CSFL: Cooperative Security Aware Federated Learning Model Using The Blockchain

Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 67; no. 4; pp. 1298 - 1308
Main Authors Zhang, Jiaomei, Ye, Ayong, Chen, Jianwei, Zhang, Yuexin, Yang, Wenjie
Format Journal Article
LanguageEnglish
Published Oxford University Press 21.04.2024
Subjects
Online AccessGet full text
ISSN0010-4620
1460-2067
DOI10.1093/comjnl/bxad060

Cover

Loading…
Abstract Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL can be considered as a cooperative-based task to achieve global model sharing. However, the model raises issues of cooperative security, such as free-riding and poisoning attacks. Therefore, we focus on the behavior of participants with strong cooperative relationships and build a Cooperative Security-aware Federated Learning model using blockchain. In addition, we propose a credit-based economic model including profit and punishment mechanisms to ensure fairness and security among participants. Furthermore, for data privacy, we develop a participation permission strategy to protect the privacy of participants through proxy re-encryption and homomorphic encryption. Finally, the simulation results of the real datasets show that the proposed scheme achieves a good performance in security and accuracy.
AbstractList Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration. Although its emergence has attracted widespread attention from academia and industry, existing works on FL still face security challenges. FL can be considered as a cooperative-based task to achieve global model sharing. However, the model raises issues of cooperative security, such as free-riding and poisoning attacks. Therefore, we focus on the behavior of participants with strong cooperative relationships and build a Cooperative Security-aware Federated Learning model using blockchain. In addition, we propose a credit-based economic model including profit and punishment mechanisms to ensure fairness and security among participants. Furthermore, for data privacy, we develop a participation permission strategy to protect the privacy of participants through proxy re-encryption and homomorphic encryption. Finally, the simulation results of the real datasets show that the proposed scheme achieves a good performance in security and accuracy.
Author Chen, Jianwei
Zhang, Yuexin
Ye, Ayong
Zhang, Jiaomei
Yang, Wenjie
Author_xml – sequence: 1
  givenname: Jiaomei
  surname: Zhang
  fullname: Zhang, Jiaomei
– sequence: 2
  givenname: Ayong
  surname: Ye
  fullname: Ye, Ayong
  email: yay@fjnu.edu.cn
– sequence: 3
  givenname: Jianwei
  surname: Chen
  fullname: Chen, Jianwei
– sequence: 4
  givenname: Yuexin
  surname: Zhang
  fullname: Zhang, Yuexin
– sequence: 5
  givenname: Wenjie
  surname: Yang
  fullname: Yang, Wenjie
BookMark eNqFkMFPwjAUhxuDiYBePffqYfDabR31houoydQDcF5K-ybF0ZJuoPz3QuBkYjy9l7z3_fLL1yMd5x0ScstgwEDGQ-3XK1cPF9_KgIAL0mWJgIiDyDqkC8AgSgSHK9JrmhUAcJCiS97y6aS4p7n3GwyqtTukU9TbYNs9HX-pgHSC5nhBQwtUwVn3QV-9wZrOm-M-WyJ9qL3-1Etl3TW5rFTd4M159sl88jjLn6Pi_eklHxeR5lncRqnklYxHRiSYpihHwISJBecqTZVAhIVkCVNGSpEtBEtAmSzVHCsFzIxilsV9kpxydfBNE7AqtW0P9b1rg7J1yaA8OilPTsqzkwM2-IVtgl2rsP8buDsBfrv57_cHwkl25Q
CitedBy_id crossref_primary_10_3390_math12162479
Cites_doi 10.1109/ICC.2019.8761267
10.1109/TII.2019.2942190
10.1109/JIOT.2021.3128646
10.1109/SSCI.2017.8285190
10.1109/JIOT.2020.3023126
10.1109/ICASSP.2019.8683546
10.1109/TIFS.2019.2911169
10.1109/TPDS.2020.2996273
10.23919/ICACT48636.2020.9061261
10.1109/MSP.2020.2975749
10.1145/3488560.3498386
10.1109/TIFS.2021.3108434
10.1109/TVT.2020.2973651
10.1016/j.future.2020.10.007
10.1109/TII.2019.2945367
10.1109/JIOT.2019.2940820
10.1002/cpe.5906
10.1109/CISS48834.2020.1570617414
10.1109/TNSE.2020.2999551
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxad060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 1308
ExternalDocumentID 10_1093_comjnl_bxad060
10.1093/comjnl/bxad060
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACUXJ
ACVCV
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGORE
AGSYK
AHGBF
AHXPO
AI.
AIDUJ
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APJGH
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c273t-592f938d64e55e98016d3622a55a6ee0b9141ad9967b6140ad75c2efa01d83173
ISSN 0010-4620
IngestDate Tue Jul 01 02:55:10 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Mon Jun 30 08:34:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Privacy
Federated learning
Economic model
Security
Blockchain
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-592f938d64e55e98016d3622a55a6ee0b9141ad9967b6140ad75c2efa01d83173
PageCount 11
ParticipantIDs crossref_citationtrail_10_1093_comjnl_bxad060
crossref_primary_10_1093_comjnl_bxad060
oup_primary_10_1093_comjnl_bxad060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-21
  day: 21
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mothukuri (2024042316175824500_ref21) 2021; 115
Phuong (2024042316175824500_ref25) 2019; 14
Lu (2024042316175824500_ref6) 2020
2024042316175824500_ref30
Lu (2024042316175824500_ref7) 2020; 69
Tramèr (2024042316175824500_ref19) 2017
The MNIST Dataset (2024042316175824500_ref28)
Li (2024042316175824500_ref1) 2020; 37
Lin (2024042316175824500_ref3) 2020
Liu (2024042316175824500_ref17) 2021; 16
Aono (2024042316175824500_ref8) 2017; 13
20newsgroups (2024042316175824500_ref29) 2019
Zhang (2024042316175824500_ref15) 2020; 8
Ghazi (2024042316175824500_ref11) 2019
Chen (2024042316175824500_ref24) 2020; 8
Lu (2024042316175824500_ref13) 2019; 16
Zhao (2024042316175824500_ref27) 2022; 34
Nguyen (2024042316175824500_ref4) 2019
Hao (2024042316175824500_ref9) 2019; 16
Kuri (2024042316175824500_ref10) 2017
Sun (2024042316175824500_ref18) 2022; 9
Waqar (2024042316175824500_ref14) 2021; 7
Brendan McMahan (2024042316175824500_ref2) 2016
Paillier (2024042316175824500_ref23) 1999
Liu (2024042316175824500_ref26) 2019; 42
Lyu (2024042316175824500_ref22) 2020; 31
Leroy (2024042316175824500_ref5) 2019
Hao (2024042316175824500_ref12) 2019
Kang (2024042316175824500_ref20) 2019; 6
Zhang (2024042316175824500_ref16) 2022
References_xml – volume: 42
  start-page: 942
  issue: 5
  year: 2019
  ident: 2024042316175824500_ref26
  article-title: Distributed k-anonymity location privacy protection scheme based on blockchain
  publication-title: Chinese J. Comput.
– volume-title: ICC 2019–2019 IEEE international conference on communications (ICC), Shanghai, China, 20–24 May, pp. 1–6
  year: 2019
  ident: 2024042316175824500_ref12
  article-title: Towards efficient and privacy-preserving federated deep learning
  doi: 10.1109/ICC.2019.8761267
– volume: 16
  start-page: 4177
  issue: 6
  year: 2019
  ident: 2024042316175824500_ref13
  article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2019.2942190
– volume: 9
  start-page: 11365
  issue: 13
  year: 2022
  ident: 2024042316175824500_ref18
  article-title: Data poisoning attacks on federated machine learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3128646
– start-page: 1
  volume-title: 2017 IEEE symposium series on computational intelligence (SSCI), Honolulu, HI, USA, 27 November-01 December
  year: 2017
  ident: 2024042316175824500_ref10
  article-title: Privacy preserving extreme learning machine using additively homomorphic encryption
  doi: 10.1109/SSCI.2017.8285190
– volume: 8
  start-page: 3310
  issue: 5
  year: 2020
  ident: 2024042316175824500_ref15
  article-title: Poisongan: generative poisoning attacks against federated learning in edge computing systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3023126
– year: 2017
  ident: 2024042316175824500_ref19
  article-title: Ensemble adversarial training: attacks and defenses
  publication-title: arXiv preprint arXiv:1705.07204
– year: 2019
  ident: 2024042316175824500_ref11
– ident: 2024042316175824500_ref30
  article-title: Corda: an open source distributed ledger platform
– start-page: 6341
  volume-title: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May
  year: 2019
  ident: 2024042316175824500_ref5
  article-title: Federated learning for keyword spotting
  doi: 10.1109/ICASSP.2019.8683546
– volume: 14
  start-page: 3003
  issue: 11
  year: 2019
  ident: 2024042316175824500_ref25
  article-title: Privacy-preserving deep learning via weight transmission
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2911169
– volume: 31
  start-page: 2524
  issue: 11
  year: 2020
  ident: 2024042316175824500_ref22
  article-title: Towards fair and privacy-preserving federated deep models
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2020.2996273
– volume: 7
  issue: 7
  year: 2021
  ident: 2024042316175824500_ref14
  article-title: A federated learning approach for privacy protection in context-aware recommender systems
  publication-title: Comput. J.
– ident: 2024042316175824500_ref28
– start-page: 585
  volume-title: 2020 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea (South), 16–19 Feb
  year: 2020
  ident: 2024042316175824500_ref3
  article-title: Using federated learning on malware classification
  doi: 10.23919/ICACT48636.2020.9061261
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 2024042316175824500_ref1
  article-title: Federated learning: challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2975749
– start-page: 1415
  volume-title: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining
  year: 2022
  ident: 2024042316175824500_ref16
  article-title: Pipattack: Poisoning federated recommender systems for manipulating item promotion
  doi: 10.1145/3488560.3498386
– volume: 16
  start-page: 4574
  year: 2021
  ident: 2024042316175824500_ref17
  article-title: Privacy-enhanced federated learning against poisoning adversaries
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3108434
– volume: 69
  start-page: 4298
  issue: 4
  year: 2020
  ident: 2024042316175824500_ref7
  article-title: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2973651
– volume: 115
  start-page: 619
  year: 2021
  ident: 2024042316175824500_ref21
  article-title: A survey on security and privacy of federated learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.10.007
– start-page: 756
  volume-title: 2019 IEEE 39th International conference on distributed computing systems (ICDCS), Dallas, TX, USA, 7–10 July
  year: 2019
  ident: 2024042316175824500_ref4
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
– volume: 16
  start-page: 6532
  issue: 10
  year: 2019
  ident: 2024042316175824500_ref9
  article-title: Efficient and privacy-enhanced federated learning for industrial artificial intelligence
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2019.2945367
– volume: 13
  start-page: 1333
  issue: 5
  year: 2017
  ident: 2024042316175824500_ref8
  article-title: Privacy-preserving deep learning via additively homomorphic encryption
  publication-title: IEEE Trans. Inf. Forensics Secur.
– year: 2019
  ident: 2024042316175824500_ref29
– volume: 6
  start-page: 10700
  issue: 6
  year: 2019
  ident: 2024042316175824500_ref20
  article-title: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2940820
– volume: 34
  start-page: e5906
  issue: 7
  year: 2022
  ident: 2024042316175824500_ref27
  article-title: Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5906
– year: 2016
  ident: 2024042316175824500_ref2
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: arXiv e-prints, arXiv-1602
– start-page: 1
  volume-title: 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 18–20 March
  year: 2020
  ident: 2024042316175824500_ref6
  article-title: Decentralized federated learning for electronic health records
  doi: 10.1109/CISS48834.2020.1570617414
– start-page: 223
  volume-title: 7th International conference on the theory and applications of cryptographic techniques. Prague, Czech republic, 2–6 May
  year: 1999
  ident: 2024042316175824500_ref23
  article-title: Public-key cryptosystems based on composite degree residuosity classes
– volume: 8
  start-page: 2048
  issue: 3
  year: 2020
  ident: 2024042316175824500_ref24
  article-title: A blockchain-based proxy re-encryption with equality test for vehicular communication systems
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.2999551
SSID ssj0002096
Score 2.3650992
Snippet Federated learning (FL) is a focus of research in the area of privacy protection since it does not have the privacy issues that arise from data concentration....
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1298
Title CSFL: Cooperative Security Aware Federated Learning Model Using The Blockchain
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdKuewCGxtaYUwWmrRDFUjcxEm4dR0VQoVLQWKnyl8RhdIg1IpuF_51nmMnMVIrGJcoTV_dxO_X99X3gdAPKRIG7xFPkhgclCwLPE6Y9JTklAvOmRA6oH92Tk8uw9Or6KrReHKyluYzfiD-La0reQ9X4RrwVVfJ_gdnq0XhApwDf-EIHIbjm3jcG_YH2qXv5fm9si28h3YgXbv7qJO6-rpZBNNm5aAMgujxZ5O2yRXQKPkF-uxWXDPbg7tsW2DHPbTdO3EjzKdjlt-pcR10LcTM39yqwiJlwFZ-AAQfa8pqhT9ztbBfauMOpEhXIXXcYUU9oytrQcKHlJh_XZQRryH1Pd0w3pW_9tXYDS4UwhRMkcRRzKBtk6VC3zTEAjbeTCdwwhdM-tSvFVyVdriaeA2tE_AzSBOtd3-fDYaVMid-MeKtepiq72fn0KxxaFd4YdfoWknHTLn4iDasf4G7BiyfUENNt9BmyUxsRflndK6xc4Qd5OASObhADq6Qg0vk4AI5uEAOBuTgGjlf0GX_-KJ34tnZGp4Ag3XmRSnJ0k4iaaiiSKVgp1AJtgxhUcSoUj5PgzBgErzhmIMF5zMZR4KojPmBTMDm7Gyj5jSfqq8IxzzOkoDBJxMRchomkVTwG2dZKNNYZbSFvHJnRsI2ntfzTyYjkwDRGZmdHNmdbKGfFf29abmyknIfNvoVop23EO2iDzXGv6Hm7GGu9sDanPHvFhHPAleGCw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSFL%3A+Cooperative+Security+Aware+Federated+Learning+Model+Using+The+Blockchain&rft.jtitle=Computer+journal&rft.au=Zhang%2C+Jiaomei&rft.au=Ye%2C+Ayong&rft.au=Chen%2C+Jianwei&rft.au=Zhang%2C+Yuexin&rft.date=2024-04-21&rft.pub=Oxford+University+Press&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=67&rft.issue=4&rft.spage=1298&rft.epage=1308&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxad060&rft.externalDocID=10.1093%2Fcomjnl%2Fbxad060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon