Concept Drift–Based Intrusion Detection For Evolving Data Stream Classification In IDS: Approaches And Comparative Study
Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy,...
Saved in:
Published in | Computer journal Vol. 67; no. 7; pp. 2529 - 2547 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
20.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4620 1460-2067 |
DOI | 10.1093/comjnl/bxae023 |
Cover
Loading…
Abstract | Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy, necessitating expensive model retraining with time. The aim is to develop a dynamic and adaptable IDS that mitigates the limitations of static models, ensuring real-time threat detection and reducing the need for frequent, resource-intensive model retraining. This research proposes an approach that amalgamates the adaptive random forest (ARF) classifier with Hoeffding’s bounds and a moving average test for the early and accurate detection of network intrusions. The ARF can adapt in real time to shifting network conditions and evolving attack patterns, constantly refining its intrusion detection capabilities. Furthermore, the inclusion of Hoeffding’s bounds and the moving average test adds a dimension of statistical rigor to the system, facilitating the timely recognition of concept drift and distinguishing benign network variations from potential intrusions. The synergy of these techniques results in reduced false positives and false negatives, thereby enhancing the overall detection rate. The proposed method delivers outstanding results, with 99.95% accuracy and an impressive 99.96% recall rate on the latest CIC-IDS 2018 dataset, outperforming the results of existing approaches. |
---|---|
AbstractList | Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the evolving data distribution and the obsolescence of the static data sources used for model training. Consequently, static classifiers lose efficacy, necessitating expensive model retraining with time. The aim is to develop a dynamic and adaptable IDS that mitigates the limitations of static models, ensuring real-time threat detection and reducing the need for frequent, resource-intensive model retraining. This research proposes an approach that amalgamates the adaptive random forest (ARF) classifier with Hoeffding’s bounds and a moving average test for the early and accurate detection of network intrusions. The ARF can adapt in real time to shifting network conditions and evolving attack patterns, constantly refining its intrusion detection capabilities. Furthermore, the inclusion of Hoeffding’s bounds and the moving average test adds a dimension of statistical rigor to the system, facilitating the timely recognition of concept drift and distinguishing benign network variations from potential intrusions. The synergy of these techniques results in reduced false positives and false negatives, thereby enhancing the overall detection rate. The proposed method delivers outstanding results, with 99.95% accuracy and an impressive 99.96% recall rate on the latest CIC-IDS 2018 dataset, outperforming the results of existing approaches. |
Author | Chahal, Kuljit Kaur Seth, Sugandh Singh, Gurvinder |
Author_xml | – sequence: 1 givenname: Sugandh orcidid: 0000-0002-7474-2141 surname: Seth fullname: Seth, Sugandh email: sugandhseth@gmail.com – sequence: 2 givenname: Kuljit Kaur orcidid: 0000-0003-3785-116X surname: Chahal fullname: Chahal, Kuljit Kaur email: Kuljitchahal.cse@gndu.ac.in – sequence: 3 givenname: Gurvinder orcidid: 0000-0002-9169-441X surname: Singh fullname: Singh, Gurvinder email: gurvinder.dcse@gndu.ac.in |
BookMark | eNqFkE1Lw0AQhhepYFu9et6rh7STTZoPbzVptVDwUD2HcT80JcmG3W2xnvwP_kN_ienHSRBhYObwPjPMMyC9RjeSkGsfRj6kwZjret1U45d3lMCCM9L3wwg8BlHcI30AH7wwYnBBBtauAYBBGvXJR6YbLltHc1Mq9_35dYdWCrponNnYUjc0l05yt5_m2tDZVlfbsnmlOTqkK2ck1jSr0NpSlRwPuUVX-eqWTtvWaORv0tJpI2im6xZNF9nKDtyI3SU5V1hZeXXqQ_I8nz1lD97y8X6RTZceZ3HgvIlgk0gEEiMOifC5VIAM_SBUkiWxUKHgSezzIEHG0qTLKkwhjWPFIpFGgQyGZHTcy4221khVtKas0ewKH4q9ueJorjiZ64DwF8BLd_jNGSyrv7GbI6Y37X8nfgDqYYkY |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109143 crossref_primary_10_1109_ACCESS_2025_3544221 crossref_primary_10_1016_j_cose_2024_104121 |
Cites_doi | 10.1007/s10994-017-5642-8 10.1007/978-3-642-03915-7_22 10.1007/s10462-017-9567-1 10.1109/TKDE.2016.2609424 10.1155/2021/8845540 10.1016/j.neucom.2019.11.111 10.1093/biomet/41.1-2.100 10.1109/TNN.2011.2171713 10.1002/cpe.7118 10.1016/j.asoc.2015.10.011 10.1016/j.future.2020.05.035 10.1016/j.patrec.2016.11.018 10.1007/s13748-011-0008-0 10.1109/ACCESS.2018.2805680 10.1145/1380422.1380425 10.1007/978-3-540-24775-3_33 10.1016/0893-6080(88)90021-4 10.1016/j.jisa.2019.102419 10.1007/s00500-020-05200-3 10.1109/ITCC.2004.1286428 10.1109/HIS.2012.6421346 10.1109/ACCESS.2019.2923640 10.4018/IJSWIS.297143 10.1007/s10586-021-03249-9 10.1109/Cybermatics_2018.2018.00087 10.1145/956750.956778 10.1145/502512.502529 10.1016/j.teler.2023.100053 10.1109/TNN.2011.2160459 10.1109/TKDE.2014.2345382 10.1016/j.compeleceng.2022.108239 10.1109/ISI.2007.379535 10.1016/j.eswa.2022.116510 10.1109/COMST.2015.2494502 10.1109/OJCOMS.2020.3044323 |
ContentType | Journal Article |
Copyright | The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 |
Copyright_xml | – notice: The British Computer Society 2024. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxae023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 2547 |
ExternalDocumentID | 10_1093_comjnl_bxae023 10.1093/comjnl/bxae023 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-5d256d3ea6c08d1cef0a2a134fe287df4dc871c38a2298256fa90977f26d963e3 |
ISSN | 0010-4620 |
IngestDate | Thu Apr 24 23:04:51 EDT 2025 Tue Jul 01 02:55:11 EDT 2025 Mon Jun 30 08:34:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | dynamic environments deep learning intrusion detection system concept drift stream-oriented learning adaptive algorithms evolving data stream machine learning model adaptation online learning |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-5d256d3ea6c08d1cef0a2a134fe287df4dc871c38a2298256fa90977f26d963e3 |
ORCID | 0000-0002-7474-2141 0000-0003-3785-116X 0000-0002-9169-441X |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1093_comjnl_bxae023 crossref_citationtrail_10_1093_comjnl_bxae023 oup_primary_10_1093_comjnl_bxae023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-20 |
PublicationDateYYYYMMDD | 2024-07-20 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Jain (2024072105012539300_ref16) 2021; 24 Kuppa (2024072105012539300_ref8) 2022; 102 Bifet (2024072105012539300_ref33) 2009 Singh (2024072105012539300_ref45) 2022; 18 Park (2024072105012539300_ref19) 2019; 37 Ashok Kumar (2024072105012539300_ref25) 2017 Jain (2024072105012539300_ref7) 2022; 193 Buczak (2024072105012539300_ref2) 2016; 18 Oldmeadow (2024072105012539300_ref4) 2004 Elwell (2024072105012539300_ref38); 22 Ferrag (2024072105012539300_ref1) 2020; 50 Hnamte (2024072105012539300_ref18) 2023; 10 Bousquet (2024072105012539300_ref23) 2001; 3 Breve (2024072105012539300_ref14) 2013 Chiche (2024072105012539300_ref24) 2021; 2021 Gama (2024072105012539300_ref40) 2004 He (2024072105012539300_ref13) 2011; 22 Montiel (2024072105012539300_ref32) 2018; 19 Kolter (2024072105012539300_ref37) 2007; 8 Bifet (2024072105012539300_ref39) 2007 Baena-García (2024072105012539300_ref41) 2006 Saleh (2024072105012539300_ref50) 2017; 51 Žliobaitė (2024072105012539300_ref10) 2015 Frias-Blanco (2024072105012539300_ref42) 2015; 27 Raab (2024072105012539300_ref43) 2020; 416 Mulimani (2024072105012539300_ref15) 2021 Andresini (2024072105012539300_ref30) 2021 Hulten (2024072105012539300_ref49) 2001 Wang (2024072105012539300_ref35) 2016; 28 2024072105012539300_ref54 Kolter (2024072105012539300_ref34) 2005 Al-Yaseen (2024072105012539300_ref27) 2017; 85 Zainal (2024072105012539300_ref5) 2012 Rajeswari (2024072105012539300_ref17) 2022; 34 Hoens (2024072105012539300_ref46) 2012; 1 Liu (2024072105012539300_ref3) 2018; 6 Tsymbal (2024072105012539300_ref53) 2004 Aburomman (2024072105012539300_ref51) 2016; 38 Xu (2024072105012539300_ref29) 2020; 112 Jemili (2024072105012539300_ref9) 2007 Gomes (2024072105012539300_ref31) 2017; 106 Sun (2024072105012539300_ref28) 2021; 2 Nguyen (2024072105012539300_ref22) 2012 Wang (2024072105012539300_ref36) 2003 Yu (2024072105012539300_ref26) 2008; 3 Yuan (2024072105012539300_ref11) 2018 Grossberg (2024072105012539300_ref47) 1988; 1 Shone (2024072105012539300_ref55) 2018; 2 Page (2024072105012539300_ref44) 1954; 41 Folino (2024072105012539300_ref6) 2020; 24 Bifet (2024072105012539300_ref52) 2007 Andresini (2024072105012539300_ref12) 2021 Chavan (2024072105012539300_ref21) 2004 Gao (2024072105012539300_ref20) 2019; 7 Bifet (2024072105012539300_ref48) 2010; 11 |
References_xml | – volume: 106 start-page: 1469 year: 2017 ident: 2024072105012539300_ref31 article-title: Adaptive random forests for evolving data stream classification publication-title: Machine Learning doi: 10.1007/s10994-017-5642-8 – start-page: 249 volume-title: Advances in Intelligent Data Analysis VIII year: 2009 ident: 2024072105012539300_ref33 doi: 10.1007/978-3-642-03915-7_22 – volume: 51 start-page: 403 year: 2017 ident: 2024072105012539300_ref50 article-title: A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and optimized SVM classifiers publication-title: Artificial Intelligence Review doi: 10.1007/s10462-017-9567-1 – start-page: 91 volume-title: Studies in Big Data year: 2015 ident: 2024072105012539300_ref10 – volume: 28 start-page: 3353 year: 2016 ident: 2024072105012539300_ref35 article-title: Online bagging and boosting for imbalanced data streams publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2016.2609424 – volume-title: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence year: 2013 ident: 2024072105012539300_ref14 – year: 2006 ident: 2024072105012539300_ref41 article-title: Early Drift Detection Method – volume: 2021 start-page: 1 year: 2021 ident: 2024072105012539300_ref24 article-title: Towards a Scalable and Adaptive Learning Approach for Network Intrusion Detection publication-title: Journal of Computer Networks and Communications doi: 10.1155/2021/8845540 – volume: 416 start-page: 340 year: 2020 ident: 2024072105012539300_ref43 article-title: Reactive Soft Prototype Computing for Concept Drift Streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.111 – volume: 41 start-page: 100 year: 1954 ident: 2024072105012539300_ref44 article-title: Continuous Inspection Schemes publication-title: Biometrika doi: 10.1093/biomet/41.1-2.100 – volume-title: Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing, vol 1407 year: 2021 ident: 2024072105012539300_ref15 – volume-title: Proceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis, Minnesota, USA year: 2007 ident: 2024072105012539300_ref39 – volume: 22 start-page: 1901 year: 2011 ident: 2024072105012539300_ref13 article-title: Incremental Learning from Stream Data publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2011.2171713 – volume: 34 year: 2022 ident: 2024072105012539300_ref17 article-title: Effective intrusion detection system using concept drifting data stream and support vector machine publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.7118 – volume: 38 start-page: 360 year: 2016 ident: 2024072105012539300_ref51 article-title: A novel SVM-kNN-PSO ensemble method for intrusion detection system publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.011 – volume: 112 start-page: 228 year: 2020 ident: 2024072105012539300_ref29 article-title: Improved Long Short-Term Memory based anomaly detection with concept drift adaptive method for supporting IoT services publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.05.035 – start-page: 443 volume-title: Proceedings of the 2007 SIAM International Conference on Data Mining year: 2007 ident: 2024072105012539300_ref52 – ident: 2024072105012539300_ref54 – volume-title: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security year: 2021 ident: 2024072105012539300_ref12 – volume: 85 start-page: 56 year: 2017 ident: 2024072105012539300_ref27 article-title: Real-time multi-agent system for an adaptive intrusion detection system publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.11.018 – volume: 1 start-page: 89 year: 2012 ident: 2024072105012539300_ref46 article-title: Learning from streaming data with concept drift and imbalance: an overview publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-011-0008-0 – volume: 6 start-page: 12103 year: 2018 ident: 2024072105012539300_ref3 article-title: A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2805680 – start-page: 590 volume-title: Communications in Computer and Information Science year: 2012 ident: 2024072105012539300_ref5 – volume: 11 start-page: 1601 year: 2010 ident: 2024072105012539300_ref48 article-title: Moa: Massive online analysis publication-title: Journal of Machine Learning Research – volume: 3 start-page: 1 year: 2008 ident: 2024072105012539300_ref26 article-title: An adaptive automatically tuning intrusion detection system publication-title: ACM Transactions on Autonomous and Adaptive Systems doi: 10.1145/1380422.1380425 – start-page: 255 volume-title: Advances in Knowledge Discovery and Data Mining year: 2004 ident: 2024072105012539300_ref4 doi: 10.1007/978-3-540-24775-3_33 – volume: 19 start-page: 1 year: 2018 ident: 2024072105012539300_ref32 article-title: Scikit-Multiflow: A Multi-output Streaming Framework publication-title: Journal of Machine Learning Research – volume: 3 start-page: 363 year: 2001 ident: 2024072105012539300_ref23 article-title: Tracking a Small Set of Experts by Mixing Past Posteriors publication-title: Journal of Machine Learning Research – volume: 1 start-page: 17 year: 1988 ident: 2024072105012539300_ref47 article-title: Nonlinear neural networks: Principles, mechanisms, and architectures publication-title: Neural Networks doi: 10.1016/0893-6080(88)90021-4 – volume: 50 year: 2020 ident: 2024072105012539300_ref1 article-title: Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2019.102419 – volume: 24 start-page: 17541 year: 2020 ident: 2024072105012539300_ref6 article-title: A GP-based ensemble classification framework for time-changing streams of intrusion detection data publication-title: Soft Computing doi: 10.1007/s00500-020-05200-3 – start-page: 70 volume-title: International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004, Vol. 1 year: 2004 ident: 2024072105012539300_ref21 doi: 10.1109/ITCC.2004.1286428 – start-page: 271 volume-title: 2012 12th International Conference on Hybrid Intelligent Systems (HIS) year: 2012 ident: 2024072105012539300_ref22 doi: 10.1109/HIS.2012.6421346 – volume: 7 start-page: 82512 year: 2019 ident: 2024072105012539300_ref20 article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923640 – volume: 37 year: 2019 ident: 2024072105012539300_ref19 article-title: Online eigenvector transformation reflecting concept drift for improving network intrusion detection publication-title: Expert Systems – start-page: 111 volume-title: Discovery Science. DS 2021. Lecture Notes in Computer Science vol 12986 year: 2021 ident: 2024072105012539300_ref30 – volume-title: The Problem of Concept Drift: Definitions and Related Work year: 2004 ident: 2024072105012539300_ref53 – volume: 18 start-page: 1 year: 2022 ident: 2024072105012539300_ref45 article-title: Distributed Denial-of-Service (DDoS) attacks and defense mechanisms in various web-enabled computing platforms publication-title: International Journal on Semantic Web and Information Systems doi: 10.4018/IJSWIS.297143 – volume: 24 start-page: 2099 year: 2021 ident: 2024072105012539300_ref16 article-title: Distributed anomaly detection using concept drift detectionbased hybrid ensemble techniques in streamed network data publication-title: Cluster Computing doi: 10.1007/s10586-021-03249-9 – start-page: 350 volume-title: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) year: 2018 ident: 2024072105012539300_ref11 doi: 10.1109/Cybermatics_2018.2018.00087 – start-page: 226 volume-title: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘03) year: 2003 ident: 2024072105012539300_ref36 doi: 10.1145/956750.956778 – start-page: 97 volume-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD’01 year: 2001 ident: 2024072105012539300_ref49 doi: 10.1145/502512.502529 – volume: 10 start-page: 100053 year: 2023 ident: 2024072105012539300_ref18 article-title: DCNNBiLSTM: An Efficient Hybrid Deep Learning-Based Intrusion Detection System publication-title: Telematics and Informatics Reports doi: 10.1016/j.teler.2023.100053 – volume: 22 start-page: 1517 ident: 2024072105012539300_ref38 article-title: Incremental learning of concept drift in non-stationary environments publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2011.2160459 – start-page: 59 volume-title: Advances in Intelligent Systems and Computing year: 2017 ident: 2024072105012539300_ref25 – volume-title: Proceedings of the 22nd International Conference on Machine Learning - ICML’05 year: 2005 ident: 2024072105012539300_ref34 – volume: 27 start-page: 810 year: 2015 ident: 2024072105012539300_ref42 article-title: Online and non-parametric drift detection methods based on Hoeffding’s bounds publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2345382 – volume: 2 start-page: 41 year: 2018 ident: 2024072105012539300_ref55 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 102 year: 2022 ident: 2024072105012539300_ref8 article-title: Learn to adapt: Robust drift detection in security domain publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2022.108239 – start-page: 66 volume-title: 2007 IEEE Intelligence and Security Informatics year: 2007 ident: 2024072105012539300_ref9 doi: 10.1109/ISI.2007.379535 – volume: 193 year: 2022 ident: 2024072105012539300_ref7 article-title: A K-Means clustering and SVM based hybrid concept drift detection technique for network anomaly detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116510 – volume: 8 start-page: 2755 year: 2007 ident: 2024072105012539300_ref37 article-title: Dynamic weighted majority: An ensemble method for drifting concepts publication-title: Journal of Machine Learning Research – start-page: 286 volume-title: Advances in Artificial Intelligence – SBIA year: 2004 ident: 2024072105012539300_ref40 – volume: 18 start-page: 1153 year: 2016 ident: 2024072105012539300_ref2 article-title: A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2015.2494502 – volume: 2 start-page: 102 year: 2021 ident: 2024072105012539300_ref28 article-title: Adaptive Intrusion Detection in the Networking of Large-Scale LANs With Segmented Federated Learning publication-title: IEEE Open Journal of the Communications Society doi: 10.1109/OJCOMS.2020.3044323 |
SSID | ssj0002096 |
Score | 2.3847935 |
Snippet | Static machine and deep learning algorithms are commonly used in intrusion detection systems (IDSs). However, their effectiveness is constrained by the... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2529 |
Title | Concept Drift–Based Intrusion Detection For Evolving Data Stream Classification In IDS: Approaches And Comparative Study |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7YULb0SBIgshcViZJraTZnsrmy7lUS5ppd5Wjh99qKSoJBLqif_Q_9Afxi9h_FhvCq0oSKtoHY2txPPtjGd2Hgi94motlUWWEZPlNeG8pkQoyQmYCobLWosxswnO25_zrV3-YS_bGwwuelFLXVu_kWdX5pX8D1fhHvDVZsn-A2fjonADvgN_4QochuuNeDzxOYej8vQQhGkIW2BvQTHZGF-bTmGZW-pW-4bg05PT0SbII-dEKEUr3J_S4otvjWmDhjwc3sOnrJzPMJQc199s6KOXHqFWeBUL084LHYQGEaP-s7tQYu-7qbp90ajofp4ciAPhc4O646PDdvRRdDFSuIIndJPedSDLbAJO3z1BufV70mRhzF6d9tgXyaAIeB6maC-FeZ4QW1e-L6bDyMNxrS9zs-Az0WHoS3j-oRt83Szg9lEDLzetvwud-Fzn3ypuX098Cy1RMEfoEC1tlNufqqjzaeI6wcWXieVB2apfYzWscOn4Y1Mqe6eZnXvoTjBD8IbH1H000M0DdHfOQRwk_kN0FiCGHcR-_jh34MIRXDiCCwO48Bxc2IILe3Dhy-CCuRjAtY4X0MIALdyDFnbQeoR2p5s7ky0S2nUQCWfglmQKjs-KaZHLpFCp1CYRVKSMGw1muTJcSbDOJSsEpeMCaI0YJ2B-GJorUAOaPUbD5qTRTxCGsdIsS5UylMuCizwtzBiMgZTVYGHzZUTmuziToZa9balyPPMxFWzmd30Wdn0ZvY70X30Vl2spXwJT_kL09CZEz9Dtxe_hORoCX_QKHGDb-kVAzy-DjqP8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concept+Drift%E2%80%93Based+Intrusion+Detection+For+Evolving+Data+Stream+Classification+In+IDS%3A+Approaches+And+Comparative+Study&rft.jtitle=Computer+journal&rft.au=Seth%2C+Sugandh&rft.au=Chahal%2C+Kuljit+Kaur&rft.au=Singh%2C+Gurvinder&rft.date=2024-07-20&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=7&rft.spage=2529&rft.epage=2547&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxae023&rft.externalDocID=10.1093%2Fcomjnl%2Fbxae023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |