CSFL: Cooperative Security Aware Federated Learning Model Using The Blockchain
Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL...
Saved in:
Published in | Computer journal Vol. 67; no. 4; pp. 1298 - 1308 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
21.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4620 1460-2067 |
DOI | 10.1093/comjnl/bxad060 |
Cover
Loading…
Abstract | Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL can be considered as a cooperative-based task to achieve global model sharing. However, the model raises issues of cooperative security, such as free-riding and poisoning attacks. Therefore, we focus on the behavior of participants with strong cooperative relationships and build a Cooperative Security-aware Federated Learning model using blockchain. In addition, we propose a credit-based economic model including profit and punishment mechanisms to ensure fairness and security among participants. Furthermore, for data privacy, we develop a participation permission strategy to protect the privacy of participants through proxy re-encryption and homomorphic encryption. Finally, the simulation results of the real datasets show that the proposed scheme achieves a good performance in security and accuracy. |
---|---|
AbstractList | Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL can be considered as a cooperative-based task to achieve global model sharing. However, the model raises issues of cooperative security, such as free-riding and poisoning attacks. Therefore, we focus on the behavior of participants with strong cooperative relationships and build a Cooperative Security-aware Federated Learning model using blockchain. In addition, we propose a credit-based economic model including profit and punishment mechanisms to ensure fairness and security among participants. Furthermore, for data privacy, we develop a participation permission strategy to protect the privacy of participants through proxy re-encryption and homomorphic encryption. Finally, the simulation results of the real datasets show that the proposed scheme achieves a good performance in security and accuracy. |
Author | Chen, Jianwei Zhang, Yuexin Ye, Ayong Zhang, Jiaomei Yang, Wenjie |
Author_xml | – sequence: 1 givenname: Jiaomei surname: Zhang fullname: Zhang, Jiaomei – sequence: 2 givenname: Ayong surname: Ye fullname: Ye, Ayong email: yay@fjnu.edu.cn – sequence: 3 givenname: Jianwei surname: Chen fullname: Chen, Jianwei – sequence: 4 givenname: Yuexin surname: Zhang fullname: Zhang, Yuexin – sequence: 5 givenname: Wenjie surname: Yang fullname: Yang, Wenjie |
BookMark | eNqFkMFPwjAUhxuDiYBePffqYfDabR31houoydQDcF5K-ybF0ZJuoPz3QuBkYjy9l7z3_fLL1yMd5x0ScstgwEDGQ-3XK1cPF9_KgIAL0mWJgIiDyDqkC8AgSgSHK9JrmhUAcJCiS97y6aS4p7n3GwyqtTukU9TbYNs9HX-pgHSC5nhBQwtUwVn3QV-9wZrOm-M-WyJ9qL3-1Etl3TW5rFTd4M159sl88jjLn6Pi_eklHxeR5lncRqnklYxHRiSYpihHwISJBecqTZVAhIVkCVNGSpEtBEtAmSzVHCsFzIxilsV9kpxydfBNE7AqtW0P9b1rg7J1yaA8OilPTsqzkwM2-IVtgl2rsP8buDsBfrv57_cHwkl25Q |
CitedBy_id | crossref_primary_10_3390_math12162479 |
Cites_doi | 10.1109/ICC.2019.8761267 10.1109/TII.2019.2942190 10.1109/JIOT.2021.3128646 10.1109/SSCI.2017.8285190 10.1109/JIOT.2020.3023126 10.1109/ICASSP.2019.8683546 10.1109/TIFS.2019.2911169 10.1109/TPDS.2020.2996273 10.23919/ICACT48636.2020.9061261 10.1109/MSP.2020.2975749 10.1145/3488560.3498386 10.1109/TIFS.2021.3108434 10.1109/TVT.2020.2973651 10.1016/j.future.2020.10.007 10.1109/TII.2019.2945367 10.1109/JIOT.2019.2940820 10.1002/cpe.5906 10.1109/CISS48834.2020.1570617414 10.1109/TNSE.2020.2999551 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxad060 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1308 |
ExternalDocumentID | 10_1093_comjnl_bxad060 10.1093/comjnl/bxad060 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABSMQ ABVGC ABVLG ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACUXJ ACVCV ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGORE AGSYK AHGBF AHXPO AI. AIDUJ AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APJGH APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF JXSIZ KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZKX ZY4 ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c273t-592f938d64e55e98016d3622a55a6ee0b9141ad9967b6140ad75c2efa01d83173 |
ISSN | 0010-4620 |
IngestDate | Tue Jul 01 02:55:10 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Mon Jun 30 08:34:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Privacy Federated learning Economic model Security Blockchain |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-592f938d64e55e98016d3622a55a6ee0b9141ad9967b6140ad75c2efa01d83173 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1093_comjnl_bxad060 crossref_primary_10_1093_comjnl_bxad060 oup_primary_10_1093_comjnl_bxad060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-21 |
PublicationDateYYYYMMDD | 2024-04-21 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Mothukuri (2024042316175824500_ref21) 2021; 115 Phuong (2024042316175824500_ref25) 2019; 14 Lu (2024042316175824500_ref6) 2020 2024042316175824500_ref30 Lu (2024042316175824500_ref7) 2020; 69 Tramèr (2024042316175824500_ref19) 2017 The MNIST Dataset (2024042316175824500_ref28) Li (2024042316175824500_ref1) 2020; 37 Lin (2024042316175824500_ref3) 2020 Liu (2024042316175824500_ref17) 2021; 16 Aono (2024042316175824500_ref8) 2017; 13 20newsgroups (2024042316175824500_ref29) 2019 Zhang (2024042316175824500_ref15) 2020; 8 Ghazi (2024042316175824500_ref11) 2019 Chen (2024042316175824500_ref24) 2020; 8 Lu (2024042316175824500_ref13) 2019; 16 Zhao (2024042316175824500_ref27) 2022; 34 Nguyen (2024042316175824500_ref4) 2019 Hao (2024042316175824500_ref9) 2019; 16 Kuri (2024042316175824500_ref10) 2017 Sun (2024042316175824500_ref18) 2022; 9 Waqar (2024042316175824500_ref14) 2021; 7 Brendan McMahan (2024042316175824500_ref2) 2016 Paillier (2024042316175824500_ref23) 1999 Liu (2024042316175824500_ref26) 2019; 42 Lyu (2024042316175824500_ref22) 2020; 31 Leroy (2024042316175824500_ref5) 2019 Hao (2024042316175824500_ref12) 2019 Kang (2024042316175824500_ref20) 2019; 6 Zhang (2024042316175824500_ref16) 2022 |
References_xml | – volume: 42 start-page: 942 issue: 5 year: 2019 ident: 2024042316175824500_ref26 article-title: Distributed k-anonymity location privacy protection scheme based on blockchain publication-title: Chinese J. Comput. – volume-title: ICC 2019–2019 IEEE international conference on communications (ICC), Shanghai, China, 20–24 May, pp. 1–6 year: 2019 ident: 2024042316175824500_ref12 article-title: Towards efficient and privacy-preserving federated deep learning doi: 10.1109/ICC.2019.8761267 – volume: 16 start-page: 4177 issue: 6 year: 2019 ident: 2024042316175824500_ref13 article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2019.2942190 – volume: 9 start-page: 11365 issue: 13 year: 2022 ident: 2024042316175824500_ref18 article-title: Data poisoning attacks on federated machine learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3128646 – start-page: 1 volume-title: 2017 IEEE symposium series on computational intelligence (SSCI), Honolulu, HI, USA, 27 November-01 December year: 2017 ident: 2024042316175824500_ref10 article-title: Privacy preserving extreme learning machine using additively homomorphic encryption doi: 10.1109/SSCI.2017.8285190 – volume: 8 start-page: 3310 issue: 5 year: 2020 ident: 2024042316175824500_ref15 article-title: Poisongan: generative poisoning attacks against federated learning in edge computing systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3023126 – year: 2017 ident: 2024042316175824500_ref19 article-title: Ensemble adversarial training: attacks and defenses publication-title: arXiv preprint arXiv:1705.07204 – year: 2019 ident: 2024042316175824500_ref11 – ident: 2024042316175824500_ref30 article-title: Corda: an open source distributed ledger platform – start-page: 6341 volume-title: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May year: 2019 ident: 2024042316175824500_ref5 article-title: Federated learning for keyword spotting doi: 10.1109/ICASSP.2019.8683546 – volume: 14 start-page: 3003 issue: 11 year: 2019 ident: 2024042316175824500_ref25 article-title: Privacy-preserving deep learning via weight transmission publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2911169 – volume: 31 start-page: 2524 issue: 11 year: 2020 ident: 2024042316175824500_ref22 article-title: Towards fair and privacy-preserving federated deep models publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2020.2996273 – volume: 7 issue: 7 year: 2021 ident: 2024042316175824500_ref14 article-title: A federated learning approach for privacy protection in context-aware recommender systems publication-title: Comput. J. – ident: 2024042316175824500_ref28 – start-page: 585 volume-title: 2020 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea (South), 16–19 Feb year: 2020 ident: 2024042316175824500_ref3 article-title: Using federated learning on malware classification doi: 10.23919/ICACT48636.2020.9061261 – volume: 37 start-page: 50 issue: 3 year: 2020 ident: 2024042316175824500_ref1 article-title: Federated learning: challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2975749 – start-page: 1415 volume-title: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining year: 2022 ident: 2024042316175824500_ref16 article-title: Pipattack: Poisoning federated recommender systems for manipulating item promotion doi: 10.1145/3488560.3498386 – volume: 16 start-page: 4574 year: 2021 ident: 2024042316175824500_ref17 article-title: Privacy-enhanced federated learning against poisoning adversaries publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2021.3108434 – volume: 69 start-page: 4298 issue: 4 year: 2020 ident: 2024042316175824500_ref7 article-title: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2973651 – volume: 115 start-page: 619 year: 2021 ident: 2024042316175824500_ref21 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.007 – start-page: 756 volume-title: 2019 IEEE 39th International conference on distributed computing systems (ICDCS), Dallas, TX, USA, 7–10 July year: 2019 ident: 2024042316175824500_ref4 article-title: DÏoT: A federated self-learning anomaly detection system for IoT – volume: 16 start-page: 6532 issue: 10 year: 2019 ident: 2024042316175824500_ref9 article-title: Efficient and privacy-enhanced federated learning for industrial artificial intelligence publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2019.2945367 – volume: 13 start-page: 1333 issue: 5 year: 2017 ident: 2024042316175824500_ref8 article-title: Privacy-preserving deep learning via additively homomorphic encryption publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2019 ident: 2024042316175824500_ref29 – volume: 6 start-page: 10700 issue: 6 year: 2019 ident: 2024042316175824500_ref20 article-title: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2940820 – volume: 34 start-page: e5906 issue: 7 year: 2022 ident: 2024042316175824500_ref27 article-title: Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks publication-title: Concurr. Comput. doi: 10.1002/cpe.5906 – year: 2016 ident: 2024042316175824500_ref2 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: arXiv e-prints, arXiv-1602 – start-page: 1 volume-title: 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 18–20 March year: 2020 ident: 2024042316175824500_ref6 article-title: Decentralized federated learning for electronic health records doi: 10.1109/CISS48834.2020.1570617414 – start-page: 223 volume-title: 7th International conference on the theory and applications of cryptographic techniques. Prague, Czech republic, 2–6 May year: 1999 ident: 2024042316175824500_ref23 article-title: Public-key cryptosystems based on composite degree residuosity classes – volume: 8 start-page: 2048 issue: 3 year: 2020 ident: 2024042316175824500_ref24 article-title: A blockchain-based proxy re-encryption with equality test for vehicular communication systems publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.2999551 |
SSID | ssj0002096 |
Score | 2.3650992 |
Snippet | Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration.... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1298 |
Title | CSFL: Cooperative Security Aware Federated Learning Model Using The Blockchain |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdKuewCGxtaYUwWmrRDFUjcxEm4dR0VQoVLQWKnyl8RhdIg1IpuF_51nmMnMVIrGJcoTV_dxO_X99X3gdAPKRIG7xFPkhgclCwLPE6Y9JTklAvOmRA6oH92Tk8uw9Or6KrReHKyluYzfiD-La0reQ9X4RrwVVfJ_gdnq0XhApwDf-EIHIbjm3jcG_YH2qXv5fm9si28h3YgXbv7qJO6-rpZBNNm5aAMgujxZ5O2yRXQKPkF-uxWXDPbg7tsW2DHPbTdO3EjzKdjlt-pcR10LcTM39yqwiJlwFZ-AAQfa8pqhT9ztbBfauMOpEhXIXXcYUU9oytrQcKHlJh_XZQRryH1Pd0w3pW_9tXYDS4UwhRMkcRRzKBtk6VC3zTEAjbeTCdwwhdM-tSvFVyVdriaeA2tE_AzSBOtd3-fDYaVMid-MeKtepiq72fn0KxxaFd4YdfoWknHTLn4iDasf4G7BiyfUENNt9BmyUxsRflndK6xc4Qd5OASObhADq6Qg0vk4AI5uEAOBuTgGjlf0GX_-KJ34tnZGp4Ag3XmRSnJ0k4iaaiiSKVgp1AJtgxhUcSoUj5PgzBgErzhmIMF5zMZR4KojPmBTMDm7Gyj5jSfqq8IxzzOkoDBJxMRchomkVTwG2dZKNNYZbSFvHJnRsI2ntfzTyYjkwDRGZmdHNmdbKGfFf29abmyknIfNvoVop23EO2iDzXGv6Hm7GGu9sDanPHvFhHPAleGCw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSFL%3A+Cooperative+Security+Aware+Federated+Learning+Model+Using+The+Blockchain&rft.jtitle=Computer+journal&rft.au=Zhang%2C+Jiaomei&rft.au=Ye%2C+Ayong&rft.au=Chen%2C+Jianwei&rft.au=Zhang%2C+Yuexin&rft.date=2024-04-21&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=4&rft.spage=1298&rft.epage=1308&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad060&rft.externalDocID=10.1093%2Fcomjnl%2Fbxad060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |