Probing cosmic homogeneity in the Local Universe

ABSTRACT We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 526; no. 3; pp. 3219 - 3229
Main Authors Dias, Bruno L, Avila, Felipe, Bernui, Armando
Format Journal Article
LanguageEnglish
Published Oxford University Press 10.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology.
AbstractList ABSTRACT We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology.
We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey (SDSS). Considering the spatial distribution of the galaxy sample, we compute the two point correlation function ξ(r), the scaled counts in spheres $\mathcal {N}(\lt r)$, and the fractal dimension $\mathcal {D}_2(r)$ to quantify the homogeneity scale in the Local Universe (0.04 < z < 0.20). The sample in analysis is compared with random and mock catalogues with the same geometry, and the same number of synthetic cosmic objects as the data set, to calculate the covariance matrix for the errors determination. The criteria adopted for the transition-to-homogeneity follows the literature, it is attained when $\mathcal {D}_2(r)$ reaches the 1 per cent level of the limit value 3 (i.e. where it reaches 2.97) as the scale increases. We obtain RH = 70.33 ± 10.74 Mpc h−1, at the effective redshift zeff = 0.128, for a sample containing $150\, 302$ SDSS blue galaxies with 0.04 < z < 0.20. Additionally, we perform robustness tests by analysing the homogeneity scale in sub-volumes of the original one, obtaining coherent results; we also check for a possible artefact in our procedure examining a homogeneous synthetic data set as a pseudo-data, verifying that such systematic is absent. Because our analyses concentrate in data at low redshifts, z < 0.20, we find interesting to use cosmography to calculate the radial comoving distances; therefore in this subject our analyses do not use fiducial cosmological model. For completeness, we evaluate the difference of the comoving distances estimation using cosmography and fiducial cosmology.
Author Avila, Felipe
Bernui, Armando
Dias, Bruno L
Author_xml – sequence: 1
  givenname: Bruno L
  surname: Dias
  fullname: Dias, Bruno L
  email: brunoleal@on.br
– sequence: 2
  givenname: Felipe
  surname: Avila
  fullname: Avila, Felipe
– sequence: 3
  givenname: Armando
  surname: Bernui
  fullname: Bernui, Armando
BookMark eNqFz0tLAzEUhuEgFWyrW9fZupj25DrJUoo3GNCFXQ-ZNNNGZpKSRKH_3kt1I4irsznPB-8MTUIMDqFLAgsCmi3HkExe5mI2VCs4QVPCpKiolnKCpgBMVKom5AzNcn4BAM6onCJ4SrHzYYttzKO3eBfHuHXB-XLAPuCyc7iJ1gx4HfybS9mdo9PeDNldfN85Wt_ePK_uq-bx7mF13VSW1qxUAgQn2pCOC9prp7VkQlnpakVZB4ZyAkB7SondEEVpZx1YrrhmVgqjjGBzxI-7NsWck-tb64spPoaSjB9aAu1ndftV3f5Uf7DFL7ZPfjTp8De4OoL4uv_v9x0XRmwM
CitedBy_id crossref_primary_10_1093_mnras_stae2158
crossref_primary_10_3847_1538_4357_ad3735
crossref_primary_10_3390_universe10020075
crossref_primary_10_1088_1361_6382_ad7a4c
crossref_primary_10_1093_mnras_stae867
crossref_primary_10_1140_epjc_s10052_024_12953_w
Cites_doi 10.1051/0004-6361:20078099
10.1111/j.1745-3933.2009.00738.x
10.1093/mnras/stx2240
10.48550/arXiv.2304.05928
10.1086/524678
10.1088/0264-9381/21/11/006
10.1111/j.1365-2966.2008.14082.x
10.1111/j.1365-2966.2012.21402.x
10.1086/190308
10.1093/mnras/sty2405
10.3847/1538-4357/acd63f
10.1038/s41550-016-0036
10.3847/1538-4365/ab1658
10.1086/152431
10.1086/431891
10.1086/172900
10.1093/mnras/stv154
10.1088/0004-6256/146/3/69
10.1093/mnras/staa119
10.1088/1475-7516/2021/10/030
10.1093/mnrasl/slx202
10.1093/mnras/226.2.373
10.1086/429084
10.1111/j.1365-2966.2004.07926.x
10.1088/0067-0049/219/1/12
10.1093/mnras/stab1488
10.48550/arXiv.2305.16865
10.1111/j.1365-2966.2010.17679.x
10.1111/j.1365-2966.2006.10243.x
10.48550/arXiv.2104.14560
10.1088/1475-7516/2017/06/019
10.48550/arXiv.2303.11271
10.1093/mnras/stx2112
10.1088/1475-7516/2021/08/015
10.1088/1475-7516/2021/03/029
10.1007/s13538-023-01259-z
10.1088/1475-7516/2020/05/052
10.1051/0004-6361/202039936
10.1093/mnras/stx2356
10.1086/174036
10.1088/1475-7516/2021/11/050
10.1093/mnras/stab3122
10.48550/arXiv.2305.06392
10.1088/1475-7516/2018/12/041
10.1088/1475-7516/2021/08/006
10.1093/mnras/stv2382
10.1209/0295-5075/96/59001
10.1093/mnras/stx988
10.1016/0370-1573(92)90112-D
10.1093/mnras/stz1765
10.1088/1475-7516/2022/06/006
10.1088/0004-637X/776/1/43
10.1088/0004-637X/750/1/38
10.1051/0004-6361/201833910
10.1093/mnras/stu1746
10.1093/mnras/227.1.1
10.1093/mnras/stad763
10.1103/PhysRevD.85.063001
10.3847/1538-4357/ab2597
10.1111/j.1365-2966.2005.09578.x
10.3847/1538-4357/acbfa9
10.1086/301513
10.1086/305424
10.48550/arXiv.2308.10866
10.1103/PhysRevD.107.103531
10.1088/1742-6596/841/1/012008
10.1088/1475-7516/2016/11/060
10.1086/311930
10.1088/1475-7516/2013/04/007
10.1088/1475-7516/2017/10/003
10.1007/s10701-022-00628-z
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
DBID AAYXX
CITATION
DOI 10.1093/mnras/stad2980
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3229
ExternalDocumentID 10_1093_mnras_stad2980
10.1093/mnras/stad2980
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
ID FETCH-LOGICAL-c273t-505419a1b452f9e996358c6e7823b0a241002f221cd1822bce0c48493c65a8a53
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 03:32:40 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Apr 02 07:03:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords distance scale
cosmology: observations
large-scale structure of Universe
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-505419a1b452f9e996358c6e7823b0a241002f221cd1822bce0c48493c65a8a53
PageCount 11
ParticipantIDs crossref_citationtrail_10_1093_mnras_stad2980
crossref_primary_10_1093_mnras_stad2980
oup_primary_10_1093_mnras_stad2980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-10
PublicationDateYYYYMMDD 2023-10-10
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-10
  day: 10
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Alam (2023101016245554500_bib3) 2021; 2021
Rath (2023101016245554500_bib59) 2013; 2013
Yadav (2023101016245554500_bib75) 2005; 364
Dainotti (2023101016245554500_bib22) 2023; 951
Polastri (2023101016245554500_bib58) 2017
Ntelis (2023101016245554500_bib48) 2017; 2017
Sarkar (2023101016245554500_bib64) 2009; 399
Scrimgeour (2023101016245554500_bib66) 2012; 425
Hogg (2023101016245554500_bib31) 2005; 624
Tarnopolski (2023101016245554500_bib71) 2017; 472
Agrawal (2023101016245554500_bib1) 2017; 2017
Marques (2023101016245554500_bib45) 2023
Stoeger (2023101016245554500_bib69) 1987; 226
Cresswell (2023101016245554500_bib21) 2009; 392
Khan (2023101016245554500_bib38) 2023; 947
Staicova (2023101016245554500_bib68) 2023
Bharadwaj (2023101016245554500_bib14) 1999; 351
Avila (2023101016245554500_bib9) 2022; 509
Eisenstein (2023101016245554500_bib23) 1998; 496
Nuza (2023101016245554500_bib49) 2014; 445
Peacock (2023101016245554500_bib53) 1999
Bernui (2023101016245554500_bib12) 2008; 673
Avila (2023101016245554500_bib6) 2018; 2018
Specogna (2023101016245554500_bib67) 2023
Hoffman (2023101016245554500_bib30) 2017; 1
Coleman (2023101016245554500_bib19) 1992; 213
Gonçalves (2023101016245554500_bib27) 2018; 475
Goyal (2023101016245554500_bib29) 2021; 2021
Erdoǧdu (2023101016245554500_bib24) 2006; 368
Jarvis (2023101016245554500_bib33) 2004; 352
Courtois (2023101016245554500_bib20) 2013; 146
Huchra (2023101016245554500_bib32) 2005
Chisari (2023101016245554500_bib18) 2019; 242
Laurent (2023101016245554500_bib41) 2016; 2016
de Carvalho (2023101016245554500_bib79) 2021; 649
García-García (2023101016245554500_bib26) 2021; 2021
Aluri (2023101016245554500_bib4) 2017; 472
Khan (2023101016245554500_bib37) 2022; 2022
Marques (2023101016245554500_bib44) 2018; 473
Martin (2023101016245554500_bib46) 2012; 750
Calcina (2023101016245554500_bib15) 2018
Ribeiro (2023101016245554500_bib61) 2023
Tully (2023101016245554500_bib73) 2019; 880
Avila (2023101016245554500_bib10) 2023; 53
Marques (2023101016245554500_bib43) 2020; 2020
Thiele (2023101016245554500_bib72) 2023
Bargiacchi (2023101016245554500_bib11) 2023; 521
Peebles (2023101016245554500_bib55) 1980
Peebles (2023101016245554500_bib54) 1973; 185
Reid (2023101016245554500_bib60) 2016; 455
Padmanabhan (2023101016245554500_bib50) 1993
Joyce (2023101016245554500_bib34) 1999; 514
Carter (2023101016245554500_bib16) 2018; 481
Sarkar (2023101016245554500_bib65) 2009; 399
Papastergis (2023101016245554500_bib51) 2013; 776
Alam (2023101016245554500_bib2) 2015; 219
Chiocchetta (2023101016245554500_bib17) 2021; 2021
Linder (2023101016245554500_bib42) 2021
Landy (2023101016245554500_bib40) 1993; 412
Avila (2023101016245554500_bib7) 2019; 488
Ntelis (2023101016245554500_bib47) 2023; 53
Planck Collaboration (2023101016245554500_bib57) 2020; 641
Aragon-Calvo (2023101016245554500_bib5) 2020
Sánchez (2023101016245554500_bib63) 2011; 411
Sylos Labini (2023101016245554500_bib70) 2008; 477
Visser (2023101016245554500_bib74) 2004; 21
Avila (2023101016245554500_bib8) 2021; 505
Labini (2023101016245554500_bib39) 2011; 96
Ross (2023101016245554500_bib62) 2015; 449
York (2023101016245554500_bib76) 2000; 120
de Carvalho (2023101016245554500_bib78) 2020; 492
Kashino (2023101016245554500_bib36) 2012; 85
Park (2023101016245554500_bib52) 2017; 469
Gonçalves (2023101016245554500_bib28) 2021; 2021
Feldman (2023101016245554500_bib25) 1993; 426
Kaiser (2023101016245554500_bib35) 1987; 227
Bernui (2023101016245554500_bib13) 2023; 107
Zehavi (2023101016245554500_bib77) 2005; 630
Peebles (2023101016245554500_bib56) 1974; 28
References_xml – volume: 477
  start-page: 381
  year: 2008
  ident: 2023101016245554500_bib70
  publication-title: A&A
  doi: 10.1051/0004-6361:20078099
– volume: 399
  start-page: L128
  year: 2009
  ident: 2023101016245554500_bib64
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00738.x
– volume: 473
  start-page: 165
  year: 2018
  ident: 2023101016245554500_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2240
– year: 2023
  ident: 2023101016245554500_bib72
  doi: 10.48550/arXiv.2304.05928
– volume: 673
  start-page: 968
  year: 2008
  ident: 2023101016245554500_bib12
  publication-title: ApJ
  doi: 10.1086/524678
– volume: 21
  start-page: 2603
  year: 2004
  ident: 2023101016245554500_bib74
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/21/11/006
– volume: 392
  start-page: 682
  year: 2009
  ident: 2023101016245554500_bib21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14082.x
– volume: 425
  start-page: 116
  year: 2012
  ident: 2023101016245554500_bib66
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21402.x
– volume-title: The large-scale structure of the universe
  year: 1980
  ident: 2023101016245554500_bib55
– year: 2020
  ident: 2023101016245554500_bib5
– volume: 28
  start-page: 19
  year: 1974
  ident: 2023101016245554500_bib56
  publication-title: ApJS
  doi: 10.1086/190308
– volume: 481
  start-page: 2371
  year: 2018
  ident: 2023101016245554500_bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2405
– volume: 951
  start-page: 24
  year: 2023
  ident: 2023101016245554500_bib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd63f
– volume: 1
  start-page: 0036
  year: 2017
  ident: 2023101016245554500_bib30
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-016-0036
– volume: 242
  start-page: 2
  year: 2019
  ident: 2023101016245554500_bib18
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab1658
– volume: 185
  start-page: 413
  year: 1973
  ident: 2023101016245554500_bib54
  publication-title: ApJ
  doi: 10.1086/152431
– volume: 630
  start-page: 1
  year: 2005
  ident: 2023101016245554500_bib77
  publication-title: ApJ
  doi: 10.1086/431891
– volume: 412
  start-page: 64
  year: 1993
  ident: 2023101016245554500_bib40
  publication-title: ApJ
  doi: 10.1086/172900
– volume: 449
  start-page: 835
  year: 2015
  ident: 2023101016245554500_bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stv154
– volume: 146
  start-page: 69
  year: 2013
  ident: 2023101016245554500_bib20
  publication-title: AJ
  doi: 10.1088/0004-6256/146/3/69
– volume: 492
  start-page: 4469
  year: 2020
  ident: 2023101016245554500_bib78
  publication-title: MNRAS
  doi: 10.1093/mnras/staa119
– volume: 2021
  start-page: 030
  year: 2021
  ident: 2023101016245554500_bib26
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/10/030
– volume: 475
  start-page: L20
  year: 2018
  ident: 2023101016245554500_bib27
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx202
– volume: 226
  start-page: 373
  year: 1987
  ident: 2023101016245554500_bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/226.2.373
– volume: 624
  start-page: 54
  year: 2005
  ident: 2023101016245554500_bib31
  publication-title: ApJ
  doi: 10.1086/429084
– volume: 352
  start-page: 338
  year: 2004
  ident: 2023101016245554500_bib33
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07926.x
– volume: 219
  start-page: 12
  year: 2015
  ident: 2023101016245554500_bib2
  publication-title: ApJS
  doi: 10.1088/0067-0049/219/1/12
– volume: 505
  start-page: 3404
  year: 2021
  ident: 2023101016245554500_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1488
– year: 2023
  ident: 2023101016245554500_bib67
  doi: 10.48550/arXiv.2305.16865
– volume: 411
  start-page: 277
  year: 2011
  ident: 2023101016245554500_bib63
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17679.x
– volume: 368
  start-page: 1515
  year: 2006
  ident: 2023101016245554500_bib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10243.x
– year: 2021
  ident: 2023101016245554500_bib42
  doi: 10.48550/arXiv.2104.14560
– volume: 2017
  start-page: 019
  year: 2017
  ident: 2023101016245554500_bib48
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/06/019
– year: 2023
  ident: 2023101016245554500_bib68
  doi: 10.48550/arXiv.2303.11271
– volume: 472
  start-page: 2410
  year: 2017
  ident: 2023101016245554500_bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2112
– volume: 2021
  start-page: 015
  year: 2021
  ident: 2023101016245554500_bib17
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/08/015
– volume: 2021
  start-page: 029
  year: 2021
  ident: 2023101016245554500_bib28
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/03/029
– volume-title: Cosmological Physics
  year: 1999
  ident: 2023101016245554500_bib53
– volume: 53
  start-page: 49
  year: 2023
  ident: 2023101016245554500_bib10
  publication-title: Braz. J. Phys.
  doi: 10.1007/s13538-023-01259-z
– volume: 2020
  start-page: 052
  year: 2020
  ident: 2023101016245554500_bib43
  publication-title: J. Cosmology Astropart. Phys.
  doi: 10.1088/1475-7516/2020/05/052
– volume: 649
  start-page: A20
  year: 2021
  ident: 2023101016245554500_bib79
  publication-title: A&A
  doi: 10.1051/0004-6361/202039936
– volume: 472
  start-page: 4819
  year: 2017
  ident: 2023101016245554500_bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2356
– volume: 426
  start-page: 23
  year: 1993
  ident: 2023101016245554500_bib25
  publication-title: ApJ
  doi: 10.1086/174036
– volume: 2021
  start-page: 050
  year: 2021
  ident: 2023101016245554500_bib3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/11/050
– volume: 509
  start-page: 2994
  year: 2022
  ident: 2023101016245554500_bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3122
– year: 2023
  ident: 2023101016245554500_bib61
  doi: 10.48550/arXiv.2305.06392
– volume: 2018
  start-page: 041
  year: 2018
  ident: 2023101016245554500_bib6
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/12/041
– volume: 2021
  start-page: 006
  year: 2021
  ident: 2023101016245554500_bib29
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/08/006
– volume: 455
  start-page: 1553
  year: 2016
  ident: 2023101016245554500_bib60
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2382
– volume: 351
  start-page: 405
  year: 1999
  ident: 2023101016245554500_bib14
  publication-title: A&A
– volume: 96
  start-page: 59001
  year: 2011
  ident: 2023101016245554500_bib39
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/96/59001
– volume: 399
  start-page: L128
  year: 2009
  ident: 2023101016245554500_bib65
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00738.x
– volume: 469
  start-page: 1924
  year: 2017
  ident: 2023101016245554500_bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stx988
– volume: 213
  start-page: 311
  year: 1992
  ident: 2023101016245554500_bib19
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(92)90112-D
– start-page: 012008
  volume-title: J. Phys. Conf. Ser. Vol. 1143, Do we live in an under-dense region
  year: 2018
  ident: 2023101016245554500_bib15
– volume: 488
  start-page: 1481
  year: 2019
  ident: 2023101016245554500_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1765
– volume: 2022
  start-page: 006
  year: 2022
  ident: 2023101016245554500_bib37
  publication-title: J. Cosmology Astropart. Phys.
  doi: 10.1088/1475-7516/2022/06/006
– volume: 776
  start-page: 43
  year: 2013
  ident: 2023101016245554500_bib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/1/43
– volume: 750
  start-page: 38
  year: 2012
  ident: 2023101016245554500_bib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/38
– volume: 641
  start-page: A6
  year: 2020
  ident: 2023101016245554500_bib57
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 445
  start-page: 988
  year: 2014
  ident: 2023101016245554500_bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1746
– volume: 227
  start-page: 1
  year: 1987
  ident: 2023101016245554500_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/227.1.1
– volume: 521
  start-page: 3909
  year: 2023
  ident: 2023101016245554500_bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stad763
– start-page: 170
  volume-title: Proc. IAU Symp. Vol. 216, 2MASS and the Nearby Universe
  year: 2005
  ident: 2023101016245554500_bib32
– volume: 85
  start-page: 063001
  year: 2012
  ident: 2023101016245554500_bib36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.063001
– volume: 880
  start-page: 24
  year: 2019
  ident: 2023101016245554500_bib73
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2597
– volume: 364
  start-page: 601
  year: 2005
  ident: 2023101016245554500_bib75
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09578.x
– volume: 947
  start-page: 47
  year: 2023
  ident: 2023101016245554500_bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/acbfa9
– volume: 120
  start-page: 1579
  year: 2000
  ident: 2023101016245554500_bib76
  publication-title: AJ
  doi: 10.1086/301513
– volume-title: Structure Formation in the Universe
  year: 1993
  ident: 2023101016245554500_bib50
– volume: 496
  start-page: 605
  year: 1998
  ident: 2023101016245554500_bib23
  publication-title: ApJ
  doi: 10.1086/305424
– year: 2023
  ident: 2023101016245554500_bib45
  doi: 10.48550/arXiv.2308.10866
– volume: 107
  start-page: 103531
  year: 2023
  ident: 2023101016245554500_bib13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.103531
– start-page: 012008
  volume-title: Journal of Physics Conference Series
  year: 2017
  ident: 2023101016245554500_bib58
  doi: 10.1088/1742-6596/841/1/012008
– volume: 2016
  start-page: 060
  year: 2016
  ident: 2023101016245554500_bib41
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/11/060
– volume: 514
  start-page: L5
  year: 1999
  ident: 2023101016245554500_bib34
  publication-title: ApJ
  doi: 10.1086/311930
– volume: 2013
  start-page: 007
  year: 2013
  ident: 2023101016245554500_bib59
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/04/007
– volume: 2017
  start-page: 003
  year: 2017
  ident: 2023101016245554500_bib1
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/10/003
– volume: 53
  start-page: 29
  year: 2023
  ident: 2023101016245554500_bib47
  publication-title: Found. Phys.
  doi: 10.1007/s10701-022-00628-z
SSID ssj0004326
Score 2.4642277
Snippet ABSTRACT We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky...
We investigate the transition scale to homogeneity, RH, using as cosmic tracer the spectroscopic sample of blue galaxies from the Sloan Digital Sky Survey...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 3219
Title Probing cosmic homogeneity in the Local Universe
Volume 526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6ykxfRqWz-IojoKaxN0pgcx3AMcephg91KkqY6WFtZ58H_3pe2mz9Q9NaQl8tr2u97L3nfQ-jCKmFU6DRxQl0TTpOIaBpIYlMJE4zDR-Krkcf3YjTlt7No1ohFlz8c4SvWy_KlLnvAlRKqpI_OAYG9Sv7kYfZRAcmqxmqVACOEAOFGnvH78i_w40vaPqHJcBftNDQQ9-v3toe2XN5GnX7pE9NF9oYvcfVc5x3KNuqOgdwWyyoHDpODxRyYZjXaR8Gj11LKn7Atymxu8XORFbAtHPBrPM8xMDx85xELN5cw3AGaDm8mgxFpGiEQC-xiRYCl8FDp0PCIpspBiMIiaYUDdGcm0ADC8F9LKQ1tAuECNdYFlkuumBWRljpih6iVF7nrIAxswAIH0DKJLE-T1HBFU2ONEGkgteZdRNb-iW2jEu6bVSzi-rSaxZU_47U_u-hqY_9S62P8ankO7v7D6Og_Rsdo2zd99wgSBieotVq-ulOgBitzVu2Kd-81t_g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+cosmic+homogeneity+in+the+Local+Universe&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Dias%2C+Bruno+L&rft.au=Avila%2C+Felipe&rft.au=Bernui%2C+Armando&rft.date=2023-10-10&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=526&rft.issue=3&rft.spage=3219&rft.epage=3229&rft_id=info:doi/10.1093%2Fmnras%2Fstad2980&rft.externalDocID=10.1093%2Fmnras%2Fstad2980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon