Energy-Efficient Cluster-Based Routing Protocol for WSN Based on Hybrid BSO–TLBO Optimization Model
Abstract The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploit...
Saved in:
Published in | Computer journal Vol. 64; no. 10; pp. 1477 - 1493 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches. |
---|---|
AbstractList | The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches. Abstract The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various substantial and environmental specifications by providing cost-effective sensor devices. The development of these sensor networks is exploited to provide an energy-efficient weighted clustering method to increase the lifespan of the network. We propose a novel energy-efficient method, which utilizes the brainstorm algorithm in order to adopt the ideal cluster head (CH) to reduce energy draining. Furthermore, the effectiveness of the BrainStorm Optimization (BSO) algorithm is enhanced with the incorporation of the modified teacher–learner optimized (MTLBO) algorithm with it. The modified BSO–MTLBO algorithm can be used to attain an improved throughput, network lifetime, and to reduce the energy consumption by nodes and CH, death of sensor nodes, routing overhead. The performance of our proposed work is analyzed with other existing approaches and inferred that our approach performs better than all the other approaches. |
Author | Yamini, B Krishnan, Kannan Nalini, M Alenazy, Wael Mohammad |
Author_xml | – sequence: 1 givenname: Kannan surname: Krishnan fullname: Krishnan, Kannan email: kannanoc@gmail.com – sequence: 2 givenname: B surname: Yamini fullname: Yamini, B – sequence: 3 givenname: Wael Mohammad surname: Alenazy fullname: Alenazy, Wael Mohammad – sequence: 4 givenname: M surname: Nalini fullname: Nalini, M |
BookMark | eNqFkLFOwzAQhi1UJNrCyuyVIe05dp1kpFWhSIUgWsQY2Y5TuUrjynYlysQ78IY8CYV0QkIsd8Ov77_T10OdxjYaoUsCAwIZHSq7WTf1UL4KCYydoC5hHKIYeNJBXQACEeMxnKGe92sAiCHjXaSnjXarfTStKqOMbgKe1DsftIvGwusSP9ldMM0KPzobrLI1rqzDL4sH3Ma2wbO9dKbE40X--f6xnI9znG-D2Zg3Ecwhvrelrs_RaSVqry-Ou4-eb6bLySya57d3k-t5pOKEhojyUVImic5IXMmMHwYdsRGkKuMZT0sGKUszDUKWiYxBUklTyRMmQHFGhBK0jwZtr3LWe6erYuvMRrh9QaD4llS0koqjpAPAfgHKhJ_HgxOm_hu7ajG72_534gs2E4A1 |
CitedBy_id | crossref_primary_10_1002_dac_5438 crossref_primary_10_1080_03772063_2023_2298510 crossref_primary_10_1615_TelecomRadEng_2023050237 crossref_primary_10_1016_j_suscom_2024_101043 crossref_primary_10_3233_IDT_220045 crossref_primary_10_1016_j_eswa_2023_122873 crossref_primary_10_1002_dac_70050 crossref_primary_10_1007_s44196_024_00708_0 |
Cites_doi | 10.1007/s11042-020-09234-5 10.1016/j.fss.2019.11.015 10.1016/j.jpdc.2020.04.007 10.1007/s11042-019-7577-5 10.1016/j.micpro.2020.103291 10.1016/j.cad.2010.12.015 10.1016/j.comnet.2020.107347 10.1002/pip.3315 10.1016/j.comcom.2019.10.003 10.1504/IJBET.2019.103242 10.1016/j.compeleceng.2011.11.017 10.1109/CEC.2015.7257029 10.1016/j.cose.2018.04.009 10.1007/s11277-018-6014-9 10.1109/TVT.2019.2946225 10.1016/j.aeue.2016.12.001 10.1016/j.adhoc.2020.102182 10.1016/j.micpro.2020.103325 10.1016/j.ifacol.2019.08.171 |
ContentType | Journal Article |
Copyright | The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
Copyright_xml | – notice: The British Computer Society 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxab044 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 1493 |
ExternalDocumentID | 10_1093_comjnl_bxab044 10.1093/comjnl/bxab044 |
GroupedDBID | -E4 -~X .2P .DC .I3 0B8 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAYOK ABDTM ABEFU ABEUO ABIXL ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGMDO AGSYK AHXPO AI. AIDUJ AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F20 F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF KBUDW KOP KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 UCJ VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZHY ZKX ZY4 ~91 AAYXX ABAZT ABDFA ABEJV ABGNP ABVGC ABVLG ACUXJ ADMLS ADYJX AGORE AHGBF AJBYB AJNCP ALXQX ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c273t-3657d77e912fb962fb354508c96968d408489e0abd7b20b3b38b674a0c641aca3 |
ISSN | 0010-4620 |
IngestDate | Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 02:55:08 EDT 2025 Wed Aug 28 03:20:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | cluster head sensor nodes TLO BSO energy |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-3657d77e912fb962fb354508c96968d408489e0abd7b20b3b38b674a0c641aca3 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1093_comjnl_bxab044 crossref_citationtrail_10_1093_comjnl_bxab044 oup_primary_10_1093_comjnl_bxab044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Rao (2021101410164282700_ref27) 2011; 43 Stephan (2021101410164282700_ref19) 2020 Shi (2021101410164282700_ref23) 2011 Baradaran (2021101410164282700_ref16) 2020; 389 Sundararaj (2021101410164282700_ref6) 2019; 104 Arai (2021101410164282700_ref26) 2019; 52 Sood (2021101410164282700_ref4) 2020 Maheshwari (2021101410164282700_ref2); 110 Osborn (2021101410164282700_ref25) 1957 Sundararaj (2021101410164282700_ref8) 2018; 77 Dhand (2021101410164282700_ref17) 2020 Sundararaj (2021101410164282700_ref7) 2019; 31 Karunanithy (2021101410164282700_ref15) 2020 Samara (2021101410164282700_ref14) 2019 Sundararaj (2021101410164282700_ref9) 2020; 28 Seyyedabbasi (2021101410164282700_ref21) 2020 Sankaralingam (2021101410164282700_ref1) 2020 Sundararaj (2021101410164282700_ref5) 2016; 9 Jeske (2021101410164282700_ref18) 2020 Ansere (2021101410164282700_ref28) 2014; 5 Sharma (2021101410164282700_ref13) 2020 Nivedhitha (2021101410164282700_ref20) 2020; 79 Singh (2021101410164282700_ref3) 2017; 72 Rejeesh (2021101410164282700_ref10) 2019; 78 Jadhav (2021101410164282700_ref30) 2017 Sackey (2021101410164282700_ref31) 2019 Wang (2021101410164282700_ref32) 2012; 38 Singh (2021101410164282700_ref12) 2020; 107 Shi (2021101410164282700_ref24) 2015 Ansere (2021101410164282700_ref29) Devi (2021101410164282700_ref22) 2020; 149 Rejeesh (2021101410164282700_ref11) 2020; 79 |
References_xml | – volume-title: Applied Imagination year: 1957 ident: 2021101410164282700_ref25 – volume: 79 start-page: 28411 year: 2020 ident: 2021101410164282700_ref11 article-title: MOTF: Multi-objective Optimal Trilateral Filtering based partial moving frame algorithm for image denoising publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09234-5 – year: 2020 ident: 2021101410164282700_ref1 article-title: Energy aware decision stump linear programming boosting node classification based data aggregation in WSN publication-title: Comput. Commun. – volume: 389 start-page: 114 year: 2020 ident: 2021101410164282700_ref16 article-title: HQCA-WSN: high-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks publication-title: Fuzzy Set. Syst. doi: 10.1016/j.fss.2019.11.015 – year: 2020 ident: 2021101410164282700_ref19 article-title: Artificial intelligence inspired energy and spectrum aware cluster based routing protocol for cognitive radio sensor networks publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.04.007 – year: 2017 ident: 2021101410164282700_ref30 article-title: Whale optimization based energy-efficient cluster head selection algorithm for wireless sensor networks publication-title: arXiv – year: 2020 ident: 2021101410164282700_ref17 article-title: Protocols SMEER (Secure Multitier Energy Efficient Routing Protocol) and SCOR (Secure Elliptic curve based Chaotic key Galois Cryptography on Opportunistic Routing) publication-title: Mater. Today – volume: 78 start-page: 22691 year: 2019 ident: 2021101410164282700_ref10 article-title: Interest point based face recognition using adaptive neuro fuzzy inference system publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7577-5 – volume: 79 year: 2020 ident: 2021101410164282700_ref20 article-title: DMEERP: a dynamic multi-hop energy efficient routing protocol for WSN publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103291 – year: 2020 ident: 2021101410164282700_ref4 article-title: LUET: a novel Lines-of-Uniformity based Clustering protocol for Heterogeneous-WSN for multiple-applications publication-title: J. King Saud Univ. Comput. Info. Sci. – volume: 43 start-page: 303 year: 2011 ident: 2021101410164282700_ref27 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – year: 2019 ident: 2021101410164282700_ref14 article-title: Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks publication-title: arXiv – year: 2020 ident: 2021101410164282700_ref18 article-title: Determining the trade-offs between data delivery and energy consumption in large-scale WSNs by multi-objective evolutionary optimization publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107347 – volume: 28 start-page: 1128 year: 2020 ident: 2021101410164282700_ref9 article-title: CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system publication-title: Prog. Photovolt. doi: 10.1002/pip.3315 – volume: 149 start-page: 36 year: 2020 ident: 2021101410164282700_ref22 article-title: Cluster based data aggregation scheme for latency and packet loss reduction in WSN publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.10.003 – volume: 31 start-page: 325 year: 2019 ident: 2021101410164282700_ref7 article-title: Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2019.103242 – volume: 9 start-page: 117 year: 2016 ident: 2021101410164282700_ref5 article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm publication-title: Int. J. Intell. Eng. Syst. – start-page: 303 volume-title: Proc. 2nd Int. Conf. Swarm Intelligence year: 2011 ident: 2021101410164282700_ref23 article-title: Brainstorm Optimization Algorithm – year: 2020 ident: 2021101410164282700_ref15 article-title: Cluster-tree based energy efficient data gathering protocol for industrial automation using WSNs and IoT publication-title: J. Ind. Inf. Integr. – volume: 38 start-page: 662 year: 2012 ident: 2021101410164282700_ref32 article-title: A clustering algorithm based on energy information and cluster heads expectation for wireless sensor networks publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2011.11.017 – volume-title: Proc. IEEE CEC year: 2015 ident: 2021101410164282700_ref24 article-title: Brain Storm Optimization Algorithm in Objective Space doi: 10.1109/CEC.2015.7257029 – volume: 77 start-page: 277 year: 2018 ident: 2021101410164282700_ref8 article-title: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.04.009 – volume: 110 ident: 2021101410164282700_ref2 article-title: Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization publication-title: Ad Hoc Netw. – volume: 104 start-page: 173 year: 2019 ident: 2021101410164282700_ref6 article-title: Optimal task assignment in mobile cloud computing by queue based Ant-Bee algorithm publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-018-6014-9 – ident: 2021101410164282700_ref29 article-title: A novel reliable adaptive beacon time synchronization algorithm for large-scale vehicular ad hoc networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2946225 – volume: 5 start-page: 152 year: 2014 ident: 2021101410164282700_ref28 article-title: An evaluation of the performance of DF in cooperative MIMO networks using relay strategies publication-title: Proc. Int. J. Mob. Netw. Des. Innov. – year: 2020 ident: 2021101410164282700_ref13 article-title: QoS-based energy-efficient protocols for wireless sensor network publication-title: Sustain. Comput. Inform. Syst. – volume: 72 start-page: 166 year: 2017 ident: 2021101410164282700_ref3 article-title: Energy efficient cross layer based adaptive threshold routing protocol for WSN publication-title: Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.12.001 – volume: 107 year: 2020 ident: 2021101410164282700_ref12 article-title: Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2020.102182 – year: 2020 ident: 2021101410164282700_ref21 article-title: MAP-ACO: an efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103325 – volume: 52 start-page: 153 year: 2019 ident: 2021101410164282700_ref26 article-title: Optimal operational planning of energy plants considering uncertainty of renewable energy outputs by global-best brain storm optimization publication-title: IFAC-Papers OnLine doi: 10.1016/j.ifacol.2019.08.171 – start-page: 1 volume-title: 2019 15th Int. Conf. Emerging Technologies (ICET) year: 2019 ident: 2021101410164282700_ref31 |
SSID | ssj0002096 |
Score | 2.473982 |
Snippet | Abstract
The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various... The most famous wireless sensor networks is one of the cheapest and rapidly evolving networks in modern communication. It can be used to sense various... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1477 |
Title | Energy-Efficient Cluster-Based Routing Protocol for WSN Based on Hybrid BSO–TLBO Optimization Model |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK98IL41MMBrIQEg-RmRM7Sfu4jqIK1hWpnTaeKjt2NaE0maZUYnviP0z7g_wSrmPHS8cQg5codRy3zTm6vrHvPRehtzpe0HghFQHXPyY8FZyIJKVEax1KSTPVlyYbeXyQjA75p-P4uNO5akUtrSr5Pru4Na_kf1CFNsDVZMn-A7J-UGiAc8AXjoAwHO-E8bBO3CPDWgbCbOrv5SsjfEAGMDepwET7mJWAL2dlVQLgdUjh0fQgsJcB99G5SdgKBtNJE_TAZvuDSTABQ7J0GZp1ubS87cQ2lSCC9o80RttUq3f1jj-Lorgm3ldhJExqLnmGwXQnLmqIj4QJry1PxHIplF-dFrm7ZdxemYhCH-PmrS008CSy-y7aGlieUGIk49sW2OqYN0yjLXsaclfkRbuPtpzib3bfamIBkt-KHE7kdyGp1ZVcl9i-MfX5gES7Fc_mdoS5u_8e2ojg7SPqoo3dD-P9qZ_iI1oXfvN_0KuBsh07wo4bYc3bMRmULedl9hA9cG8deNdS6BHq6OIx2mxwxM7AP0H6JqPwGqOwYxRuGIWBURgYhe3lssCWURgY9fPHpeESbnMJ11x6ig4_Dmd7I-IKcZAMvNuKsCROVZrqfhgtZD-BAwPHm_ayWlpJcVOToa-pkCqVEZVMsp5MUi5olvBQZII9Q92iLPRzhGUK9wumNI8lZzB7yJQudCJ7XCn4jt4WIs0Dm2dOpd4US8nnt0O0hd75_qdWn-WPPd_A8_9Lpxd3Hu4lun_N-W3Urc5W-hX4p5V87djyC_Vzlfs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Cluster-Based+Routing+Protocol+for+WSN+Based+on+Hybrid+BSO%E2%80%93TLBO+Optimization+Model&rft.jtitle=Computer+journal&rft.au=Krishnan%2C+Kannan&rft.au=Yamini%2C+B&rft.au=Alenazy%2C+Wael+Mohammad&rft.au=Nalini%2C+M&rft.date=2021-10-01&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=64&rft.issue=10&rft.spage=1477&rft.epage=1493&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxab044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxab044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |