Concept Drift–Based Intrusion Detection For Evolving Data Stream Classification In IDS: Approaches And Comparative Study

Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy,...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 7; pp. 2529 - 2547
Main Authors Seth, Sugandh, Chahal, Kuljit Kaur, Singh, Gurvinder
Format Journal Article
LanguageEnglish
Published Oxford University Press 20.07.2024
Subjects
Online AccessGet full text
ISSN0010-4620
1460-2067
DOI10.1093/comjnl/bxae023

Cover

Loading…
Abstract Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy, necessitating expensive model retraining with time. The aim is to develop a dynamic and adaptable IDS that mitigates the limitations of static models, ensuring real-time threat detection and reducing the need for frequent, resource-intensive model retraining. This research proposes an approach that amalgamates the adaptive random forest (ARF) classifier with Hoeffding’s bounds and a moving average test for the early and accurate detection of network intrusions. The ARF can adapt in real time to shifting network conditions and evolving attack patterns, constantly refining its intrusion detection capabilities. Furthermore, the inclusion of Hoeffding’s bounds and the moving average test adds a dimension of statistical rigor to the system, facilitating the timely recognition of concept drift and distinguishing benign network variations from potential intrusions. The synergy of these techniques results in reduced false positives and false negatives, thereby enhancing the overall detection rate. The proposed method delivers outstanding results, with 99.95% accuracy and an impressive 99.96% recall rate on the latest CIC-IDS 2018 dataset, outperforming the results of existing approaches.
AbstractList Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy, necessitating expensive model retraining with time. The aim is to develop a dynamic and adaptable IDS that mitigates the limitations of static models, ensuring real-time threat detection and reducing the need for frequent, resource-intensive model retraining. This research proposes an approach that amalgamates the adaptive random forest (ARF) classifier with Hoeffding’s bounds and a moving average test for the early and accurate detection of network intrusions. The ARF can adapt in real time to shifting network conditions and evolving attack patterns, constantly refining its intrusion detection capabilities. Furthermore, the inclusion of Hoeffding’s bounds and the moving average test adds a dimension of statistical rigor to the system, facilitating the timely recognition of concept drift and distinguishing benign network variations from potential intrusions. The synergy of these techniques results in reduced false positives and false negatives, thereby enhancing the overall detection rate. The proposed method delivers outstanding results, with 99.95% accuracy and an impressive 99.96% recall rate on the latest CIC-IDS 2018 dataset, outperforming the results of existing approaches.
Author Chahal, Kuljit Kaur
Seth, Sugandh
Singh, Gurvinder
Author_xml – sequence: 1
  givenname: Sugandh
  orcidid: 0000-0002-7474-2141
  surname: Seth
  fullname: Seth, Sugandh
  email: sugandhseth@gmail.com
– sequence: 2
  givenname: Kuljit Kaur
  orcidid: 0000-0003-3785-116X
  surname: Chahal
  fullname: Chahal, Kuljit Kaur
  email: Kuljitchahal.cse@gndu.ac.in
– sequence: 3
  givenname: Gurvinder
  orcidid: 0000-0002-9169-441X
  surname: Singh
  fullname: Singh, Gurvinder
  email: gurvinder.dcse@gndu.ac.in
BookMark eNqFkE1Lw0AQhhepYFu9et6rh7STTZoPbzVptVDwUD2HcT80JcmG3W2xnvwP_kN_ienHSRBhYObwPjPMMyC9RjeSkGsfRj6kwZjret1U45d3lMCCM9L3wwg8BlHcI30AH7wwYnBBBtauAYBBGvXJR6YbLltHc1Mq9_35dYdWCrponNnYUjc0l05yt5_m2tDZVlfbsnmlOTqkK2ck1jSr0NpSlRwPuUVX-eqWTtvWaORv0tJpI2im6xZNF9nKDtyI3SU5V1hZeXXqQ_I8nz1lD97y8X6RTZceZ3HgvIlgk0gEEiMOifC5VIAM_SBUkiWxUKHgSezzIEHG0qTLKkwhjWPFIpFGgQyGZHTcy4221khVtKas0ewKH4q9ueJorjiZ64DwF8BLd_jNGSyrv7GbI6Y37X8nfgDqYYkY
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109143
crossref_primary_10_1109_ACCESS_2025_3544221
crossref_primary_10_1016_j_cose_2024_104121
Cites_doi 10.1007/s10994-017-5642-8
10.1007/978-3-642-03915-7_22
10.1007/s10462-017-9567-1
10.1109/TKDE.2016.2609424
10.1155/2021/8845540
10.1016/j.neucom.2019.11.111
10.1093/biomet/41.1-2.100
10.1109/TNN.2011.2171713
10.1002/cpe.7118
10.1016/j.asoc.2015.10.011
10.1016/j.future.2020.05.035
10.1016/j.patrec.2016.11.018
10.1007/s13748-011-0008-0
10.1109/ACCESS.2018.2805680
10.1145/1380422.1380425
10.1007/978-3-540-24775-3_33
10.1016/0893-6080(88)90021-4
10.1016/j.jisa.2019.102419
10.1007/s00500-020-05200-3
10.1109/ITCC.2004.1286428
10.1109/HIS.2012.6421346
10.1109/ACCESS.2019.2923640
10.4018/IJSWIS.297143
10.1007/s10586-021-03249-9
10.1109/Cybermatics_2018.2018.00087
10.1145/956750.956778
10.1145/502512.502529
10.1016/j.teler.2023.100053
10.1109/TNN.2011.2160459
10.1109/TKDE.2014.2345382
10.1016/j.compeleceng.2022.108239
10.1109/ISI.2007.379535
10.1016/j.eswa.2022.116510
10.1109/COMST.2015.2494502
10.1109/OJCOMS.2020.3044323
ContentType Journal Article
Copyright The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
Copyright_xml – notice: The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxae023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 2547
ExternalDocumentID 10_1093_comjnl_bxae023
10.1093/comjnl/bxae023
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-5d256d3ea6c08d1cef0a2a134fe287df4dc871c38a2298256fa90977f26d963e3
ISSN 0010-4620
IngestDate Thu Apr 24 23:04:51 EDT 2025
Tue Jul 01 02:55:11 EDT 2025
Mon Jun 30 08:34:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords dynamic environments
deep learning
intrusion detection system
concept drift
stream-oriented learning
adaptive algorithms
evolving data stream
machine learning
model adaptation
online learning
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-5d256d3ea6c08d1cef0a2a134fe287df4dc871c38a2298256fa90977f26d963e3
ORCID 0000-0002-7474-2141
0000-0003-3785-116X
0000-0002-9169-441X
PageCount 19
ParticipantIDs crossref_primary_10_1093_comjnl_bxae023
crossref_citationtrail_10_1093_comjnl_bxae023
oup_primary_10_1093_comjnl_bxae023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-20
PublicationDateYYYYMMDD 2024-07-20
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-20
  day: 20
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jain (2024072105012539300_ref16) 2021; 24
Kuppa (2024072105012539300_ref8) 2022; 102
Bifet (2024072105012539300_ref33) 2009
Singh (2024072105012539300_ref45) 2022; 18
Park (2024072105012539300_ref19) 2019; 37
Ashok Kumar (2024072105012539300_ref25) 2017
Jain (2024072105012539300_ref7) 2022; 193
Buczak (2024072105012539300_ref2) 2016; 18
Oldmeadow (2024072105012539300_ref4) 2004
Elwell (2024072105012539300_ref38); 22
Ferrag (2024072105012539300_ref1) 2020; 50
Hnamte (2024072105012539300_ref18) 2023; 10
Bousquet (2024072105012539300_ref23) 2001; 3
Breve (2024072105012539300_ref14) 2013
Chiche (2024072105012539300_ref24) 2021; 2021
Gama (2024072105012539300_ref40) 2004
He (2024072105012539300_ref13) 2011; 22
Montiel (2024072105012539300_ref32) 2018; 19
Kolter (2024072105012539300_ref37) 2007; 8
Bifet (2024072105012539300_ref39) 2007
Baena-García (2024072105012539300_ref41) 2006
Saleh (2024072105012539300_ref50) 2017; 51
Žliobaitė (2024072105012539300_ref10) 2015
Frias-Blanco (2024072105012539300_ref42) 2015; 27
Raab (2024072105012539300_ref43) 2020; 416
Mulimani (2024072105012539300_ref15) 2021
Andresini (2024072105012539300_ref30) 2021
Hulten (2024072105012539300_ref49) 2001
Wang (2024072105012539300_ref35) 2016; 28
2024072105012539300_ref54
Kolter (2024072105012539300_ref34) 2005
Al-Yaseen (2024072105012539300_ref27) 2017; 85
Zainal (2024072105012539300_ref5) 2012
Rajeswari (2024072105012539300_ref17) 2022; 34
Hoens (2024072105012539300_ref46) 2012; 1
Liu (2024072105012539300_ref3) 2018; 6
Tsymbal (2024072105012539300_ref53) 2004
Aburomman (2024072105012539300_ref51) 2016; 38
Xu (2024072105012539300_ref29) 2020; 112
Jemili (2024072105012539300_ref9) 2007
Gomes (2024072105012539300_ref31) 2017; 106
Sun (2024072105012539300_ref28) 2021; 2
Nguyen (2024072105012539300_ref22) 2012
Wang (2024072105012539300_ref36) 2003
Yu (2024072105012539300_ref26) 2008; 3
Yuan (2024072105012539300_ref11) 2018
Grossberg (2024072105012539300_ref47) 1988; 1
Shone (2024072105012539300_ref55) 2018; 2
Page (2024072105012539300_ref44) 1954; 41
Folino (2024072105012539300_ref6) 2020; 24
Bifet (2024072105012539300_ref52) 2007
Andresini (2024072105012539300_ref12) 2021
Chavan (2024072105012539300_ref21) 2004
Gao (2024072105012539300_ref20) 2019; 7
Bifet (2024072105012539300_ref48) 2010; 11
References_xml – volume: 106
  start-page: 1469
  year: 2017
  ident: 2024072105012539300_ref31
  article-title: Adaptive random forests for evolving data stream classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5642-8
– start-page: 249
  volume-title: Advances in Intelligent Data Analysis VIII
  year: 2009
  ident: 2024072105012539300_ref33
  doi: 10.1007/978-3-642-03915-7_22
– volume: 51
  start-page: 403
  year: 2017
  ident: 2024072105012539300_ref50
  article-title: A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and optimized SVM classifiers
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9567-1
– start-page: 91
  volume-title: Studies in Big Data
  year: 2015
  ident: 2024072105012539300_ref10
– volume: 28
  start-page: 3353
  year: 2016
  ident: 2024072105012539300_ref35
  article-title: Online bagging and boosting for imbalanced data streams
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2016.2609424
– volume-title: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence
  year: 2013
  ident: 2024072105012539300_ref14
– year: 2006
  ident: 2024072105012539300_ref41
  article-title: Early Drift Detection Method
– volume: 2021
  start-page: 1
  year: 2021
  ident: 2024072105012539300_ref24
  article-title: Towards a Scalable and Adaptive Learning Approach for Network Intrusion Detection
  publication-title: Journal of Computer Networks and Communications
  doi: 10.1155/2021/8845540
– volume: 416
  start-page: 340
  year: 2020
  ident: 2024072105012539300_ref43
  article-title: Reactive Soft Prototype Computing for Concept Drift Streams
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.111
– volume: 41
  start-page: 100
  year: 1954
  ident: 2024072105012539300_ref44
  article-title: Continuous Inspection Schemes
  publication-title: Biometrika
  doi: 10.1093/biomet/41.1-2.100
– volume-title: Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol 1407
  year: 2021
  ident: 2024072105012539300_ref15
– volume-title: Proceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis, Minnesota, USA
  year: 2007
  ident: 2024072105012539300_ref39
– volume: 22
  start-page: 1901
  year: 2011
  ident: 2024072105012539300_ref13
  article-title: Incremental Learning from Stream Data
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2011.2171713
– volume: 34
  year: 2022
  ident: 2024072105012539300_ref17
  article-title: Effective intrusion detection system using concept drifting data stream and support vector machine
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.7118
– volume: 38
  start-page: 360
  year: 2016
  ident: 2024072105012539300_ref51
  article-title: A novel SVM-kNN-PSO ensemble method for intrusion detection system
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.011
– volume: 112
  start-page: 228
  year: 2020
  ident: 2024072105012539300_ref29
  article-title: Improved Long Short-Term Memory based anomaly detection with concept drift adaptive method for supporting IoT services
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.05.035
– start-page: 443
  volume-title: Proceedings of the 2007 SIAM International Conference on Data Mining
  year: 2007
  ident: 2024072105012539300_ref52
– ident: 2024072105012539300_ref54
– volume-title: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security
  year: 2021
  ident: 2024072105012539300_ref12
– volume: 85
  start-page: 56
  year: 2017
  ident: 2024072105012539300_ref27
  article-title: Real-time multi-agent system for an adaptive intrusion detection system
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.11.018
– volume: 1
  start-page: 89
  year: 2012
  ident: 2024072105012539300_ref46
  article-title: Learning from streaming data with concept drift and imbalance: an overview
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-011-0008-0
– volume: 6
  start-page: 12103
  year: 2018
  ident: 2024072105012539300_ref3
  article-title: A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2805680
– start-page: 590
  volume-title: Communications in Computer and Information Science
  year: 2012
  ident: 2024072105012539300_ref5
– volume: 11
  start-page: 1601
  year: 2010
  ident: 2024072105012539300_ref48
  article-title: Moa: Massive online analysis
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 1
  year: 2008
  ident: 2024072105012539300_ref26
  article-title: An adaptive automatically tuning intrusion detection system
  publication-title: ACM Transactions on Autonomous and Adaptive Systems
  doi: 10.1145/1380422.1380425
– start-page: 255
  volume-title: Advances in Knowledge Discovery and Data Mining
  year: 2004
  ident: 2024072105012539300_ref4
  doi: 10.1007/978-3-540-24775-3_33
– volume: 19
  start-page: 1
  year: 2018
  ident: 2024072105012539300_ref32
  article-title: Scikit-Multiflow: A Multi-output Streaming Framework
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 363
  year: 2001
  ident: 2024072105012539300_ref23
  article-title: Tracking a Small Set of Experts by Mixing Past Posteriors
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 17
  year: 1988
  ident: 2024072105012539300_ref47
  article-title: Nonlinear neural networks: Principles, mechanisms, and architectures
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90021-4
– volume: 50
  year: 2020
  ident: 2024072105012539300_ref1
  article-title: Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2019.102419
– volume: 24
  start-page: 17541
  year: 2020
  ident: 2024072105012539300_ref6
  article-title: A GP-based ensemble classification framework for time-changing streams of intrusion detection data
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05200-3
– start-page: 70
  volume-title: International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004, Vol. 1
  year: 2004
  ident: 2024072105012539300_ref21
  doi: 10.1109/ITCC.2004.1286428
– start-page: 271
  volume-title: 2012 12th International Conference on Hybrid Intelligent Systems (HIS)
  year: 2012
  ident: 2024072105012539300_ref22
  doi: 10.1109/HIS.2012.6421346
– volume: 7
  start-page: 82512
  year: 2019
  ident: 2024072105012539300_ref20
  article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923640
– volume: 37
  year: 2019
  ident: 2024072105012539300_ref19
  article-title: Online eigenvector transformation reflecting concept drift for improving network intrusion detection
  publication-title: Expert Systems
– start-page: 111
  volume-title: Discovery Science. DS 2021. Lecture Notes in Computer Science vol 12986
  year: 2021
  ident: 2024072105012539300_ref30
– volume-title: The Problem of Concept Drift: Definitions and Related Work
  year: 2004
  ident: 2024072105012539300_ref53
– volume: 18
  start-page: 1
  year: 2022
  ident: 2024072105012539300_ref45
  article-title: Distributed Denial-of-Service (DDoS) attacks and defense mechanisms in various web-enabled computing platforms
  publication-title: International Journal on Semantic Web and Information Systems
  doi: 10.4018/IJSWIS.297143
– volume: 24
  start-page: 2099
  year: 2021
  ident: 2024072105012539300_ref16
  article-title: Distributed anomaly detection using concept drift detectionbased hybrid ensemble techniques in streamed network data
  publication-title: Cluster Computing
  doi: 10.1007/s10586-021-03249-9
– start-page: 350
  volume-title: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
  year: 2018
  ident: 2024072105012539300_ref11
  doi: 10.1109/Cybermatics_2018.2018.00087
– start-page: 226
  volume-title: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘03)
  year: 2003
  ident: 2024072105012539300_ref36
  doi: 10.1145/956750.956778
– start-page: 97
  volume-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD’01
  year: 2001
  ident: 2024072105012539300_ref49
  doi: 10.1145/502512.502529
– volume: 10
  start-page: 100053
  year: 2023
  ident: 2024072105012539300_ref18
  article-title: DCNNBiLSTM: An Efficient Hybrid Deep Learning-Based Intrusion Detection System
  publication-title: Telematics and Informatics Reports
  doi: 10.1016/j.teler.2023.100053
– volume: 22
  start-page: 1517
  ident: 2024072105012539300_ref38
  article-title: Incremental learning of concept drift in non-stationary environments
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2011.2160459
– start-page: 59
  volume-title: Advances in Intelligent Systems and Computing
  year: 2017
  ident: 2024072105012539300_ref25
– volume-title: Proceedings of the 22nd International Conference on Machine Learning - ICML’05
  year: 2005
  ident: 2024072105012539300_ref34
– volume: 27
  start-page: 810
  year: 2015
  ident: 2024072105012539300_ref42
  article-title: Online and non-parametric drift detection methods based on Hoeffding’s bounds
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2345382
– volume: 2
  start-page: 41
  year: 2018
  ident: 2024072105012539300_ref55
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 102
  year: 2022
  ident: 2024072105012539300_ref8
  article-title: Learn to adapt: Robust drift detection in security domain
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2022.108239
– start-page: 66
  volume-title: 2007 IEEE Intelligence and Security Informatics
  year: 2007
  ident: 2024072105012539300_ref9
  doi: 10.1109/ISI.2007.379535
– volume: 193
  year: 2022
  ident: 2024072105012539300_ref7
  article-title: A K-Means clustering and SVM based hybrid concept drift detection technique for network anomaly detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116510
– volume: 8
  start-page: 2755
  year: 2007
  ident: 2024072105012539300_ref37
  article-title: Dynamic weighted majority: An ensemble method for drifting concepts
  publication-title: Journal of Machine Learning Research
– start-page: 286
  volume-title: Advances in Artificial Intelligence – SBIA
  year: 2004
  ident: 2024072105012539300_ref40
– volume: 18
  start-page: 1153
  year: 2016
  ident: 2024072105012539300_ref2
  article-title: A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2015.2494502
– volume: 2
  start-page: 102
  year: 2021
  ident: 2024072105012539300_ref28
  article-title: Adaptive Intrusion Detection in the Networking of Large-Scale LANs With Segmented Federated Learning
  publication-title: IEEE Open Journal of the Communications Society
  doi: 10.1109/OJCOMS.2020.3044323
SSID ssj0002096
Score 2.3847935
Snippet Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 2529
Title Concept Drift–Based Intrusion Detection For Evolving Data Stream Classification In IDS: Approaches And Comparative Study
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7YULb0SBIgshcViZJraTZnsrmy7lUS5ppd5Wjh99qKSoJBLqif_Q_9Afxi9h_FhvCq0oSKtoHY2txPPtjGd2Hgi94motlUWWEZPlNeG8pkQoyQmYCobLWosxswnO25_zrV3-YS_bGwwuelFLXVu_kWdX5pX8D1fhHvDVZsn-A2fjonADvgN_4QochuuNeDzxOYej8vQQhGkIW2BvQTHZGF-bTmGZW-pW-4bg05PT0SbII-dEKEUr3J_S4otvjWmDhjwc3sOnrJzPMJQc199s6KOXHqFWeBUL084LHYQGEaP-s7tQYu-7qbp90ajofp4ciAPhc4O646PDdvRRdDFSuIIndJPedSDLbAJO3z1BufV70mRhzF6d9tgXyaAIeB6maC-FeZ4QW1e-L6bDyMNxrS9zs-Az0WHoS3j-oRt83Szg9lEDLzetvwud-Fzn3ypuX098Cy1RMEfoEC1tlNufqqjzaeI6wcWXieVB2apfYzWscOn4Y1Mqe6eZnXvoTjBD8IbH1H000M0DdHfOQRwk_kN0FiCGHcR-_jh34MIRXDiCCwO48Bxc2IILe3Dhy-CCuRjAtY4X0MIALdyDFnbQeoR2p5s7ky0S2nUQCWfglmQKjs-KaZHLpFCp1CYRVKSMGw1muTJcSbDOJSsEpeMCaI0YJ2B-GJorUAOaPUbD5qTRTxCGsdIsS5UylMuCizwtzBiMgZTVYGHzZUTmuziToZa9balyPPMxFWzmd30Wdn0ZvY70X30Vl2spXwJT_kL09CZEz9Dtxe_hORoCX_QKHGDb-kVAzy-DjqP8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concept+Drift%E2%80%93Based+Intrusion+Detection+For+Evolving+Data+Stream+Classification+In+IDS%3A+Approaches+And+Comparative+Study&rft.jtitle=Computer+journal&rft.au=Seth%2C+Sugandh&rft.au=Chahal%2C+Kuljit+Kaur&rft.au=Singh%2C+Gurvinder&rft.date=2024-07-20&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=7&rft.spage=2529&rft.epage=2547&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxae023&rft.externalDocID=10.1093%2Fcomjnl%2Fbxae023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon