Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes

The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 52; no. 4; pp. 14676 - 14685
Main Authors Hu, Dianwen, Miao, Songsong, Zhang, Pengfei, Wu, Siyuan, He, Yu-Peng, Meng, Qingwei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 17.10.2023
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d3dt02479b

Cover

Loading…
Abstract The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH 3 , or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert -butyl hydroperoxide ( t -BuOOH). CsPM@HP-UiO-66-2CH 3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH 3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH 3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH 3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH 3 . CsPM@HP-UiO-66-2CH 3 showed preferable catalytic performance in alkene epoxidation reaction among CsPM@HP-UiO-66-X composites, which is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites with a methyl group.
AbstractList The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal–support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH 3 , or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert -butyl hydroperoxide ( t -BuOOH). CsPM@HP-UiO-66-2CH 3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH 3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH 3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH 3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH 3 . CsPM@HP-UiO-66-2CH 3 showed preferable catalytic performance in alkene epoxidation reaction among CsPM@HP-UiO-66-X composites, which is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites with a methyl group.
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH 3 , or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert -butyl hydroperoxide ( t -BuOOH). CsPM@HP-UiO-66-2CH 3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH 3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH 3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal–support interactions (SMSIs) between CsPM and HP-UiO-66-2CH 3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH 3 .
Author Wu, Siyuan
He, Yu-Peng
Meng, Qingwei
Zhang, Pengfei
Miao, Songsong
Hu, Dianwen
AuthorAffiliation School of Chemical Engineering
Changchun Institute of Applied Chemistry
Chinese Academy of Sciences
School of Chemistry and Molecular Engineering
East China University of Science and Technology
Ningbo Institute of Dalian University of Technology
State Key Laboratory of Fine Chemicals
Dalian University of Technology
State Key Laboratory of Catalysis
Dalian Institute of Chemical Physics
Dalian National Laboratory for Clean Energy
AuthorAffiliation_xml – sequence: 0
  name: Ningbo Institute of Dalian University of Technology
– sequence: 0
  name: State Key Laboratory of Fine Chemicals
– sequence: 0
  name: Changchun Institute of Applied Chemistry
– sequence: 0
  name: School of Chemical Engineering
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Dalian National Laboratory for Clean Energy
– sequence: 0
  name: Dalian Institute of Chemical Physics
– sequence: 0
  name: Dalian University of Technology
– sequence: 0
  name: State Key Laboratory of Catalysis
– sequence: 0
  name: School of Chemistry and Molecular Engineering
– sequence: 0
  name: East China University of Science and Technology
Author_xml – sequence: 1
  givenname: Dianwen
  surname: Hu
  fullname: Hu, Dianwen
– sequence: 2
  givenname: Songsong
  surname: Miao
  fullname: Miao, Songsong
– sequence: 3
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
– sequence: 4
  givenname: Siyuan
  surname: Wu
  fullname: Wu, Siyuan
– sequence: 5
  givenname: Yu-Peng
  surname: He
  fullname: He, Yu-Peng
– sequence: 6
  givenname: Qingwei
  surname: Meng
  fullname: Meng, Qingwei
BookMark eNpdkU1r3DAQhkXZQHaTXHIvCHIpBSeyJFv2sfkuBHJJzkYfo642tuRIduj-kf7eaLshhR6GmYFnPl7eFVr44AGh05Kcl4S1F4aZiVAuWvUFLUsuRNFSxhefNa0P0SqlDSGUkoou0Z_LENLk_C88rQFrOcl-m1zCwWINyc0DHtch5RhCv1VGToDBazmmuc-1wc7jtYMoo147LXs8hhjmhJ_dY1HXWG3x4HQM4N9cDH4AP-EhmN2sCx7bEDGM4bcz-z4flf0LeEjH6MDKPsHJRz5Cz7c3T1f3xcPj3c-rHw-FpoJNBZOVsZICo7pRqtaC1ZZwaZUilEHVGMUEE9yWZVUTqyvbqIpTbhilQljdsiP0bb93jOF1hjR1g0sa-l56yDo62gjaEE4Fz-jZf-gmzNHn73aUqCvWsiZT3_dUVp1SBNuN0Q0ybruSdDuLumt2_fTXossMf93DMelP7p-F7B2rBpL3
Cites_doi 10.1016/j.chempr.2018.12.011
10.1039/C6GC00524A
10.1016/j.jcat.2013.09.014
10.1016/j.mattod.2018.10.038
10.1016/j.mcat.2022.112741
10.1039/C7DT03198J
10.1016/j.apcatb.2019.117804
10.1021/acs.accounts.6b00577
10.1021/acs.nanolett.9b04124
10.1021/ja209698f
10.1002/anie.201909912
10.1002/cctc.201801452
10.1016/j.molcata.2016.10.022
10.1002/cctc.201300800
10.1021/acs.chemrev.0c00016
10.1021/acs.chemrev.9b00687
10.1021/acs.accounts.8b00521
10.1016/j.micromeso.2017.03.047
10.1002/smll.201906432
10.1039/C6TA10896B
10.1038/natrevmats.2016.23
10.1039/C5CS00935A
10.1039/C4CS90059F
10.1039/C7DT04477A
10.1016/j.micromeso.2015.04.009
10.1039/C8CS00658J
10.1016/j.micromeso.2020.110037
10.1016/j.molcata.2011.12.018
10.1021/cr200324t
10.1039/C5CS00090D
10.1039/D0DT01939A
10.1016/j.apcata.2009.05.058
10.1016/j.ccr.2017.10.014
10.1039/C8CS00256H
10.1016/j.mcat.2018.02.020
10.1002/cctc.201601450
10.1021/acs.chemrev.1c00243
10.1016/j.cattod.2020.07.052
10.1002/adma.202302512
10.1016/S1872-2067(14)60025-5
10.1016/j.mcat.2021.111552
10.1126/science.1230444
10.1016/S1872-2067(20)63665-8
10.31635/ccschem.022.202201974
10.1002/aoc.3958
10.1021/ja405078u
10.1039/C9TA13747E
10.1002/adma.202000041
10.1016/j.micromeso.2015.02.035
10.1016/j.ces.2020.115818
10.1039/C5CS00198F
10.1002/adma.201601133
10.1038/nature18284
10.1021/jacs.2c09136
10.1039/D0TA04337K
10.1039/D0CE01843K
10.1021/accountsmr.1c00009
10.1016/j.matt.2019.05.018
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3dt02479b
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 14685
ExternalDocumentID 10_1039_D3DT02479B
d3dt02479b
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c273t-3a5dfa2e32c8bb6c736f04afbb023e58db37374f11560fc5f8b5424d32277fc93
ISSN 1477-9226
1477-9234
IngestDate Thu Jul 10 22:04:35 EDT 2025
Mon Jun 30 03:11:04 EDT 2025
Tue Jul 01 04:27:27 EDT 2025
Tue Dec 17 20:58:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-3a5dfa2e32c8bb6c736f04afbb023e58db37374f11560fc5f8b5424d32277fc93
Notes https://doi.org/10.1039/d3dt02479b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1743-2518
0000-0002-2247-9839
0000-0002-0676-6627
PQID 2877653938
PQPubID 2047498
PageCount 1
ParticipantIDs proquest_journals_2877653938
proquest_miscellaneous_2872804274
crossref_primary_10_1039_D3DT02479B
rsc_primary_d3dt02479b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-17
PublicationDateYYYYMMDD 2023-10-17
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-17
  day: 17
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hartmann (D3DT02479B/cit7/1) 2016; 45
Soares (D3DT02479B/cit56/1) 2018; 458
Wang (D3DT02479B/cit9/1) 2018; 47
Chen (D3DT02479B/cit5/1) 2020; 120
Wang (D3DT02479B/cit54/1) 2014; 35
Wang (D3DT02479B/cit42/1) 2017; 9
Hartmann (D3DT02479B/cit1/1) 2016; 45
Tian (D3DT02479B/cit2/1) 2020; 120
Blandez (D3DT02479B/cit23/1) 2016; 425
Chen (D3DT02479B/cit16/1) 2019; 1
Dhakshinamoorthy (D3DT02479B/cit21/1) 2019; 11
Wen (D3DT02479B/cit33/1) 2023
Mu (D3DT02479B/cit48/1) 2018; 47
Kim (D3DT02479B/cit3/1) 2016; 535
Jiao (D3DT02479B/cit15/1) 2019; 27
Sun (D3DT02479B/cit47/1) 2012; 134
Li (D3DT02479B/cit17/1) 2016; 28
Wang (D3DT02479B/cit32/1) 2022; 144
Chang (D3DT02479B/cit37/1) 2020; 16
Ai (D3DT02479B/cit40/1) 2022; 4
Sun (D3DT02479B/cit8/1) 2015; 44
Jing (D3DT02479B/cit57/1) 2014; 309
Afzali (D3DT02479B/cit53/1) 2018; 32
Qi (D3DT02479B/cit45/1) 2020; 225
Hu (D3DT02479B/cit38/1) 2021; 42
Valekar (D3DT02479B/cit44/1) 2016; 18
Ogiwara (D3DT02479B/cit34/1) 2020; 20
Jiao (D3DT02479B/cit27/1) 2019; 27
Ye (D3DT02479B/cit41/1) 2020; 8
Gou (D3DT02479B/cit58/1) 2020; 297
Gao (D3DT02479B/cit52/1) 2015; 213
Kalaj (D3DT02479B/cit35/1) 2020; 49
Soares (D3DT02479B/cit55/1) 2021; 381
Wang (D3DT02479B/cit31/1) 2023
Silva (D3DT02479B/cit49/1) 2014; 6
Sun (D3DT02479B/cit10/1) 2015; 44
Kreno (D3DT02479B/cit13/1) 2012; 112
Wang (D3DT02479B/cit22/1) 2022; 532
Tang (D3DT02479B/cit61/1) 2012; 355
Zhang (D3DT02479B/cit36/1) 2019; 256
Jiao (D3DT02479B/cit28/1) 2019; 5
Li (D3DT02479B/cit6/1) 2016; 1
Zhou (D3DT02479B/cit19/1) 2014; 43
Hu (D3DT02479B/cit39/1) 2021; 506
Yang (D3DT02479B/cit24/1) 2015; 211
Xu (D3DT02479B/cit20/1) 2018; 373
Vermoortele (D3DT02479B/cit25/1) 2013; 135
Chen (D3DT02479B/cit30/1) 2020; 32
Xu (D3DT02479B/cit43/1) 2020; 8
Wang (D3DT02479B/cit4/1) 2017; 5
Zhou (D3DT02479B/cit46/1) 2021; 23
Hu (D3DT02479B/cit60/1) 2009; 364
Jiao (D3DT02479B/cit26/1) 2021; 2
Cai (D3DT02479B/cit29/1) 2021; 121
Zhu (D3DT02479B/cit51/1) 2019; 58
Zhang (D3DT02479B/cit59/1) 2017; 247
Xiao (D3DT02479B/cit12/1) 2019; 52
Furukawa (D3DT02479B/cit14/1) 2013; 341
Dhakshinamoorthy (D3DT02479B/cit11/1) 2018; 47
Song (D3DT02479B/cit50/1) 2017; 46
Islamoglu (D3DT02479B/cit18/1) 2017; 50
References_xml – volume: 5
  start-page: 786
  year: 2019
  ident: D3DT02479B/cit28/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.011
– volume: 18
  start-page: 4542
  year: 2016
  ident: D3DT02479B/cit44/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC00524A
– volume: 309
  start-page: 121
  year: 2014
  ident: D3DT02479B/cit57/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.09.014
– volume: 27
  start-page: 43
  year: 2019
  ident: D3DT02479B/cit27/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.10.038
– volume: 532
  start-page: 112741
  year: 2022
  ident: D3DT02479B/cit22/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2022.112741
– volume: 46
  start-page: 16655
  year: 2017
  ident: D3DT02479B/cit50/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03198J
– volume: 256
  start-page: 117804
  year: 2019
  ident: D3DT02479B/cit36/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117804
– volume: 50
  start-page: 805
  year: 2017
  ident: D3DT02479B/cit18/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00577
– volume: 20
  start-page: 426
  year: 2020
  ident: D3DT02479B/cit34/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04124
– volume: 134
  start-page: 126
  year: 2012
  ident: D3DT02479B/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209698f
– volume: 58
  start-page: 17033
  year: 2019
  ident: D3DT02479B/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909912
– volume: 11
  start-page: 899
  year: 2019
  ident: D3DT02479B/cit21/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801452
– volume: 425
  start-page: 332
  year: 2016
  ident: D3DT02479B/cit23/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2016.10.022
– volume: 6
  start-page: 464
  year: 2014
  ident: D3DT02479B/cit49/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300800
– volume: 120
  start-page: 11194
  year: 2020
  ident: D3DT02479B/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00016
– volume: 120
  start-page: 8934
  year: 2020
  ident: D3DT02479B/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00687
– volume: 52
  start-page: 356
  year: 2019
  ident: D3DT02479B/cit12/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00521
– volume: 247
  start-page: 16
  year: 2017
  ident: D3DT02479B/cit59/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.03.047
– volume: 16
  start-page: 1906432
  year: 2020
  ident: D3DT02479B/cit37/1
  publication-title: Small
  doi: 10.1002/smll.201906432
– volume: 5
  start-page: 8825
  year: 2017
  ident: D3DT02479B/cit4/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10896B
– volume: 1
  start-page: 16023
  year: 2016
  ident: D3DT02479B/cit6/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.23
– volume: 45
  start-page: 3313
  year: 2016
  ident: D3DT02479B/cit7/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00935A
– volume: 43
  start-page: 5415
  year: 2014
  ident: D3DT02479B/cit19/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS90059F
– volume: 47
  start-page: 1895
  year: 2018
  ident: D3DT02479B/cit48/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04477A
– volume: 213
  start-page: 59
  year: 2015
  ident: D3DT02479B/cit52/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.04.009
– volume: 47
  start-page: 8766
  year: 2018
  ident: D3DT02479B/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00658J
– volume: 297
  start-page: 110037
  year: 2020
  ident: D3DT02479B/cit58/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110037
– volume: 355
  start-page: 201
  year: 2012
  ident: D3DT02479B/cit61/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2011.12.018
– volume: 112
  start-page: 1105
  year: 2012
  ident: D3DT02479B/cit13/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 44
  start-page: 5092
  year: 2015
  ident: D3DT02479B/cit8/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00090D
– volume: 49
  start-page: 8841
  year: 2020
  ident: D3DT02479B/cit35/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01939A
– volume: 364
  start-page: 211
  year: 2009
  ident: D3DT02479B/cit60/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2009.05.058
– volume: 373
  start-page: 199
  year: 2018
  ident: D3DT02479B/cit20/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.10.014
– volume: 47
  start-page: 8134
  year: 2018
  ident: D3DT02479B/cit11/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00256H
– volume: 458
  start-page: 223
  year: 2018
  ident: D3DT02479B/cit56/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2018.02.020
– volume: 27
  start-page: 43
  year: 2019
  ident: D3DT02479B/cit15/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.10.038
– volume: 9
  start-page: 971
  year: 2017
  ident: D3DT02479B/cit42/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601450
– volume: 121
  start-page: 12278
  year: 2021
  ident: D3DT02479B/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00243
– volume: 45
  start-page: 3313
  year: 2016
  ident: D3DT02479B/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00935A
– volume: 381
  start-page: 143
  year: 2021
  ident: D3DT02479B/cit55/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2020.07.052
– start-page: e2302512
  year: 2023
  ident: D3DT02479B/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302512
– volume: 35
  start-page: 532
  year: 2014
  ident: D3DT02479B/cit54/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60025-5
– volume: 506
  start-page: 111552
  year: 2021
  ident: D3DT02479B/cit39/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2021.111552
– volume: 341
  start-page: 1230444
  year: 2013
  ident: D3DT02479B/cit14/1
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 42
  start-page: 356
  year: 2021
  ident: D3DT02479B/cit38/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63665-8
– volume: 4
  start-page: 3705
  year: 2022
  ident: D3DT02479B/cit40/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.022.202201974
– volume: 32
  start-page: e3958
  year: 2018
  ident: D3DT02479B/cit53/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.3958
– volume: 135
  start-page: 11465
  year: 2013
  ident: D3DT02479B/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405078u
– volume: 8
  start-page: 7870
  year: 2020
  ident: D3DT02479B/cit43/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13747E
– volume: 32
  start-page: 2000041
  year: 2020
  ident: D3DT02479B/cit30/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000041
– volume: 211
  start-page: 73
  year: 2015
  ident: D3DT02479B/cit24/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.02.035
– volume: 225
  start-page: 115818
  year: 2020
  ident: D3DT02479B/cit45/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115818
– volume: 44
  start-page: 6018
  year: 2015
  ident: D3DT02479B/cit10/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00198F
– volume: 28
  start-page: 8819
  year: 2016
  ident: D3DT02479B/cit17/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601133
– volume: 535
  start-page: 131
  year: 2016
  ident: D3DT02479B/cit3/1
  publication-title: Nature
  doi: 10.1038/nature18284
– volume: 144
  start-page: 22008
  year: 2022
  ident: D3DT02479B/cit32/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c09136
– start-page: e2302512
  year: 2023
  ident: D3DT02479B/cit33/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302512
– volume: 8
  start-page: 19396
  year: 2020
  ident: D3DT02479B/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04337K
– volume: 23
  start-page: 2961
  year: 2021
  ident: D3DT02479B/cit46/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01843K
– volume: 2
  start-page: 327
  year: 2021
  ident: D3DT02479B/cit26/1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00009
– volume: 1
  start-page: 57
  year: 2019
  ident: D3DT02479B/cit16/1
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.018
SSID ssj0022052
Score 2.4165237
Snippet The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic...
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 14676
SubjectTerms Alkenes
Benzene
Butyl hydroperoxide
Catalysis
Catalytic activity
Cesium
Composite materials
Encapsulation
Epoxidation
Functional groups
Metal-organic frameworks
Modulation
Polyoxometallates
Stability
Substitution reactions
Title Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes
URI https://www.proquest.com/docview/2877653938
https://www.proquest.com/docview/2872804274
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9gAXxKsiUJAR3KKFxN7nsSWpCkpbpG6k3la2105XJLtRsxGEH8K_5D8w9nofLRUCDllFm8i2PJ_tmfHMNwi9FZrEW8qhI5kKHJekygl9SR0W8ShiLEoj47o4PfNPZu6nS--y1_vZiVralPyd-H5nXsn_SBXegVx1luw_SLZpFF7Ad5AvPEHC8PwrGR8Vxbqs852MI6bmF4HVn22Wg9VVsYbPslhsuTbtBzB6BnbxgmlFM8sHuhK2uUvQogJVXAfEzrJzx_e1XrrU0XqdVDhdN8eW-6qowlfFtyxtlE62-KJ3zq6-O2a6arUuRFFXJV8bJwTLDVFF64u8wWBRlZoSA1FXo2vBZ_ZIgPTXNoXtNGPG33tR5HOwHua_-cI_y3yuZNacP6aRi2y7sSvDOj2ICZ-rcjxttJR2rdRxrSZupTueait39eU0IZZou_vOuk_t_u-RDs4r7ii7m-tTxO-oBjpNzbvz3BlSTdua0rQEnSeIeHu61hEFZ-fJ8Ww6TeLJZbyD9ghYNXCO7B1O4o_TxkNAhqZEVDP0mk-XRu_btm9qUK1ZtHNd16wxulH8ED2wRg0-rBD6CPVk_hjda2brCfpRIxUDUnGDVFwoXCEV30Yq7iIVZznuIhVXSMUVUjHf4ttIxS1SMSAVd5CqO7VIfYpmx5P4w4ljK4I4AtTs0qHMSxUjkhIRcu6LgPpq6DLFOWBEemHKaUADV400P4ASngq55xI3hVMrCJSI6D7azYtcPkPYFyNfSumRcCjc0Ygx4YHGJsIwkiPKGeujN_UsJ6uK-CUxARs0SsZ0HBtZHPXRQS2AxC6UdULCINCMzzTso9fNzzDj-i6O5RImSP8HenZJ4PbRPgiu6aOV8_M_t_0C3W9XxgHaLa838iUoyCV_ZWH1C2d6yko
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+catalysis+of+cesium+phosphomolybdate+encapsulated+in+hierarchical+porous+UiO-66+by+microenvironment+modulation+for+epoxidation+of+alkenes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Hu%2C+Dianwen&rft.au=Miao%2C+Songsong&rft.au=Zhang%2C+Pengfei&rft.au=Wu%2C+Siyuan&rft.date=2023-10-17&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=52&rft.issue=40&rft.spage=14676&rft.epage=14685&rft_id=info:doi/10.1039%2Fd3dt02479b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon