Probing cosmic homogeneity in the Local Universe
ABSTRACT We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 526; no. 3; pp. 3219 - 3229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
10.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology. |
---|---|
AbstractList | ABSTRACT
We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology. We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology. |
Author | Avila, Felipe Bernui, Armando Dias, Bruno L |
Author_xml | – sequence: 1 givenname: Bruno L surname: Dias fullname: Dias, Bruno L email: brunoleal@on.br – sequence: 2 givenname: Felipe surname: Avila fullname: Avila, Felipe – sequence: 3 givenname: Armando surname: Bernui fullname: Bernui, Armando |
BookMark | eNqFz0tLAzEUhuEgFWyrW9fZupj25DrJUoo3GNCFXQ-ZNNNGZpKSRKH_3kt1I4irsznPB-8MTUIMDqFLAgsCmi3HkExe5mI2VCs4QVPCpKiolnKCpgBMVKom5AzNcn4BAM6onCJ4SrHzYYttzKO3eBfHuHXB-XLAPuCyc7iJ1gx4HfybS9mdo9PeDNldfN85Wt_ePK_uq-bx7mF13VSW1qxUAgQn2pCOC9prp7VkQlnpakVZB4ZyAkB7SondEEVpZx1YrrhmVgqjjGBzxI-7NsWck-tb64spPoaSjB9aAu1ndftV3f5Uf7DFL7ZPfjTp8De4OoL4uv_v9x0XRmwM |
CitedBy_id | crossref_primary_10_1093_mnras_stae2158 crossref_primary_10_3847_1538_4357_ad3735 crossref_primary_10_3390_universe10020075 crossref_primary_10_1088_1361_6382_ad7a4c crossref_primary_10_1093_mnras_stae867 crossref_primary_10_1140_epjc_s10052_024_12953_w |
Cites_doi | 10.1051/0004-6361:20078099 10.1111/j.1745-3933.2009.00738.x 10.1093/mnras/stx2240 10.48550/arXiv.2304.05928 10.1086/524678 10.1088/0264-9381/21/11/006 10.1111/j.1365-2966.2008.14082.x 10.1111/j.1365-2966.2012.21402.x 10.1086/190308 10.1093/mnras/sty2405 10.3847/1538-4357/acd63f 10.1038/s41550-016-0036 10.3847/1538-4365/ab1658 10.1086/152431 10.1086/431891 10.1086/172900 10.1093/mnras/stv154 10.1088/0004-6256/146/3/69 10.1093/mnras/staa119 10.1088/1475-7516/2021/10/030 10.1093/mnrasl/slx202 10.1093/mnras/226.2.373 10.1086/429084 10.1111/j.1365-2966.2004.07926.x 10.1088/0067-0049/219/1/12 10.1093/mnras/stab1488 10.48550/arXiv.2305.16865 10.1111/j.1365-2966.2010.17679.x 10.1111/j.1365-2966.2006.10243.x 10.48550/arXiv.2104.14560 10.1088/1475-7516/2017/06/019 10.48550/arXiv.2303.11271 10.1093/mnras/stx2112 10.1088/1475-7516/2021/08/015 10.1088/1475-7516/2021/03/029 10.1007/s13538-023-01259-z 10.1088/1475-7516/2020/05/052 10.1051/0004-6361/202039936 10.1093/mnras/stx2356 10.1086/174036 10.1088/1475-7516/2021/11/050 10.1093/mnras/stab3122 10.48550/arXiv.2305.06392 10.1088/1475-7516/2018/12/041 10.1088/1475-7516/2021/08/006 10.1093/mnras/stv2382 10.1209/0295-5075/96/59001 10.1093/mnras/stx988 10.1016/0370-1573(92)90112-D 10.1093/mnras/stz1765 10.1088/1475-7516/2022/06/006 10.1088/0004-637X/776/1/43 10.1088/0004-637X/750/1/38 10.1051/0004-6361/201833910 10.1093/mnras/stu1746 10.1093/mnras/227.1.1 10.1093/mnras/stad763 10.1103/PhysRevD.85.063001 10.3847/1538-4357/ab2597 10.1111/j.1365-2966.2005.09578.x 10.3847/1538-4357/acbfa9 10.1086/301513 10.1086/305424 10.48550/arXiv.2308.10866 10.1103/PhysRevD.107.103531 10.1088/1742-6596/841/1/012008 10.1088/1475-7516/2016/11/060 10.1086/311930 10.1088/1475-7516/2013/04/007 10.1088/1475-7516/2017/10/003 10.1007/s10701-022-00628-z |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/mnras/stad2980 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3229 |
ExternalDocumentID | 10_1093_mnras_stad2980 10.1093/mnras/stad2980 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABVLG AHGBF CITATION |
ID | FETCH-LOGICAL-c273t-505419a1b452f9e996358c6e7823b0a241002f221cd1822bce0c48493c65a8a53 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Tue Jul 01 03:32:40 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Apr 02 07:03:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | distance scale cosmology: observations large-scale structure of Universe |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-505419a1b452f9e996358c6e7823b0a241002f221cd1822bce0c48493c65a8a53 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1093_mnras_stad2980 crossref_primary_10_1093_mnras_stad2980 oup_primary_10_1093_mnras_stad2980 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-10 |
PublicationDateYYYYMMDD | 2023-10-10 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Alam (2023101016245554500_bib3) 2021; 2021 Rath (2023101016245554500_bib59) 2013; 2013 Yadav (2023101016245554500_bib75) 2005; 364 Dainotti (2023101016245554500_bib22) 2023; 951 Polastri (2023101016245554500_bib58) 2017 Ntelis (2023101016245554500_bib48) 2017; 2017 Sarkar (2023101016245554500_bib64) 2009; 399 Scrimgeour (2023101016245554500_bib66) 2012; 425 Hogg (2023101016245554500_bib31) 2005; 624 Tarnopolski (2023101016245554500_bib71) 2017; 472 Agrawal (2023101016245554500_bib1) 2017; 2017 Marques (2023101016245554500_bib45) 2023 Stoeger (2023101016245554500_bib69) 1987; 226 Cresswell (2023101016245554500_bib21) 2009; 392 Khan (2023101016245554500_bib38) 2023; 947 Staicova (2023101016245554500_bib68) 2023 Bharadwaj (2023101016245554500_bib14) 1999; 351 Avila (2023101016245554500_bib9) 2022; 509 Eisenstein (2023101016245554500_bib23) 1998; 496 Nuza (2023101016245554500_bib49) 2014; 445 Peacock (2023101016245554500_bib53) 1999 Bernui (2023101016245554500_bib12) 2008; 673 Avila (2023101016245554500_bib6) 2018; 2018 Specogna (2023101016245554500_bib67) 2023 Hoffman (2023101016245554500_bib30) 2017; 1 Coleman (2023101016245554500_bib19) 1992; 213 Gonçalves (2023101016245554500_bib27) 2018; 475 Goyal (2023101016245554500_bib29) 2021; 2021 Erdoǧdu (2023101016245554500_bib24) 2006; 368 Jarvis (2023101016245554500_bib33) 2004; 352 Courtois (2023101016245554500_bib20) 2013; 146 Huchra (2023101016245554500_bib32) 2005 Chisari (2023101016245554500_bib18) 2019; 242 Laurent (2023101016245554500_bib41) 2016; 2016 de Carvalho (2023101016245554500_bib79) 2021; 649 García-García (2023101016245554500_bib26) 2021; 2021 Aluri (2023101016245554500_bib4) 2017; 472 Khan (2023101016245554500_bib37) 2022; 2022 Marques (2023101016245554500_bib44) 2018; 473 Martin (2023101016245554500_bib46) 2012; 750 Calcina (2023101016245554500_bib15) 2018 Ribeiro (2023101016245554500_bib61) 2023 Tully (2023101016245554500_bib73) 2019; 880 Avila (2023101016245554500_bib10) 2023; 53 Marques (2023101016245554500_bib43) 2020; 2020 Thiele (2023101016245554500_bib72) 2023 Bargiacchi (2023101016245554500_bib11) 2023; 521 Peebles (2023101016245554500_bib55) 1980 Peebles (2023101016245554500_bib54) 1973; 185 Reid (2023101016245554500_bib60) 2016; 455 Padmanabhan (2023101016245554500_bib50) 1993 Joyce (2023101016245554500_bib34) 1999; 514 Carter (2023101016245554500_bib16) 2018; 481 Sarkar (2023101016245554500_bib65) 2009; 399 Papastergis (2023101016245554500_bib51) 2013; 776 Alam (2023101016245554500_bib2) 2015; 219 Chiocchetta (2023101016245554500_bib17) 2021; 2021 Linder (2023101016245554500_bib42) 2021 Landy (2023101016245554500_bib40) 1993; 412 Avila (2023101016245554500_bib7) 2019; 488 Ntelis (2023101016245554500_bib47) 2023; 53 Planck Collaboration (2023101016245554500_bib57) 2020; 641 Aragon-Calvo (2023101016245554500_bib5) 2020 Sánchez (2023101016245554500_bib63) 2011; 411 Sylos Labini (2023101016245554500_bib70) 2008; 477 Visser (2023101016245554500_bib74) 2004; 21 Avila (2023101016245554500_bib8) 2021; 505 Labini (2023101016245554500_bib39) 2011; 96 Ross (2023101016245554500_bib62) 2015; 449 York (2023101016245554500_bib76) 2000; 120 de Carvalho (2023101016245554500_bib78) 2020; 492 Kashino (2023101016245554500_bib36) 2012; 85 Park (2023101016245554500_bib52) 2017; 469 Gonçalves (2023101016245554500_bib28) 2021; 2021 Feldman (2023101016245554500_bib25) 1993; 426 Kaiser (2023101016245554500_bib35) 1987; 227 Bernui (2023101016245554500_bib13) 2023; 107 Zehavi (2023101016245554500_bib77) 2005; 630 Peebles (2023101016245554500_bib56) 1974; 28 |
References_xml | – volume: 477 start-page: 381 year: 2008 ident: 2023101016245554500_bib70 publication-title: A&A doi: 10.1051/0004-6361:20078099 – volume: 399 start-page: L128 year: 2009 ident: 2023101016245554500_bib64 publication-title: MNRAS doi: 10.1111/j.1745-3933.2009.00738.x – volume: 473 start-page: 165 year: 2018 ident: 2023101016245554500_bib44 publication-title: MNRAS doi: 10.1093/mnras/stx2240 – year: 2023 ident: 2023101016245554500_bib72 doi: 10.48550/arXiv.2304.05928 – volume: 673 start-page: 968 year: 2008 ident: 2023101016245554500_bib12 publication-title: ApJ doi: 10.1086/524678 – volume: 21 start-page: 2603 year: 2004 ident: 2023101016245554500_bib74 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/21/11/006 – volume: 392 start-page: 682 year: 2009 ident: 2023101016245554500_bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14082.x – volume: 425 start-page: 116 year: 2012 ident: 2023101016245554500_bib66 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21402.x – volume-title: The large-scale structure of the universe year: 1980 ident: 2023101016245554500_bib55 – year: 2020 ident: 2023101016245554500_bib5 – volume: 28 start-page: 19 year: 1974 ident: 2023101016245554500_bib56 publication-title: ApJS doi: 10.1086/190308 – volume: 481 start-page: 2371 year: 2018 ident: 2023101016245554500_bib16 publication-title: MNRAS doi: 10.1093/mnras/sty2405 – volume: 951 start-page: 24 year: 2023 ident: 2023101016245554500_bib22 publication-title: ApJ doi: 10.3847/1538-4357/acd63f – volume: 1 start-page: 0036 year: 2017 ident: 2023101016245554500_bib30 publication-title: Nat. Astron. doi: 10.1038/s41550-016-0036 – volume: 242 start-page: 2 year: 2019 ident: 2023101016245554500_bib18 publication-title: ApJS doi: 10.3847/1538-4365/ab1658 – volume: 185 start-page: 413 year: 1973 ident: 2023101016245554500_bib54 publication-title: ApJ doi: 10.1086/152431 – volume: 630 start-page: 1 year: 2005 ident: 2023101016245554500_bib77 publication-title: ApJ doi: 10.1086/431891 – volume: 412 start-page: 64 year: 1993 ident: 2023101016245554500_bib40 publication-title: ApJ doi: 10.1086/172900 – volume: 449 start-page: 835 year: 2015 ident: 2023101016245554500_bib62 publication-title: MNRAS doi: 10.1093/mnras/stv154 – volume: 146 start-page: 69 year: 2013 ident: 2023101016245554500_bib20 publication-title: AJ doi: 10.1088/0004-6256/146/3/69 – volume: 492 start-page: 4469 year: 2020 ident: 2023101016245554500_bib78 publication-title: MNRAS doi: 10.1093/mnras/staa119 – volume: 2021 start-page: 030 year: 2021 ident: 2023101016245554500_bib26 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/10/030 – volume: 475 start-page: L20 year: 2018 ident: 2023101016245554500_bib27 publication-title: MNRAS doi: 10.1093/mnrasl/slx202 – volume: 226 start-page: 373 year: 1987 ident: 2023101016245554500_bib69 publication-title: MNRAS doi: 10.1093/mnras/226.2.373 – volume: 624 start-page: 54 year: 2005 ident: 2023101016245554500_bib31 publication-title: ApJ doi: 10.1086/429084 – volume: 352 start-page: 338 year: 2004 ident: 2023101016245554500_bib33 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07926.x – volume: 219 start-page: 12 year: 2015 ident: 2023101016245554500_bib2 publication-title: ApJS doi: 10.1088/0067-0049/219/1/12 – volume: 505 start-page: 3404 year: 2021 ident: 2023101016245554500_bib8 publication-title: MNRAS doi: 10.1093/mnras/stab1488 – year: 2023 ident: 2023101016245554500_bib67 doi: 10.48550/arXiv.2305.16865 – volume: 411 start-page: 277 year: 2011 ident: 2023101016245554500_bib63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17679.x – volume: 368 start-page: 1515 year: 2006 ident: 2023101016245554500_bib24 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10243.x – year: 2021 ident: 2023101016245554500_bib42 doi: 10.48550/arXiv.2104.14560 – volume: 2017 start-page: 019 year: 2017 ident: 2023101016245554500_bib48 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/06/019 – year: 2023 ident: 2023101016245554500_bib68 doi: 10.48550/arXiv.2303.11271 – volume: 472 start-page: 2410 year: 2017 ident: 2023101016245554500_bib4 publication-title: MNRAS doi: 10.1093/mnras/stx2112 – volume: 2021 start-page: 015 year: 2021 ident: 2023101016245554500_bib17 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/08/015 – volume: 2021 start-page: 029 year: 2021 ident: 2023101016245554500_bib28 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/03/029 – volume-title: Cosmological Physics year: 1999 ident: 2023101016245554500_bib53 – volume: 53 start-page: 49 year: 2023 ident: 2023101016245554500_bib10 publication-title: Braz. J. Phys. doi: 10.1007/s13538-023-01259-z – volume: 2020 start-page: 052 year: 2020 ident: 2023101016245554500_bib43 publication-title: J. Cosmology Astropart. Phys. doi: 10.1088/1475-7516/2020/05/052 – volume: 649 start-page: A20 year: 2021 ident: 2023101016245554500_bib79 publication-title: A&A doi: 10.1051/0004-6361/202039936 – volume: 472 start-page: 4819 year: 2017 ident: 2023101016245554500_bib71 publication-title: MNRAS doi: 10.1093/mnras/stx2356 – volume: 426 start-page: 23 year: 1993 ident: 2023101016245554500_bib25 publication-title: ApJ doi: 10.1086/174036 – volume: 2021 start-page: 050 year: 2021 ident: 2023101016245554500_bib3 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/11/050 – volume: 509 start-page: 2994 year: 2022 ident: 2023101016245554500_bib9 publication-title: MNRAS doi: 10.1093/mnras/stab3122 – year: 2023 ident: 2023101016245554500_bib61 doi: 10.48550/arXiv.2305.06392 – volume: 2018 start-page: 041 year: 2018 ident: 2023101016245554500_bib6 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/12/041 – volume: 2021 start-page: 006 year: 2021 ident: 2023101016245554500_bib29 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/08/006 – volume: 455 start-page: 1553 year: 2016 ident: 2023101016245554500_bib60 publication-title: MNRAS doi: 10.1093/mnras/stv2382 – volume: 351 start-page: 405 year: 1999 ident: 2023101016245554500_bib14 publication-title: A&A – volume: 96 start-page: 59001 year: 2011 ident: 2023101016245554500_bib39 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/96/59001 – volume: 399 start-page: L128 year: 2009 ident: 2023101016245554500_bib65 publication-title: MNRAS doi: 10.1111/j.1745-3933.2009.00738.x – volume: 469 start-page: 1924 year: 2017 ident: 2023101016245554500_bib52 publication-title: MNRAS doi: 10.1093/mnras/stx988 – volume: 213 start-page: 311 year: 1992 ident: 2023101016245554500_bib19 publication-title: Phys. Rep. doi: 10.1016/0370-1573(92)90112-D – start-page: 012008 volume-title: J. Phys. Conf. Ser. Vol. 1143, Do we live in an under-dense region year: 2018 ident: 2023101016245554500_bib15 – volume: 488 start-page: 1481 year: 2019 ident: 2023101016245554500_bib7 publication-title: MNRAS doi: 10.1093/mnras/stz1765 – volume: 2022 start-page: 006 year: 2022 ident: 2023101016245554500_bib37 publication-title: J. Cosmology Astropart. Phys. doi: 10.1088/1475-7516/2022/06/006 – volume: 776 start-page: 43 year: 2013 ident: 2023101016245554500_bib51 publication-title: ApJ doi: 10.1088/0004-637X/776/1/43 – volume: 750 start-page: 38 year: 2012 ident: 2023101016245554500_bib46 publication-title: ApJ doi: 10.1088/0004-637X/750/1/38 – volume: 641 start-page: A6 year: 2020 ident: 2023101016245554500_bib57 publication-title: A&A doi: 10.1051/0004-6361/201833910 – volume: 445 start-page: 988 year: 2014 ident: 2023101016245554500_bib49 publication-title: MNRAS doi: 10.1093/mnras/stu1746 – volume: 227 start-page: 1 year: 1987 ident: 2023101016245554500_bib35 publication-title: MNRAS doi: 10.1093/mnras/227.1.1 – volume: 521 start-page: 3909 year: 2023 ident: 2023101016245554500_bib11 publication-title: MNRAS doi: 10.1093/mnras/stad763 – start-page: 170 volume-title: Proc. IAU Symp. Vol. 216, 2MASS and the Nearby Universe year: 2005 ident: 2023101016245554500_bib32 – volume: 85 start-page: 063001 year: 2012 ident: 2023101016245554500_bib36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.063001 – volume: 880 start-page: 24 year: 2019 ident: 2023101016245554500_bib73 publication-title: ApJ doi: 10.3847/1538-4357/ab2597 – volume: 364 start-page: 601 year: 2005 ident: 2023101016245554500_bib75 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09578.x – volume: 947 start-page: 47 year: 2023 ident: 2023101016245554500_bib38 publication-title: ApJ doi: 10.3847/1538-4357/acbfa9 – volume: 120 start-page: 1579 year: 2000 ident: 2023101016245554500_bib76 publication-title: AJ doi: 10.1086/301513 – volume-title: Structure Formation in the Universe year: 1993 ident: 2023101016245554500_bib50 – volume: 496 start-page: 605 year: 1998 ident: 2023101016245554500_bib23 publication-title: ApJ doi: 10.1086/305424 – year: 2023 ident: 2023101016245554500_bib45 doi: 10.48550/arXiv.2308.10866 – volume: 107 start-page: 103531 year: 2023 ident: 2023101016245554500_bib13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.103531 – start-page: 012008 volume-title: Journal of Physics Conference Series year: 2017 ident: 2023101016245554500_bib58 doi: 10.1088/1742-6596/841/1/012008 – volume: 2016 start-page: 060 year: 2016 ident: 2023101016245554500_bib41 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/11/060 – volume: 514 start-page: L5 year: 1999 ident: 2023101016245554500_bib34 publication-title: ApJ doi: 10.1086/311930 – volume: 2013 start-page: 007 year: 2013 ident: 2023101016245554500_bib59 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/04/007 – volume: 2017 start-page: 003 year: 2017 ident: 2023101016245554500_bib1 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/10/003 – volume: 53 start-page: 29 year: 2023 ident: 2023101016245554500_bib47 publication-title: Found. Phys. doi: 10.1007/s10701-022-00628-z |
SSID | ssj0004326 |
Score | 2.4642277 |
Snippet | ABSTRACT
We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky... We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3219 |
Title | Probing cosmic homogeneity in the Local Universe |
Volume | 526 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6ykxfRqWz-IojoKaxN0pgcx3AMcephg91KkqY6WFtZ58H_3pe2mz9Q9NaQl8tr2u97L3nfQ-jCKmFU6DRxQl0TTpOIaBpIYlMJE4zDR-Krkcf3YjTlt7No1ohFlz8c4SvWy_KlLnvAlRKqpI_OAYG9Sv7kYfZRAcmqxmqVACOEAOFGnvH78i_w40vaPqHJcBftNDQQ9-v3toe2XN5GnX7pE9NF9oYvcfVc5x3KNuqOgdwWyyoHDpODxRyYZjXaR8Gj11LKn7Atymxu8XORFbAtHPBrPM8xMDx85xELN5cw3AGaDm8mgxFpGiEQC-xiRYCl8FDp0PCIpspBiMIiaYUDdGcm0ADC8F9LKQ1tAuECNdYFlkuumBWRljpih6iVF7nrIAxswAIH0DKJLE-T1HBFU2ONEGkgteZdRNb-iW2jEu6bVSzi-rSaxZU_47U_u-hqY_9S62P8ankO7v7D6Og_Rsdo2zd99wgSBieotVq-ulOgBitzVu2Kd-81t_g |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+cosmic+homogeneity+in+the+Local+Universe&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Dias%2C+Bruno+L&rft.au=Avila%2C+Felipe&rft.au=Bernui%2C+Armando&rft.date=2023-10-10&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=3&rft.spage=3219&rft.epage=3229&rft_id=info:doi/10.1093%2Fmnras%2Fstad2980&rft.externalDocID=10.1093%2Fmnras%2Fstad2980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |