product approaches are used to integrate the predictions of each separate classifier. In the benchmark BreaKHis dataset, the suggested ensemble model is compared to some current approaches. It demonstrates that while the ensemble model obtains a considerable accuracy of 97.72% for the multiclass classification test, it achieves an accuracy of 99.2% for the binary task. The suggested ensemble model’s effectiveness in extracting useful features for BR images is demonstrated by comparison with existing cutting-edge models. |
---|---|
AbstractList | Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract well-designed elements. Deep learning (DL) is a recent development that is used to extract high-level features. However, DL techniques continue to confront several difficult problems, such as the need for sufficient training data for DL models, which reduces the classification findings. In this study, an ensemble deep transfer convolutional neural network is presented to address this problem. The pre-trained models (ResNet50 and MobileNet) are employed to extract high-level features by freezing the front layer parameters while fine-tuning the last layers. In the proposed ensemble framework, KNN, SVM, logistic regression and neural networks are used as base classifiers. The majority vote and product approaches are used to integrate the predictions of each separate classifier. In the benchmark BreaKHis dataset, the suggested ensemble model is compared to some current approaches. It demonstrates that while the ensemble model obtains a considerable accuracy of 97.72% for the multiclass classification test, it achieves an accuracy of 99.2% for the binary task. The suggested ensemble model’s effectiveness in extracting useful features for BR images is demonstrated by comparison with existing cutting-edge models. |
Author | Aldabbas, Hamza Sahran, Shahnorbanun Hashem Ryalat, Mohammad Atwan, Jaffar Albashish, Dheeb Almansour, Nedaa |
Author_xml | – sequence: 1 givenname: Jaffar surname: Atwan fullname: Atwan, Jaffar email: Jaffaratwan@bau.edu.jo – sequence: 2 givenname: Nedaa surname: Almansour fullname: Almansour, Nedaa – sequence: 3 givenname: Mohammad surname: Hashem Ryalat fullname: Hashem Ryalat, Mohammad – sequence: 4 givenname: Shahnorbanun surname: Sahran fullname: Sahran, Shahnorbanun – sequence: 5 givenname: Hamza surname: Aldabbas fullname: Aldabbas, Hamza – sequence: 6 givenname: Dheeb surname: Albashish fullname: Albashish, Dheeb |
BookMark | eNqFkEFLAzEQhYNUsK1ePefqYdtJNs02R11bWygIouclTSZ1y-5mSVLQf2-1PQniaeAx3-Pxjcig8x0ScstgwkDlU-PbfddMtx_aMl5ckCETEjIOshiQIQCDTEgOV2QU4x4AOCg5JC-LLmK7bZB6Rx8Re7pEnQ4BI3U-0IeAOiZa6s5goKs6Jt_r9O4bv6uNbui61TukZaNjrN0xSbXvrsml003Em_Mdk7fl4rVcZZvnp3V5v8kML_KUSZXbXBScO6MYcsv0zKBAcI6hRmsFc7lQFrlUcg7KzrjURnBmzVyr2ZEeE3HqNcHHGNBVpk4_C1LQdVMxqL69VCcv1dnLEZv8wvpQtzp8_g3cnQB_6P_7_QKizHpI |
CitedBy_id | crossref_primary_10_1093_comjnl_bxae099 crossref_primary_10_1007_s00521_024_10849_0 |
Cites_doi | 10.1007/978-3-030-17938-0_19 10.1016/j.ins.2019.08.072 10.1016/j.bspc.2020.102192 10.1158/1055-9965.EPI-16-0858 10.1007/s13755-018-0057-x 10.1109/TBME.2015.2496264 10.1016/j.neucom.2019.09.044 10.1016/j.artmed.2018.04.002 10.1007/s10278-019-00307-y 10.1155/2013/829461 10.3390/s23020570 10.1016/j.patrec.2019.03.022 10.1016/j.icte.2018.10.007 10.1155/2022/1056490 10.3390/s21082852 10.3390/s20164373 10.1016/j.ymeth.2019.06.014 10.1007/s00500-022-07612-9 10.1007/s11042-018-6082-6 10.1016/j.artmed.2019.101743 10.1109/CCDC.2019.8833431 10.7717/peerj-cs.1031 10.1038/s41598-022-19278-2 10.1001/jama.2015.1405 10.1007/s00521-022-06995-y |
ContentType | Journal Article |
Copyright | The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 |
Copyright_xml | – notice: The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxad127 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 2136 |
ExternalDocumentID | 10_1093_comjnl_bxad127 10.1093/comjnl/bxad127 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-693d34722fc91e2d1a5ce4e0ff1eaedd41f349de2696809d526ac421dc8a95693 |
ISSN | 0010-4620 |
IngestDate | Tue Jul 01 02:55:11 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 Mon Jun 30 08:34:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ensemble learning transfer learning deep convolutional neural networks breast cancer classification deep features extraction |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-693d34722fc91e2d1a5ce4e0ff1eaedd41f349de2696809d526ac421dc8a95693 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxad127 crossref_primary_10_1093_comjnl_bxad127 oup_primary_10_1093_comjnl_bxad127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-24 |
PublicationDateYYYYMMDD | 2024-06-24 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Albashish (2024062414154608600_ref29) Benhammou (2024062414154608600_ref11) 2020; 375 Albashish (2024062414154608600_ref5) 2022; 8 Shi (2024062414154608600_ref10) 2019; 78 Talo (2024062414154608600_ref24) 2019; 101 Boumaraf (2024062414154608600_ref20) 2021; 63 Loukas (2024062414154608600_ref33) 2013; 2013 Xiang (2024062414154608600_ref21) 2019 Elmore (2024062414154608600_ref3) 2015; 313 Qasem (2024062414154608600_ref31) 2022; 34 Mukhlif (2024062414154608600_ref8) 2023; 23 Kassani (2024062414154608600_ref26) 2019 Yan (2024062414154608600_ref18) 2020; 173 Kundle (2024062414154608600_ref19) 2021; 1A Cascianelli (2024062414154608600_ref12) 2018 Sharma (2024062414154608600_ref17) 2020; 33 Szegedy (2024062414154608600_ref22) 2016 Sahran (2024062414154608600_ref28) 2018; 87 Khan (2024062414154608600_ref7) 2019; 125 Mehra (2024062414154608600_ref6) 2018; 4 Hameed (2024062414154608600_ref2) 2020; 20 Albashish (2024062414154608600_ref32) 2023; 27 Li (2024062414154608600_ref9) 2020 Zhang (2024062414154608600_ref4) 2019 Howard (2024062414154608600_ref25) 2017 Srinivasu (2024062414154608600_ref27) 2021; 21 Deniz (2024062414154608600_ref14) 2018; 6 Torre (2024062414154608600_ref1) 2017; 26 Spanhol (2024062414154608600_ref13) 2016 Elemam (2024062414154608600_ref30) 2022; 2022 Spanhol (2024062414154608600_ref15) 2015; 63 Hameed (2024062414154608600_ref23) 2022; 12 Kumar (2024062414154608600_ref16) 2020; 508 |
References_xml | – start-page: 204 volume-title: Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering year: 2019 ident: 2024062414154608600_ref4 article-title: Classifying breast cancer histopathological images using a robust artificial neural network architecture doi: 10.1007/978-3-030-17938-0_19 – year: 2017 ident: 2024062414154608600_ref25 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications – volume: 508 start-page: 405 year: 2020 ident: 2024062414154608600_ref16 article-title: Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.08.072 – volume: 63 start-page: 102192 year: 2021 ident: 2024062414154608600_ref20 article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102192 – volume: 26 start-page: 444 year: 2017 ident: 2024062414154608600_ref1 article-title: Global cancer in women: burden and trends publication-title: Cancer Epidemiol. Prev. Biomarkers doi: 10.1158/1055-9965.EPI-16-0858 – volume: 6 start-page: 1 year: 2018 ident: 2024062414154608600_ref14 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-018-0057-x – volume: 63 start-page: 1455 year: 2015 ident: 2024062414154608600_ref15 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 375 start-page: 9 year: 2020 ident: 2024062414154608600_ref11 article-title: Breakhis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.044 – start-page: 1 volume-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN) year: 2020 ident: 2024062414154608600_ref9 article-title: Breast cancer histopathological image classification based on deep second-order pooling network – start-page: 21 volume-title: Proceedings of International Conference on Intelligence Interactive Multimedia Systems and Services year: 2018 ident: 2024062414154608600_ref12 article-title: Dimensionality reduction strategies for CNN-based classification of histopathological images – volume: 87 start-page: 78 year: 2018 ident: 2024062414154608600_ref28 article-title: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.04.002 – volume: 33 start-page: 632 year: 2020 ident: 2024062414154608600_ref17 article-title: Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00307-y – volume: 1A start-page: 1 year: 2021 ident: 2024062414154608600_ref19 article-title: A review on classifification of breast cancer using histopathological images using deep learning publication-title: Library Philos. Practice – volume: 2013 start-page: 1 year: 2013 ident: 2024062414154608600_ref33 article-title: Breast cancer characterization based on image classification of tissue sections visualized under low magnification publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/829461 – start-page: 2560 volume-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN) year: 2016 ident: 2024062414154608600_ref13 article-title: Breast cancer histopathological image classification using convolutional neural networks – volume: 23 start-page: 570 year: 2023 ident: 2024062414154608600_ref8 article-title: Incorporating a novel dual transfer learning approach for medical images publication-title: Sensors doi: 10.3390/s23020570 – volume: 125 start-page: 1 year: 2019 ident: 2024062414154608600_ref7 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.03.022 – volume: 4 start-page: 247 year: 2018 ident: 2024062414154608600_ref6 article-title: Breast cancer histology images classification: training from scratch or transfer learning publication-title: ICT Express doi: 10.1016/j.icte.2018.10.007 – volume: 2022 start-page: 1 year: 2022 ident: 2024062414154608600_ref30 article-title: A highly discriminative hybrid feature selection algorithm for cancer diagnosis publication-title: Sci. World J. doi: 10.1155/2022/1056490 – volume: 21 start-page: 2852 year: 2021 ident: 2024062414154608600_ref27 article-title: Classification of skin disease using deep learning neural networks with mobilenet v2 and LSTM publication-title: Sensors doi: 10.3390/s21082852 – volume: 20 start-page: 4373 year: 2020 ident: 2024062414154608600_ref2 article-title: Breast cancer histopathology image classification using an ensemble of deep learning models publication-title: Sensors doi: 10.3390/s20164373 – year: 2019 ident: 2024062414154608600_ref26 article-title: Classification of histopathological biopsy images using ensemble of deep learning networks – volume: 173 start-page: 52 year: 2020 ident: 2024062414154608600_ref18 article-title: Breast cancer histopathological image classification using a hybrid deep neural network publication-title: Methods doi: 10.1016/j.ymeth.2019.06.014 – volume: 27 start-page: 4779 year: 2023 ident: 2024062414154608600_ref32 article-title: Weighted heterogeneous ensemble for the classification of intrusion detection using ant colony optimization for continuous search spaces publication-title: Soft Computing doi: 10.1007/s00500-022-07612-9 – start-page: e13438 ident: 2024062414154608600_ref29 article-title: Enhanced meta-heuristic methods for industrial winding process modelling publication-title: Expert Syst. – volume: 78 start-page: 1017 year: 2019 ident: 2024062414154608600_ref10 article-title: A deep CNN based transfer learning method for false positive reduction publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6082-6 – volume: 101 start-page: 101743 year: 2019 ident: 2024062414154608600_ref24 article-title: Automated classification of histopathology images using transfer learning publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101743 – start-page: 4616 volume-title: Proceedings of the 2019 Chinese Control and Decision Conference (CCDC) year: 2019 ident: 2024062414154608600_ref21 article-title: Breast cancer diagnosis from histopathological image based on deep learning doi: 10.1109/CCDC.2019.8833431 – start-page: 2818 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR year: 2016 ident: 2024062414154608600_ref22 article-title: Rethinking the inception architecture for computer vision – volume: 8 start-page: e1031 year: 2022 ident: 2024062414154608600_ref5 article-title: Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1031 – volume: 12 start-page: 15600 year: 2022 ident: 2024062414154608600_ref23 article-title: Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network publication-title: Sci. Rep. doi: 10.1038/s41598-022-19278-2 – volume: 313 start-page: 1122 year: 2015 ident: 2024062414154608600_ref3 article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens publication-title: JAMA doi: 10.1001/jama.2015.1405 – volume: 34 start-page: 10093 year: 2022 ident: 2024062414154608600_ref31 article-title: An improved ensemble pruning for mammogram classification using modified bees algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06995-y |
SSID | ssj0002096 |
Score | 2.3705814 |
Snippet | Analysis of histopathological images (HIs) is crucial for detecting breast cancer (BR). However, because they vary, it is still very difficult to extract... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2126 |
Title | Ensemble of Deep Features for Breast Cancer Histopathological Image Classification |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9MKFb0QpoBVC4hCZ2uvN1j6GtqhUwKG0Um_R7JcMip0qdVTgL_CnmfWuHYcGUbhYtrUeJZ6nmZ312zeEvDJMuayXRpBbiDgDG8nY8giTDZYPwgorG5bvJ3F0xo_Px-eDwc8ea2lZyzfqx8Z9Jf_jVbyHfnW7ZP_Bs51RvIHn6F88oofxeCMfH1aXppSeHnhgzMXITeiWWEA35MG3jm9ej_adXxdeD8T1H-6i3fvS8XWarpiOL7RyUStcEBo-jPq_xWGjvvKrpsdgLXTk3smsxLSHQxuAGQ2wim6XhSlHJ99hBp4dMi-gLEF3yztQLMJCbAFFNV9IqJZVf0GCcUec8vug2yCLoZ0L5j-3GB9XuYgjpxTfD7zh6suGKMpELyOzxGukXIv2XgkL_fe1muGJ_AY68UoD68LavyW8joboP8CnU29hGp6_RbYY1hxsSLYmBx8_fO4SO4ubdm_d_-s0QNNdb2E3WFib47h9k70py-k9cifUGnTigXOfDEz1gNxt3UpDWH9ITloc0bmlDke0xRFFHFGPI-pxRK_hiDY4ous4ekTO3h2e7h9FoddGpHACW0ciT3XqhEOtyhPDdAJjZbiJrU0MGK15YlOea8OcmFKc6zEToDhLtMoAS-w8fUyG1bwyTwjVMjewN5YpoIUky2DPililQiqmRQbZNonatzNVQYje9UOZTTf7Y5u87sZfeAmWP458iS_7L4Oe3tjcDrm9wvczMqwXS_Mcp6C1fBGg8Qv4cY_L |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+of+Deep+Features+for+Breast+Cancer+Histopathological+Image+Classification&rft.jtitle=Computer+journal&rft.au=Atwan%2C+Jaffar&rft.au=Almansour%2C+Nedaa&rft.au=Hashem+Ryalat%2C+Mohammad&rft.au=Sahran%2C+Shahnorbanun&rft.date=2024-06-24&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=6&rft.spage=2126&rft.epage=2136&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad127&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxad127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |