Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 52; no. 4; pp. 14676 - 14685 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
17.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d3dt02479b |
Cover
Loading…
Abstract | The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH
3
, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with
tert
-butyl hydroperoxide (
t
-BuOOH). CsPM@HP-UiO-66-2CH
3
showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH
3
was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH
3
is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH
3
play a crucial role in the stability of CsPM@HP-UiO-66-2CH
3
.
CsPM@HP-UiO-66-2CH
3
showed preferable catalytic performance in alkene epoxidation reaction among CsPM@HP-UiO-66-X composites, which is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites with a methyl group. |
---|---|
AbstractList | The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal–support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3. The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3. The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH 3 , or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert -butyl hydroperoxide ( t -BuOOH). CsPM@HP-UiO-66-2CH 3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH 3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH 3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH 3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH 3 . CsPM@HP-UiO-66-2CH 3 showed preferable catalytic performance in alkene epoxidation reaction among CsPM@HP-UiO-66-X composites, which is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites with a methyl group. The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH 3 , or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert -butyl hydroperoxide ( t -BuOOH). CsPM@HP-UiO-66-2CH 3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH 3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH 3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal–support interactions (SMSIs) between CsPM and HP-UiO-66-2CH 3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH 3 . |
Author | Wu, Siyuan He, Yu-Peng Meng, Qingwei Zhang, Pengfei Miao, Songsong Hu, Dianwen |
AuthorAffiliation | School of Chemical Engineering Changchun Institute of Applied Chemistry Chinese Academy of Sciences School of Chemistry and Molecular Engineering East China University of Science and Technology Ningbo Institute of Dalian University of Technology State Key Laboratory of Fine Chemicals Dalian University of Technology State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Dalian National Laboratory for Clean Energy |
AuthorAffiliation_xml | – sequence: 0 name: Ningbo Institute of Dalian University of Technology – sequence: 0 name: State Key Laboratory of Fine Chemicals – sequence: 0 name: Changchun Institute of Applied Chemistry – sequence: 0 name: School of Chemical Engineering – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Dalian National Laboratory for Clean Energy – sequence: 0 name: Dalian Institute of Chemical Physics – sequence: 0 name: Dalian University of Technology – sequence: 0 name: State Key Laboratory of Catalysis – sequence: 0 name: School of Chemistry and Molecular Engineering – sequence: 0 name: East China University of Science and Technology |
Author_xml | – sequence: 1 givenname: Dianwen surname: Hu fullname: Hu, Dianwen – sequence: 2 givenname: Songsong surname: Miao fullname: Miao, Songsong – sequence: 3 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei – sequence: 4 givenname: Siyuan surname: Wu fullname: Wu, Siyuan – sequence: 5 givenname: Yu-Peng surname: He fullname: He, Yu-Peng – sequence: 6 givenname: Qingwei surname: Meng fullname: Meng, Qingwei |
BookMark | eNpdkU1r3DAQhkXZQHaTXHIvCHIpBSeyJFv2sfkuBHJJzkYfo642tuRIduj-kf7eaLshhR6GmYFnPl7eFVr44AGh05Kcl4S1F4aZiVAuWvUFLUsuRNFSxhefNa0P0SqlDSGUkoou0Z_LENLk_C88rQFrOcl-m1zCwWINyc0DHtch5RhCv1VGToDBazmmuc-1wc7jtYMoo147LXs8hhjmhJ_dY1HXWG3x4HQM4N9cDH4AP-EhmN2sCx7bEDGM4bcz-z4flf0LeEjH6MDKPsHJRz5Cz7c3T1f3xcPj3c-rHw-FpoJNBZOVsZICo7pRqtaC1ZZwaZUilEHVGMUEE9yWZVUTqyvbqIpTbhilQljdsiP0bb93jOF1hjR1g0sa-l56yDo62gjaEE4Fz-jZf-gmzNHn73aUqCvWsiZT3_dUVp1SBNuN0Q0ybruSdDuLumt2_fTXossMf93DMelP7p-F7B2rBpL3 |
Cites_doi | 10.1016/j.chempr.2018.12.011 10.1039/C6GC00524A 10.1016/j.jcat.2013.09.014 10.1016/j.mattod.2018.10.038 10.1016/j.mcat.2022.112741 10.1039/C7DT03198J 10.1016/j.apcatb.2019.117804 10.1021/acs.accounts.6b00577 10.1021/acs.nanolett.9b04124 10.1021/ja209698f 10.1002/anie.201909912 10.1002/cctc.201801452 10.1016/j.molcata.2016.10.022 10.1002/cctc.201300800 10.1021/acs.chemrev.0c00016 10.1021/acs.chemrev.9b00687 10.1021/acs.accounts.8b00521 10.1016/j.micromeso.2017.03.047 10.1002/smll.201906432 10.1039/C6TA10896B 10.1038/natrevmats.2016.23 10.1039/C5CS00935A 10.1039/C4CS90059F 10.1039/C7DT04477A 10.1016/j.micromeso.2015.04.009 10.1039/C8CS00658J 10.1016/j.micromeso.2020.110037 10.1016/j.molcata.2011.12.018 10.1021/cr200324t 10.1039/C5CS00090D 10.1039/D0DT01939A 10.1016/j.apcata.2009.05.058 10.1016/j.ccr.2017.10.014 10.1039/C8CS00256H 10.1016/j.mcat.2018.02.020 10.1002/cctc.201601450 10.1021/acs.chemrev.1c00243 10.1016/j.cattod.2020.07.052 10.1002/adma.202302512 10.1016/S1872-2067(14)60025-5 10.1016/j.mcat.2021.111552 10.1126/science.1230444 10.1016/S1872-2067(20)63665-8 10.31635/ccschem.022.202201974 10.1002/aoc.3958 10.1021/ja405078u 10.1039/C9TA13747E 10.1002/adma.202000041 10.1016/j.micromeso.2015.02.035 10.1016/j.ces.2020.115818 10.1039/C5CS00198F 10.1002/adma.201601133 10.1038/nature18284 10.1021/jacs.2c09136 10.1039/D0TA04337K 10.1039/D0CE01843K 10.1021/accountsmr.1c00009 10.1016/j.matt.2019.05.018 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3dt02479b |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 14685 |
ExternalDocumentID | 10_1039_D3DT02479B d3dt02479b |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c273t-3a5dfa2e32c8bb6c736f04afbb023e58db37374f11560fc5f8b5424d32277fc93 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Thu Jul 10 22:04:35 EDT 2025 Mon Jun 30 03:11:04 EDT 2025 Tue Jul 01 04:27:27 EDT 2025 Tue Dec 17 20:58:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-3a5dfa2e32c8bb6c736f04afbb023e58db37374f11560fc5f8b5424d32277fc93 |
Notes | https://doi.org/10.1039/d3dt02479b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1743-2518 0000-0002-2247-9839 0000-0002-0676-6627 |
PQID | 2877653938 |
PQPubID | 2047498 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2877653938 proquest_miscellaneous_2872804274 crossref_primary_10_1039_D3DT02479B rsc_primary_d3dt02479b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-17 |
PublicationDateYYYYMMDD | 2023-10-17 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hartmann (D3DT02479B/cit7/1) 2016; 45 Soares (D3DT02479B/cit56/1) 2018; 458 Wang (D3DT02479B/cit9/1) 2018; 47 Chen (D3DT02479B/cit5/1) 2020; 120 Wang (D3DT02479B/cit54/1) 2014; 35 Wang (D3DT02479B/cit42/1) 2017; 9 Hartmann (D3DT02479B/cit1/1) 2016; 45 Tian (D3DT02479B/cit2/1) 2020; 120 Blandez (D3DT02479B/cit23/1) 2016; 425 Chen (D3DT02479B/cit16/1) 2019; 1 Dhakshinamoorthy (D3DT02479B/cit21/1) 2019; 11 Wen (D3DT02479B/cit33/1) 2023 Mu (D3DT02479B/cit48/1) 2018; 47 Kim (D3DT02479B/cit3/1) 2016; 535 Jiao (D3DT02479B/cit15/1) 2019; 27 Sun (D3DT02479B/cit47/1) 2012; 134 Li (D3DT02479B/cit17/1) 2016; 28 Wang (D3DT02479B/cit32/1) 2022; 144 Chang (D3DT02479B/cit37/1) 2020; 16 Ai (D3DT02479B/cit40/1) 2022; 4 Sun (D3DT02479B/cit8/1) 2015; 44 Jing (D3DT02479B/cit57/1) 2014; 309 Afzali (D3DT02479B/cit53/1) 2018; 32 Qi (D3DT02479B/cit45/1) 2020; 225 Hu (D3DT02479B/cit38/1) 2021; 42 Valekar (D3DT02479B/cit44/1) 2016; 18 Ogiwara (D3DT02479B/cit34/1) 2020; 20 Jiao (D3DT02479B/cit27/1) 2019; 27 Ye (D3DT02479B/cit41/1) 2020; 8 Gou (D3DT02479B/cit58/1) 2020; 297 Gao (D3DT02479B/cit52/1) 2015; 213 Kalaj (D3DT02479B/cit35/1) 2020; 49 Soares (D3DT02479B/cit55/1) 2021; 381 Wang (D3DT02479B/cit31/1) 2023 Silva (D3DT02479B/cit49/1) 2014; 6 Sun (D3DT02479B/cit10/1) 2015; 44 Kreno (D3DT02479B/cit13/1) 2012; 112 Wang (D3DT02479B/cit22/1) 2022; 532 Tang (D3DT02479B/cit61/1) 2012; 355 Zhang (D3DT02479B/cit36/1) 2019; 256 Jiao (D3DT02479B/cit28/1) 2019; 5 Li (D3DT02479B/cit6/1) 2016; 1 Zhou (D3DT02479B/cit19/1) 2014; 43 Hu (D3DT02479B/cit39/1) 2021; 506 Yang (D3DT02479B/cit24/1) 2015; 211 Xu (D3DT02479B/cit20/1) 2018; 373 Vermoortele (D3DT02479B/cit25/1) 2013; 135 Chen (D3DT02479B/cit30/1) 2020; 32 Xu (D3DT02479B/cit43/1) 2020; 8 Wang (D3DT02479B/cit4/1) 2017; 5 Zhou (D3DT02479B/cit46/1) 2021; 23 Hu (D3DT02479B/cit60/1) 2009; 364 Jiao (D3DT02479B/cit26/1) 2021; 2 Cai (D3DT02479B/cit29/1) 2021; 121 Zhu (D3DT02479B/cit51/1) 2019; 58 Zhang (D3DT02479B/cit59/1) 2017; 247 Xiao (D3DT02479B/cit12/1) 2019; 52 Furukawa (D3DT02479B/cit14/1) 2013; 341 Dhakshinamoorthy (D3DT02479B/cit11/1) 2018; 47 Song (D3DT02479B/cit50/1) 2017; 46 Islamoglu (D3DT02479B/cit18/1) 2017; 50 |
References_xml | – volume: 5 start-page: 786 year: 2019 ident: D3DT02479B/cit28/1 publication-title: Chem doi: 10.1016/j.chempr.2018.12.011 – volume: 18 start-page: 4542 year: 2016 ident: D3DT02479B/cit44/1 publication-title: Green Chem. doi: 10.1039/C6GC00524A – volume: 309 start-page: 121 year: 2014 ident: D3DT02479B/cit57/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.09.014 – volume: 27 start-page: 43 year: 2019 ident: D3DT02479B/cit27/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.10.038 – volume: 532 start-page: 112741 year: 2022 ident: D3DT02479B/cit22/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2022.112741 – volume: 46 start-page: 16655 year: 2017 ident: D3DT02479B/cit50/1 publication-title: Dalton Trans. doi: 10.1039/C7DT03198J – volume: 256 start-page: 117804 year: 2019 ident: D3DT02479B/cit36/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117804 – volume: 50 start-page: 805 year: 2017 ident: D3DT02479B/cit18/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00577 – volume: 20 start-page: 426 year: 2020 ident: D3DT02479B/cit34/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04124 – volume: 134 start-page: 126 year: 2012 ident: D3DT02479B/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209698f – volume: 58 start-page: 17033 year: 2019 ident: D3DT02479B/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909912 – volume: 11 start-page: 899 year: 2019 ident: D3DT02479B/cit21/1 publication-title: ChemCatChem doi: 10.1002/cctc.201801452 – volume: 425 start-page: 332 year: 2016 ident: D3DT02479B/cit23/1 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2016.10.022 – volume: 6 start-page: 464 year: 2014 ident: D3DT02479B/cit49/1 publication-title: ChemCatChem doi: 10.1002/cctc.201300800 – volume: 120 start-page: 11194 year: 2020 ident: D3DT02479B/cit5/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00016 – volume: 120 start-page: 8934 year: 2020 ident: D3DT02479B/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00687 – volume: 52 start-page: 356 year: 2019 ident: D3DT02479B/cit12/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00521 – volume: 247 start-page: 16 year: 2017 ident: D3DT02479B/cit59/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.03.047 – volume: 16 start-page: 1906432 year: 2020 ident: D3DT02479B/cit37/1 publication-title: Small doi: 10.1002/smll.201906432 – volume: 5 start-page: 8825 year: 2017 ident: D3DT02479B/cit4/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10896B – volume: 1 start-page: 16023 year: 2016 ident: D3DT02479B/cit6/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.23 – volume: 45 start-page: 3313 year: 2016 ident: D3DT02479B/cit7/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00935A – volume: 43 start-page: 5415 year: 2014 ident: D3DT02479B/cit19/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS90059F – volume: 47 start-page: 1895 year: 2018 ident: D3DT02479B/cit48/1 publication-title: Dalton Trans. doi: 10.1039/C7DT04477A – volume: 213 start-page: 59 year: 2015 ident: D3DT02479B/cit52/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.04.009 – volume: 47 start-page: 8766 year: 2018 ident: D3DT02479B/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00658J – volume: 297 start-page: 110037 year: 2020 ident: D3DT02479B/cit58/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110037 – volume: 355 start-page: 201 year: 2012 ident: D3DT02479B/cit61/1 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2011.12.018 – volume: 112 start-page: 1105 year: 2012 ident: D3DT02479B/cit13/1 publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 44 start-page: 5092 year: 2015 ident: D3DT02479B/cit8/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00090D – volume: 49 start-page: 8841 year: 2020 ident: D3DT02479B/cit35/1 publication-title: Dalton Trans. doi: 10.1039/D0DT01939A – volume: 364 start-page: 211 year: 2009 ident: D3DT02479B/cit60/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2009.05.058 – volume: 373 start-page: 199 year: 2018 ident: D3DT02479B/cit20/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.10.014 – volume: 47 start-page: 8134 year: 2018 ident: D3DT02479B/cit11/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00256H – volume: 458 start-page: 223 year: 2018 ident: D3DT02479B/cit56/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2018.02.020 – volume: 27 start-page: 43 year: 2019 ident: D3DT02479B/cit15/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.10.038 – volume: 9 start-page: 971 year: 2017 ident: D3DT02479B/cit42/1 publication-title: ChemCatChem doi: 10.1002/cctc.201601450 – volume: 121 start-page: 12278 year: 2021 ident: D3DT02479B/cit29/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00243 – volume: 45 start-page: 3313 year: 2016 ident: D3DT02479B/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00935A – volume: 381 start-page: 143 year: 2021 ident: D3DT02479B/cit55/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.07.052 – start-page: e2302512 year: 2023 ident: D3DT02479B/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202302512 – volume: 35 start-page: 532 year: 2014 ident: D3DT02479B/cit54/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60025-5 – volume: 506 start-page: 111552 year: 2021 ident: D3DT02479B/cit39/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2021.111552 – volume: 341 start-page: 1230444 year: 2013 ident: D3DT02479B/cit14/1 publication-title: Science doi: 10.1126/science.1230444 – volume: 42 start-page: 356 year: 2021 ident: D3DT02479B/cit38/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63665-8 – volume: 4 start-page: 3705 year: 2022 ident: D3DT02479B/cit40/1 publication-title: CCS Chem. doi: 10.31635/ccschem.022.202201974 – volume: 32 start-page: e3958 year: 2018 ident: D3DT02479B/cit53/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3958 – volume: 135 start-page: 11465 year: 2013 ident: D3DT02479B/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405078u – volume: 8 start-page: 7870 year: 2020 ident: D3DT02479B/cit43/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13747E – volume: 32 start-page: 2000041 year: 2020 ident: D3DT02479B/cit30/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000041 – volume: 211 start-page: 73 year: 2015 ident: D3DT02479B/cit24/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.02.035 – volume: 225 start-page: 115818 year: 2020 ident: D3DT02479B/cit45/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115818 – volume: 44 start-page: 6018 year: 2015 ident: D3DT02479B/cit10/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00198F – volume: 28 start-page: 8819 year: 2016 ident: D3DT02479B/cit17/1 publication-title: Adv. Mater. doi: 10.1002/adma.201601133 – volume: 535 start-page: 131 year: 2016 ident: D3DT02479B/cit3/1 publication-title: Nature doi: 10.1038/nature18284 – volume: 144 start-page: 22008 year: 2022 ident: D3DT02479B/cit32/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c09136 – start-page: e2302512 year: 2023 ident: D3DT02479B/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.202302512 – volume: 8 start-page: 19396 year: 2020 ident: D3DT02479B/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04337K – volume: 23 start-page: 2961 year: 2021 ident: D3DT02479B/cit46/1 publication-title: CrystEngComm doi: 10.1039/D0CE01843K – volume: 2 start-page: 327 year: 2021 ident: D3DT02479B/cit26/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00009 – volume: 1 start-page: 57 year: 2019 ident: D3DT02479B/cit16/1 publication-title: Matter doi: 10.1016/j.matt.2019.05.018 |
SSID | ssj0022052 |
Score | 2.4165237 |
Snippet | The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic... The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal–organic frameworks (MOFs) presents a significant influence on their catalytic... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 14676 |
SubjectTerms | Alkenes Benzene Butyl hydroperoxide Catalysis Catalytic activity Cesium Composite materials Encapsulation Epoxidation Functional groups Metal-organic frameworks Modulation Polyoxometallates Stability Substitution reactions |
Title | Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes |
URI | https://www.proquest.com/docview/2877653938 https://www.proquest.com/docview/2872804274 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9gAXxKsiUJAR3KKFxN7nsSWpCkpbpG6k3la2105XJLtRsxGEH8K_5D8w9nofLRUCDllFm8i2PJ_tmfHMNwi9FZrEW8qhI5kKHJekygl9SR0W8ShiLEoj47o4PfNPZu6nS--y1_vZiVralPyd-H5nXsn_SBXegVx1luw_SLZpFF7Ad5AvPEHC8PwrGR8Vxbqs852MI6bmF4HVn22Wg9VVsYbPslhsuTbtBzB6BnbxgmlFM8sHuhK2uUvQogJVXAfEzrJzx_e1XrrU0XqdVDhdN8eW-6qowlfFtyxtlE62-KJ3zq6-O2a6arUuRFFXJV8bJwTLDVFF64u8wWBRlZoSA1FXo2vBZ_ZIgPTXNoXtNGPG33tR5HOwHua_-cI_y3yuZNacP6aRi2y7sSvDOj2ICZ-rcjxttJR2rdRxrSZupTueait39eU0IZZou_vOuk_t_u-RDs4r7ii7m-tTxO-oBjpNzbvz3BlSTdua0rQEnSeIeHu61hEFZ-fJ8Ww6TeLJZbyD9ghYNXCO7B1O4o_TxkNAhqZEVDP0mk-XRu_btm9qUK1ZtHNd16wxulH8ED2wRg0-rBD6CPVk_hjda2brCfpRIxUDUnGDVFwoXCEV30Yq7iIVZznuIhVXSMUVUjHf4ttIxS1SMSAVd5CqO7VIfYpmx5P4w4ljK4I4AtTs0qHMSxUjkhIRcu6LgPpq6DLFOWBEemHKaUADV400P4ASngq55xI3hVMrCJSI6D7azYtcPkPYFyNfSumRcCjc0Ygx4YHGJsIwkiPKGeujN_UsJ6uK-CUxARs0SsZ0HBtZHPXRQS2AxC6UdULCINCMzzTso9fNzzDj-i6O5RImSP8HenZJ4PbRPgiu6aOV8_M_t_0C3W9XxgHaLa838iUoyCV_ZWH1C2d6yko |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+catalysis+of+cesium+phosphomolybdate+encapsulated+in+hierarchical+porous+UiO-66+by+microenvironment+modulation+for+epoxidation+of+alkenes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Hu%2C+Dianwen&rft.au=Miao%2C+Songsong&rft.au=Zhang%2C+Pengfei&rft.au=Wu%2C+Siyuan&rft.date=2023-10-17&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=52&rft.issue=40&rft.spage=14676&rft.epage=14685&rft_id=info:doi/10.1039%2Fd3dt02479b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |