Linear evolution equations on the half-line with dynamic boundary conditions

The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. A...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 33; no. 3; pp. 505 - 537
Main Authors SMITH, D. A., TOH, W. Y.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.06.2022
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792521000103

Cover

Abstract The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
AbstractList The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition \[bq(0,t) + {q_x}(0,t) = 0\] is replaced with a dynamic Robin condition; \[b = b(t)\] is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
Author SMITH, D. A.
TOH, W. Y.
Author_xml – sequence: 1
  givenname: D. A.
  orcidid: 0000-0002-3525-3142
  surname: SMITH
  fullname: SMITH, D. A.
– sequence: 2
  givenname: W. Y.
  surname: TOH
  fullname: TOH, W. Y.
BookMark eNp9kMtOwzAQRS1UJNrCB7CzxDowtpM4XqKKlxSJBbCOHD9UV6ndOgmof4_TsgKJ1cxozp3HXaCZD94gdE3glgDhd28gipILWlACAATYGZqTvBRZntNihuZTO5v6F2jR95uEMOBijuraeSMjNp-hGwcXPDb7UU5Jj1MxrA1ey85mXcLwlxvWWB-83DqF2zB6LeMBq-C1Oyou0bmVXW-ufuISfTw-vK-es_r16WV1X2eKcjZkpBWV5LnV1hhLTQuCgqaa0BxYzqBV6YfSVFq3tNCqpGBMJZQqSqs045ViS3RzmruLYT-afmg2YYw-rWxoRRgvoYQqUeREqRj6Phrb7KLbposbAs1kWvPHtKThvzTKDUc7hihd94_yG6RJcok
CitedBy_id crossref_primary_10_1111_sapm_12452
crossref_primary_10_1088_1402_4896_ad52c8
crossref_primary_10_1007_s10440_021_00456_9
crossref_primary_10_1016_j_physleta_2024_129408
crossref_primary_10_1002_mma_9919
Cites_doi 10.1016/j.jcp.2018.08.005
10.1088/0951-7715/24/1/009
10.1007/s10958-012-1090-y
10.1098/rspa.2011.0478
10.1137/100809647
10.1017/S0956792518000475
10.1016/0022-247X(73)90147-9
10.1093/imamat/67.6.559
10.1016/j.amc.2018.07.061
10.1098/rspa.2013.0019
10.1093/imanum/dry085
10.1007/s00332-012-9150-5
10.57262/ade/1462298656
10.1111/sapm.12212
10.1137/1.9781611973822
10.1016/j.aml.2016.07.014
10.1088/0951-7715/18/4/019
10.1007/s00220-016-2690-z
10.1007/BF00828017
10.1016/j.jmaa.2018.05.064
10.1098/rspa.2013.0605
10.1007/978-3-642-14574-2
10.1093/imamat/hxv019
10.1017/S030500411100082X
10.1155/2008/347568
10.2307/20025584
10.1007/s40315-013-0038-7
10.1137/1.9780898717068
10.1137/110821871
10.1093/imamat/hxy030
10.1007/s00220-002-0681-8
10.1088/1751-8113/48/33/335001
10.1111/sapm.12070
10.1002/nme.1620191210
10.1007/s00707-015-1389-0
10.1016/0029-5493(72)90041-6
10.1137/18M1217309
10.1115/1.3450139
10.1098/rspa.2000.0671
10.1088/0951-7715/23/1/004
10.1017/S0305004103007205
10.1017/S0956792513000223
10.1007/BF00831837
10.4171/JST/123
10.1017/jfm.2019.194
10.1017/S0305004101005436
10.1007/BF00831276
10.1007/BF00828371
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792521000103
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 537
ExternalDocumentID 10_1017_S0956792521000103
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABEFU
ABGDZ
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMVHM
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c273t-1b98a74fdfeef2eb0920d2d12403430bc2106e8ddb25dc620ee89cc56fcd378c3
IEDL.DBID 8FG
ISSN 0956-7925
IngestDate Sat Sep 06 22:12:10 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c273t-1b98a74fdfeef2eb0920d2d12403430bc2106e8ddb25dc620ee89cc56fcd378c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3525-3142
PQID 2813760608
PQPubID 37129
PageCount 33
ParticipantIDs proquest_journals_2813760608
crossref_primary_10_1017_S0956792521000103
crossref_citationtrail_10_1017_S0956792521000103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792521000103_ref55
S0956792521000103_ref10
S0956792521000103_ref54
S0956792521000103_ref57
S0956792521000103_ref13
S0956792521000103_ref56
S0956792521000103_ref59
S0956792521000103_ref15
S0956792521000103_ref58
S0956792521000103_ref17
S0956792521000103_ref16
S0956792521000103_ref51
S0956792521000103_ref52
Deconinck (S0956792521000103_ref14) 2020; 31
Becker (S0956792521000103_ref4) 1983; 19
S0956792521000103_ref21
S0956792521000103_ref23
S0956792521000103_ref25
S0956792521000103_ref28
Biondini (S0956792521000103_ref5) 2019; 77
S0956792521000103_ref20
Fokas (S0956792521000103_ref26) 2013; 24
Kilbas (S0956792521000103_ref38) 2002
S0956792521000103_ref18
Bobyk (S0956792521000103_ref6) 2012; 187
Fokas (S0956792521000103_ref19) 2002; 230
S0956792521000103_ref32
Chen (S0956792521000103_ref7) 2010; 59
S0956792521000103_ref34
S0956792521000103_ref37
S0956792521000103_ref36
S0956792521000103_ref39
S0956792521000103_ref9
S0956792521000103_ref31
Pinsky (S0956792521000103_ref50) 2011
Fokas (S0956792521000103_ref24) 2011; 24
Sheils (S0956792521000103_ref53) 2015; 48
Fokas (S0956792521000103_ref27) 2015; 26
Fokas (S0956792521000103_ref30) 2016; 21
Crowdy (S0956792521000103_ref12) 2018; 83
S0956792521000103_ref29
Ivanov (S0956792521000103_ref35) 1965; 9
S0956792521000103_ref44
S0956792521000103_ref43
S0956792521000103_ref46
S0956792521000103_ref45
S0956792521000103_ref47
S0956792521000103_ref49
Fokas (S0956792521000103_ref22) 2005; 18
Pelloni (S0956792521000103_ref48) 2016; 6
Govindarajan (S0956792521000103_ref33) 2019; 868
S0956792521000103_ref42
S0956792521000103_ref41
Baleanu (S0956792521000103_ref3) 2018; 339
S0956792521000103_ref8
S0956792521000103_ref1
S0956792521000103_ref2
Kozlov (S0956792521000103_ref40) 1970; 18
Crowdy (S0956792521000103_ref11) 2015; 80
References_xml – ident: S0956792521000103_ref9
  doi: 10.1016/j.jcp.2018.08.005
– volume: 24
  start-page: 177
  year: 2011
  ident: S0956792521000103_ref24
  article-title: Boundary-value problems for the stationary axisymmetric Einstein equations: a rotating disc
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/1/009
– volume: 187
  start-page: 647
  year: 2012
  ident: S0956792521000103_ref6
  article-title: Thermostressed state of a cylinder with thin near-surface layer having time-dependent thermophysical properties
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-012-1090-y
– ident: S0956792521000103_ref2
  doi: 10.1098/rspa.2011.0478
– ident: S0956792521000103_ref31
  doi: 10.1137/100809647
– volume: 31
  start-page: 57
  year: 2020
  ident: S0956792521000103_ref14
  article-title: The time-dependent Schrödinger equation with piecewise constant potentials
  publication-title: E. J. Appl. Math.
  doi: 10.1017/S0956792518000475
– ident: S0956792521000103_ref57
  doi: 10.1016/0022-247X(73)90147-9
– ident: S0956792521000103_ref20
  doi: 10.1093/imamat/67.6.559
– volume: 339
  start-page: 738
  year: 2018
  ident: S0956792521000103_ref3
  article-title: Solving PDEs of fractional order using the unified transform method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.07.061
– volume-title: Fractional Integrals and Derivatives: Theory and Applications
  year: 2002
  ident: S0956792521000103_ref38
– ident: S0956792521000103_ref47
  doi: 10.1098/rspa.2013.0019
– ident: S0956792521000103_ref8
  doi: 10.1093/imanum/dry085
– ident: S0956792521000103_ref25
  doi: 10.1007/s00332-012-9150-5
– volume: 26
  start-page: 887
  year: 2015
  ident: S0956792521000103_ref27
  article-title: The unified method for the heat equation: II. Non-separable boundary conditions in two dimensions
  publication-title: J. Appl. Math.
– volume: 59
  start-page: 107
  year: 2010
  ident: S0956792521000103_ref7
  article-title: Analytic closed solution for the heat conduction with time dependent heat convection coefficient at one boundary
  publication-title: Comput. Model. Eng. Sci.
– ident: S0956792521000103_ref58
– volume: 21
  start-page: 735
  year: 2016
  ident: S0956792521000103_ref30
  article-title: Evolution PDEs and augmented eigenfunctions. Finite interval
  publication-title: Adv. Differ. Equations
  doi: 10.57262/ade/1462298656
– ident: S0956792521000103_ref49
  doi: 10.1111/sapm.12212
– ident: S0956792521000103_ref39
– ident: S0956792521000103_ref29
  doi: 10.1137/1.9781611973822
– ident: S0956792521000103_ref59
  doi: 10.1016/j.aml.2016.07.014
– volume: 77
  start-page: 689
  year: 2019
  ident: S0956792521000103_ref5
  article-title: Evolution partial differential equations with discontinuous data
  publication-title: Quart. Appl. Math.
– volume: 18
  start-page: 1771
  year: 2005
  ident: S0956792521000103_ref22
  article-title: The nonlinear Schrödinger equation on the half-line
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/18/4/019
– ident: S0956792521000103_ref15
  doi: 10.1007/s00220-016-2690-z
– ident: S0956792521000103_ref51
  doi: 10.1007/BF00828017
– ident: S0956792521000103_ref42
  doi: 10.1016/j.jmaa.2018.05.064
– ident: S0956792521000103_ref13
  doi: 10.1098/rspa.2013.0605
– ident: S0956792521000103_ref17
  doi: 10.1007/978-3-642-14574-2
– volume: 80
  start-page: 1902
  year: 2015
  ident: S0956792521000103_ref11
  article-title: A transform method for Laplace’s equation in multiply connected circular domains
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxv019
– ident: S0956792521000103_ref54
  doi: 10.1017/S030500411100082X
– ident: S0956792521000103_ref43
  doi: 10.1155/2008/347568
– ident: S0956792521000103_ref37
  doi: 10.2307/20025584
– ident: S0956792521000103_ref23
  doi: 10.1007/s40315-013-0038-7
– ident: S0956792521000103_ref21
  doi: 10.1137/1.9780898717068
– ident: S0956792521000103_ref16
  doi: 10.1137/110821871
– ident: S0956792521000103_ref32
– volume: 83
  start-page: 942
  year: 2018
  ident: S0956792521000103_ref12
  article-title: A transform method for the biharmonic equation in multiply connected circular domains
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxy030
– volume: 230
  start-page: 1
  year: 2002
  ident: S0956792521000103_ref19
  article-title: Integrable nonlinear evolution equations on the half-line
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-002-0681-8
– volume: 48
  start-page: 21 pp
  year: 2015
  ident: S0956792521000103_ref53
  article-title: Heat equation on a network using the Fokas method
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/48/33/335001
– ident: S0956792521000103_ref52
  doi: 10.1111/sapm.12070
– volume: 19
  start-page: 1871
  year: 1983
  ident: S0956792521000103_ref4
  article-title: Heat diffusion with time-dependent convective boundary conditions
  publication-title: Int. J. Num. Methods Eng.
  doi: 10.1002/nme.1620191210
– ident: S0956792521000103_ref41
  doi: 10.1007/s00707-015-1389-0
– ident: S0956792521000103_ref34
  doi: 10.1016/0029-5493(72)90041-6
– ident: S0956792521000103_ref10
  doi: 10.1137/18M1217309
– ident: S0956792521000103_ref44
  doi: 10.1115/1.3450139
– ident: S0956792521000103_ref56
– volume-title: Paryial Differential Equations and Boundary-Value Problems
  year: 2011
  ident: S0956792521000103_ref50
– ident: S0956792521000103_ref18
  doi: 10.1098/rspa.2000.0671
– ident: S0956792521000103_ref46
  doi: 10.1088/0951-7715/23/1/004
– ident: S0956792521000103_ref1
– ident: S0956792521000103_ref45
  doi: 10.1017/S0305004103007205
– volume: 24
  start-page: 857
  year: 2013
  ident: S0956792521000103_ref26
  article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792513000223
– volume: 9
  start-page: 63
  year: 1965
  ident: S0956792521000103_ref35
  article-title: On the calculation of the temperature field in solids with variable heat-transfer coefficients
  publication-title: J. Eng. Phys.
  doi: 10.1007/BF00831837
– volume: 6
  start-page: 185
  year: 2016
  ident: S0956792521000103_ref48
  article-title: Evolution PDEs and augmented eigenfunctions. Half line
  publication-title: J. Spectr. Theory
  doi: 10.4171/JST/123
– volume: 868
  start-page: 428
  year: 2019
  ident: S0956792521000103_ref33
  article-title: Accurate solution method for the Maxey-Riley equation, and the effects of Basset history
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.194
– ident: S0956792521000103_ref28
  doi: 10.1017/S0305004101005436
– ident: S0956792521000103_ref36
  doi: 10.1007/BF00831276
– volume: 18
  start-page: 100
  year: 1970
  ident: S0956792521000103_ref40
  article-title: Solution of heat-conduction problem with variable heat-exchange coefficient
  publication-title: J. Eng. Phys.
  doi: 10.1007/BF00828371
– ident: S0956792521000103_ref55
SSID ssj0013079
Score 2.3159604
Snippet The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 505
SubjectTerms Applied mathematics
Boundary conditions
Differential equations
Dirichlet problem
Fourier transforms
Linear evolution equations
Mathematical analysis
Ordinary differential equations
Thermodynamics
Title Linear evolution equations on the half-line with dynamic boundary conditions
URI https://www.proquest.com/docview/2813760608
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHDl4EoJpmqTpSVScQ9wQcbBbaZMXPIz9VvC_N2nTDRF2bJoemrzkfe_l5fsQutZgrHShDxFGAOFS5CTXwImD2hZMnIKwPqHfH8jekL-MxCgk3JahrLLeE8uN2ky1z5HfMhX5-g1J1d1sTrxqlD9dDRIau6gZOU_j7Vx1nzenCHTDtZekTNSnmiVltGv0bcwnuKNaM6v2S3-35dLXdA_RQQCJ-L6a1SO0A5NjtN9fM6wuT9CrCyKdkWL4DraDYV6xdi-xe3A98Wc-tsSjSOyTrdhU2vO4KIWUFj_YRcKmKtg6RcPu08djjwRlBKId3FiRqEhVnnBrLIBlUNCUUcNM5Mn1eEwL7f5KgjKmYMJoySiASrUW0moTJ0rHZ6gxmU7gHGHhIJjWMja6KLgSaU7BJA5T-eXIUy5aiNbjkulAG-7VK8ZZVR-WZP-GsoVu1p_MKs6MbZ3b9WBnYfkss81kX2x_fYn2mL-PUKZF2qixWnzBlUMJq6JTmkIHNR-eBm_vv3MmukY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCp2fIALkkXq2FkOCLGq0EUItVJvIbHH4lCVtimg_hTfiJ2FCiH11mMcJ1LGE8_q9wBOJSrtmdCHCiWQck_ENJbIqXG1NSo3RKFtQr_Z8mod_tQV3QX4Ls_C2LbKck_MNmr1Lm2O_IIFVdu_4TnB1WBILWuUra6WFBq5WtRx8mVCtvTy8c6s7xljD_ft2xotWAWoNKZ6TKtJGMQ-10ojaoaJEzJHMVW1wHTcdRJpgiAPA6USJpT0mIMYhFIKT0vl-oF0zXsXYYnbE60VWLq5bz2_TOsWzhTdzw-ZKOuoGUi1GbRjzKbUqyVLV2kJ_xqCzLo9rMNa4ZaS61yPNmAB-5uw2vzFdE23oGHCVvP9BD8LbSU4zHHCU2IuzEzyFvc0tX4rseldonK2e5Jk1E2jCTGxt8pbxLahMxep7UCl_97HXSDCOH1Seq6SScIDEcYOKt94cXYD4CEXe-CUcolkAVRu-TJ6Ud6R5kf_RLkH57-PDHKUjlmTD0thR8UPm0ZT9dqfffsElmvtZiNqPLbqB7DC7GmILClzCJXx6AOPjI8yTo4LxSDwOm9d_AFMNPgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+evolution+equations+on+the+half-line+with+dynamic+boundary+conditions&rft.jtitle=European+journal+of+applied+mathematics&rft.au=SMITH%2C+D.+A.&rft.au=TOH%2C+W.+Y.&rft.date=2022-06-01&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=33&rft.issue=3&rft.spage=505&rft.epage=537&rft_id=info:doi/10.1017%2FS0956792521000103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0956792521000103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon