Direction Finding and Likelihood Ratio Detection for Oceanographic HF Radars
Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean su...
Saved in:
Published in | Journal of atmospheric and oceanic technology Vol. 39; no. 2; pp. 223 - 235 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0739-0572 1520-0426 |
DOI | 10.1175/JTECH-D-21-0110.1 |
Cover
Loading…
Abstract | Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments. |
---|---|
AbstractList | Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments. Abstract Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments. Significance Statement We identify and test a method based on the likelihood ratio (LR) for determining the number of signal sources in observations subject to direction finding with maximum likelihood estimation (MLE). Direction-finding methods are used in broad-ranging applications that include radar, sonar, and wireless communication. Previous work suggests accuracy improvements when using MLE, but suitable methods for determining the number of simultaneous signal sources are not well known. Our work shows that the LR, when combined with MLE, performs at least as well as alternative methods when applied to oceanographic high-frequency (HF) radars. In some situations, MLE and LR obtain superior resolution, where resolution is defined as the ability to distinguish closely spaced signal sources. |
Author | Washburn, Libe Emery, Brian Kirincich, Anthony |
Author_xml | – sequence: 1 givenname: Brian orcidid: 0000-0001-5760-6722 surname: Emery fullname: Emery, Brian organization: a Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California – sequence: 2 givenname: Anthony surname: Kirincich fullname: Kirincich, Anthony organization: b Woods Hole Oceanographic Institution, Woods Hole, Massachusetts – sequence: 3 givenname: Libe surname: Washburn fullname: Washburn, Libe organization: a Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, c Department of Geography, University of California, Santa Barbara, Santa Barbara, California |
BookMark | eNp9kD9PwzAQxS1UJNrCB2CLxBzwfzsjahoKilQJdbccx25dil2cdODbk9BODEwn3f3e3bs3A5MQgwXgHsFHhAR7etssF6u8zDHKIRqbV2CKGIY5pJhPwBQKUuSQCXwDZl23hxAigvgU1KVP1vQ-hqzyofVhm-nQZrX_sAe_i7HN3vUwzUrbXzAXU7Y2Voe4Tfq48yZbVQPU6tTdgmunD529u9Q52FTLzeCrXr-8Lp7r3GBB-pxZKoumMIxB2zgqiUGsbSWRlMuCOEFQQWljMRGt08i6xkkqNG8c5lZySubg4bz2mOLXyXa92sdTCsNFhblgnEks4EChM2VS7LpknTom_6nTt0JQjZmp38xUqTBSY2YKDRrxR2N8P_4f-qT94R_lD9Dycng |
CitedBy_id | crossref_primary_10_1109_LGRS_2024_3476377 crossref_primary_10_3390_rs14092174 crossref_primary_10_3389_fmars_2024_1352226 crossref_primary_10_1109_JOE_2024_3388101 |
Cites_doi | 10.1109/JOE.2006.888378 10.1109/OCEANS.2007.4449265 10.1109/JOE.2006.886195 10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2 10.1175/JTECH1998.1 10.1109/78.98000 10.1109/79.526899 10.1029/97JC01190 10.1007/978-3-642-77347-1_4 10.1109/TAP.1986.1143830 10.1109/TASSP.1985.1164557 10.1109/48.895355 10.1109/5.659495 10.1109/ICASSP.2004.1326208 10.1109/ISIT.2007.4557481 10.1175/JTECH-D-19-0029.1 10.1214/aoms/1177732360 10.1109/29.7543 10.1109/CCM.2003.1194291 10.1029/JC090iC03p04756 10.1017/CBO9780511622762 10.1016/0011-7471(74)90066-7 10.1175/2009JTECHO680.1 10.1175/JTECH-D-15-0242.1 10.1175/2010JTECHO720.1 10.1109/JOE.2019.2914537 10.1109/JOE.1983.1145578 10.1109/JOE.2006.886104 10.1016/j.jmarsys.2009.01.012 10.1175/JTECH-D-18-0104.1 10.1016/B978-0-12-374524-8.00006-4 10.1016/B978-0-12-374524-8.00002-7 |
ContentType | Journal Article |
Copyright | Copyright American Meteorological Society Feb 2022 |
Copyright_xml | – notice: Copyright American Meteorological Society Feb 2022 |
DBID | AAYXX CITATION 7TG 7TN 7UA 8FD C1K F1W H8D H96 KL. L.G L7M |
DOI | 10.1175/JTECH-D-21-0110.1 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1520-0426 |
EndPage | 235 |
ExternalDocumentID | 10_1175_JTECH_D_21_0110_1 |
GroupedDBID | .4S .DC 29J 2WC 4.4 5GY 7XC 88I 8AF 8CJ 8FE 8FG 8FH 8G5 8R4 8R5 AAYXX ABDBF ABDNZ ABUWG ACGFO ACGOD ACUHS ACYGS AENEX AEUYN AFKRA AFRAH AGFAN ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BENPR BES BGLVJ BHPHI BKSAR BPHCQ C1A CAG CCPQU CITATION COF CS3 D1J D1K DU5 DWQXO E3Z EAD EAP EBS EDH EDO EJD EMK EPL EST ESX F8P FRP GNUQQ GUQSH H13 HCIFZ I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM1 QN7 QO4 RWA RWE RWL RXW S0X TAE TR2 TUS U5U UNMZH ZY4 7TG 7TN 7UA 8FD C1K F1W H8D H96 KL. L.G L7M PQGLB |
ID | FETCH-LOGICAL-c273t-5e489b9c550ebf483c15dd83846893f731944be237dfa1efbf847a6bf26e8643 |
ISSN | 0739-0572 |
IngestDate | Sat Aug 16 18:42:44 EDT 2025 Tue Jul 01 01:35:46 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.ametsoc.org/PUBSReuseLicenses |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-5e489b9c550ebf483c15dd83846893f731944be237dfa1efbf847a6bf26e8643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5760-6722 |
PQID | 2675658270 |
PQPubID | 33207 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2675658270 crossref_primary_10_1175_JTECH_D_21_0110_1 crossref_citationtrail_10_1175_JTECH_D_21_0110_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-00 |
PublicationDecade | 2020 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of atmospheric and oceanic technology |
PublicationYear | 2022 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Kirincich, A. (bib16) 2016; 33 Swindlehurst, A. L. (bib32) 1998; 86 Abramovich, Y. (bib2) 2009 Ohlmann, C. (bib26) 2007; 24 Emery, B. M. (bib11) 2019; 36 Molcard, A. (bib25) 2009; 78 Chandran, S. (bib5) 2006 Amar, A. (bib3) 2007 Lipa, B. J. (bib21) 2003 Emery, B. M. (bib12) 2004; 21 Percival, D. B. (bib29) 1993 Wax, M. (bib36) 1985; 33 de Paolo, T. (bib8) 2007 Kirincich, A. (bib18) 2019; 36 Kirincich, A. (bib17) 2018 Tuncer, T. E. (bib33) 2009 Wilks, S. S. (bib37) 1938; 9 Schmidt, R. (bib30) 1986; 34 Davis, R. E. (bib7) 1985; 90 Krim, H. (bib19) 1996; 13 Abramovich, Y. (bib1) 2004 Lipa, B. J. (bib22) 1983; 8 Wax, M. (bib35) 1991; 39 Cosoli, S. (bib6) 2010; 27 Emery, B. M. (bib10) 2021 Van Trees, H. L. (bib34) 2002 Graber, H. C. (bib13) 1997; 102 Kaplan, D. (bib14) 2007 Lipa, B. J. (bib23) 2006; 31 Liu, Y. (bib24) 2010; 27 Stewart, R. H. (bib31) 1974; 21 Emery, B. M. (bib9) 2020; 45 Laws, K. E. (bib20) 2000; 25 Wyatt, L. R. (bib38) 2006; 31 Barrick, D. E. (bib4) 1999 Kelly, E. J. (bib15) 1989 Ottersten, B. (bib27) 1993 Paduan, J. D. (bib28) 2006; 31 Ziskind, I. (bib39) 1988; 36 |
References_xml | – volume: 31 start-page: 819 year: 2006 ident: bib38 article-title: Operational wave, current, and wind measurements with the Pisces HF radar doi: 10.1109/JOE.2006.888378 – year: 2007 ident: bib8 article-title: Properties of HF radar compact antenna arrays and their effect on the MUSIC algorithm doi: 10.1109/OCEANS.2007.4449265 – volume: 31 start-page: 862 year: 2006 ident: bib28 article-title: Calibration and validation of direction-finding high-frequency radar ocean surface current observations doi: 10.1109/JOE.2006.886195 – start-page: 1472 year: 2002 ident: bib34 article-title: Optimum Array Processing – volume: 21 start-page: 1259 year: 2004 ident: bib12 article-title: Evaluating radial current measurements from CODAR high-frequency radars with moored current meters doi: 10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2 – year: 2018 ident: bib17 article-title: LERA HF radar developer package – volume: 24 start-page: 666 year: 2007 ident: bib26 article-title: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data doi: 10.1175/JTECH1998.1 – volume: 39 start-page: 2450 year: 1991 ident: bib35 article-title: Detection and localization of multiple sources via the stochastic signals model doi: 10.1109/78.98000 – volume: 13 start-page: 67 year: 1996 ident: bib19 article-title: Two decades of array signal processing research: The parametric approach doi: 10.1109/79.526899 – volume: 102 start-page: 18 749 year: 1997 ident: bib13 article-title: HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications doi: 10.1029/97JC01190 – start-page: 99 year: 1993 ident: bib27 article-title: Exact and large sample ML techniques for parameter estimation and detection in array processing doi: 10.1007/978-3-642-77347-1_4 – volume: 34 start-page: 276 year: 1986 ident: bib30 article-title: Multiple emitter location and signal parameter estimation doi: 10.1109/TAP.1986.1143830 – volume: 33 start-page: 387 year: 1985 ident: bib36 article-title: Detection of signals by information theoretic criteria doi: 10.1109/TASSP.1985.1164557 – volume: 25 start-page: 481 year: 2000 ident: bib20 article-title: Simulation-based evaluations of HF radar ocean current algorithms doi: 10.1109/48.895355 – volume: 86 start-page: 421 year: 1998 ident: bib32 article-title: Maximum likelihood methods in radar array signal processing doi: 10.1109/5.659495 – year: 2004 ident: bib1 article-title: Performance breakdown of subspace-based methods in arbitrary antenna arrays: GLRT-based prediction and cure doi: 10.1109/ICASSP.2004.1326208 – start-page: 1791 year: 2007 ident: bib3 article-title: Resolution of closely spaced deterministic with given success rate signals doi: 10.1109/ISIT.2007.4557481 – volume: 36 start-page: 1997 year: 2019 ident: bib18 article-title: Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars doi: 10.1175/JTECH-D-19-0029.1 – volume: 9 start-page: 60 year: 1938 ident: bib37 article-title: The large-sample distribution of the likelihood ratio for testing composite hypotheses doi: 10.1214/aoms/1177732360 – start-page: 474 year: 2006 ident: bib5 – volume: 36 start-page: 1553 year: 1988 ident: bib39 article-title: Maximum likelihood localization of multiple sources by alternating projection doi: 10.1109/29.7543 – start-page: 95 year: 2003 ident: bib21 article-title: Uncertainties in SeaSonde current velocities doi: 10.1109/CCM.2003.1194291 – volume: 90 start-page: 4756 year: 1985 ident: bib7 article-title: Drifter observations of coastal surface currents during CODE: The statistical and dynamical views doi: 10.1029/JC090iC03p04756 – year: 2007 ident: bib14 article-title: HFRProgs: High frequency radar program suite – start-page: 241 year: 1989 ident: bib15 article-title: Adaptive detection and parameter estimation for multidimensional signal models – start-page: 583 year: 1993 ident: bib29 doi: 10.1017/CBO9780511622762 – volume: 21 start-page: 1039 year: 1974 ident: bib31 article-title: HF radio measurements of ocean surface currents doi: 10.1016/0011-7471(74)90066-7 – volume: 27 start-page: 908 year: 2010 ident: bib6 article-title: Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars doi: 10.1175/2009JTECHO680.1 – volume: 33 start-page: 1377 year: 2016 ident: bib16 article-title: Remote sensing of the surface wind field over the coastal ocean via direct calibration of HF radar backscatter power doi: 10.1175/JTECH-D-15-0242.1 – start-page: 12 year: 1999 ident: bib4 article-title: Radar angle determination with MUSIC direction finding – volume: 27 start-page: 1689 year: 2010 ident: bib24 article-title: HF radar performance in a low-energy environment: CODAR SeaSonde experience on the west Florida shelf doi: 10.1175/2010JTECHO720.1 – volume: 45 start-page: 990 year: 2020 ident: bib9 article-title: Evaluation of alternative direction of arrival methods for oceanographic HF radars doi: 10.1109/JOE.2019.2914537 – volume: 8 start-page: 226 year: 1983 ident: bib22 article-title: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE doi: 10.1109/JOE.1983.1145578 – volume: 31 start-page: 850 year: 2006 ident: bib23 article-title: SeaSonde radial velocities: Derivation and internal consistency doi: 10.1109/JOE.2006.886104 – volume: 78 start-page: S79 year: 2009 ident: bib25 article-title: Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea) doi: 10.1016/j.jmarsys.2009.01.012 – volume: 36 start-page: 231 year: 2019 ident: bib11 article-title: Uncertainty estimates for SeaSonde HF radar ocean current observations doi: 10.1175/JTECH-D-18-0104.1 – start-page: 219 year: 2009 ident: bib2 article-title: DOA estimation in the small-sample threshold region doi: 10.1016/B978-0-12-374524-8.00006-4 – start-page: 125 year: 2009 ident: bib33 article-title: Narrowband and wideband DOA estimation for uniform and nonuniform linear arrays doi: 10.1016/B978-0-12-374524-8.00002-7 – year: 2021 ident: bib10 article-title: HFR CS processing toolbox for MATLAB, software release version 2.0 |
SSID | ssj0001316 |
Score | 2.3699481 |
Snippet | Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE)... Abstract Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 223 |
SubjectTerms | Accuracy Coefficients Communication Correlation coefficient Correlation coefficients Detection Direction finding Direction of arrival Emitters HF radar Likelihood ratio Maximum likelihood estimation Methods Ocean surface Parameters Radar Radar data Radar detection Resolution Signal classification Sonar Wireless communications |
Title | Direction Finding and Likelihood Ratio Detection for Oceanographic HF Radars |
URI | https://www.proquest.com/docview/2675658270 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd0FICAaIwph8QBxAgdRx8-O4rg3V2AaairRbFDu2FlFa1GaHceBv53PspikFxLikqZVYTb6vz9979nsm5KWfM1_zMPRiCRPIBWgMUS09Xwro8TjKeWgShc_Ow8lnfnI5uOx0frSzSyrxVn7_bV7J_6CKNuBqsmRvgWzTKRpwDnxxBMI4_hPGzl4BwLS02SkmDH5aflGzsi5XfGHeO2xK5S4zawo_SpXPbaHqUr6ZpLioyN2czq5Kzauvi5UpPeDqui7M3TivdkLyJrxld61etij3oayj-XbDKVepYBPEX10BU5v8UArVjkDAefWb1RzWUEVB4kH3WauqnCFlZtmozYZfW1pbtsgxirXNps05diMwswVMdo17ZOpgnEzHxxNv5DETBjHNm5FsPXv_ywDXLDusHZ5okNVdZKOM9TPTRQbveY_BzfC7ZO9oOBqmzVjeD-rNc5sndPPi6OTdzu_YVjbbA3utVqYPyH0HID2ynHlIOmq-T3pnIMJiWaNGX9HjWQl3pf62T-61aHHziJw21KKOWhTo0w21aE0t2lCLglp0i1p0klJLrcdkmo6neAy38YYnoWYrb6B4nIhEwntVQvM4kP1BUcQBtCrkrY5gtjkXigVRofO-0kJD4-Sh0CxUMSTuE9KdL-bqKaFBzpVkuVa64BzaOtGhjkUeJLLgpjhcj_jrd5ZJV5Te7I0yy_6IVY-8bm75Ziuy_O3igzUQmfvjrjIGJxnCm0X-s9v09Zzc3bD_gHSr5bV6AUVaiUNyJ07fHzry4HM4Pv908RM5douq |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direction+Finding+and+Likelihood+Ratio+Detection+for+Oceanographic+HF+Radars&rft.jtitle=Journal+of+atmospheric+and+oceanic+technology&rft.au=Emery%2C+Brian&rft.au=Kirincich%2C+Anthony&rft.au=Washburn%2C+Libe&rft.date=2022-02-01&rft.issn=0739-0572&rft.eissn=1520-0426&rft.volume=39&rft.issue=2&rft.spage=223&rft.epage=235&rft_id=info:doi/10.1175%2FJTECH-D-21-0110.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JTECH_D_21_0110_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-0572&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-0572&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-0572&client=summon |