Linear evolution equations on the half-line with dynamic boundary conditions
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. A...
Saved in:
Published in | European journal of applied mathematics Vol. 33; no. 3; pp. 505 - 537 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792521000103 |
Cover
Abstract | The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition
$$bq(0,t) + {q_x}(0,t) = 0$$
is replaced with a dynamic Robin condition;
$$b = b(t)$$
is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions. |
---|---|
AbstractList | The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition
$$bq(0,t) + {q_x}(0,t) = 0$$
is replaced with a dynamic Robin condition;
$$b = b(t)$$
is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions. The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition \[bq(0,t) + {q_x}(0,t) = 0\] is replaced with a dynamic Robin condition; \[b = b(t)\] is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions. |
Author | SMITH, D. A. TOH, W. Y. |
Author_xml | – sequence: 1 givenname: D. A. orcidid: 0000-0002-3525-3142 surname: SMITH fullname: SMITH, D. A. – sequence: 2 givenname: W. Y. surname: TOH fullname: TOH, W. Y. |
BookMark | eNp9kMtOwzAQRS1UJNrCB7CzxDowtpM4XqKKlxSJBbCOHD9UV6ndOgmof4_TsgKJ1cxozp3HXaCZD94gdE3glgDhd28gipILWlACAATYGZqTvBRZntNihuZTO5v6F2jR95uEMOBijuraeSMjNp-hGwcXPDb7UU5Jj1MxrA1ey85mXcLwlxvWWB-83DqF2zB6LeMBq-C1Oyou0bmVXW-ufuISfTw-vK-es_r16WV1X2eKcjZkpBWV5LnV1hhLTQuCgqaa0BxYzqBV6YfSVFq3tNCqpGBMJZQqSqs045ViS3RzmruLYT-afmg2YYw-rWxoRRgvoYQqUeREqRj6Phrb7KLbposbAs1kWvPHtKThvzTKDUc7hihd94_yG6RJcok |
CitedBy_id | crossref_primary_10_1111_sapm_12452 crossref_primary_10_1088_1402_4896_ad52c8 crossref_primary_10_1007_s10440_021_00456_9 crossref_primary_10_1016_j_physleta_2024_129408 crossref_primary_10_1002_mma_9919 |
Cites_doi | 10.1016/j.jcp.2018.08.005 10.1088/0951-7715/24/1/009 10.1007/s10958-012-1090-y 10.1098/rspa.2011.0478 10.1137/100809647 10.1017/S0956792518000475 10.1016/0022-247X(73)90147-9 10.1093/imamat/67.6.559 10.1016/j.amc.2018.07.061 10.1098/rspa.2013.0019 10.1093/imanum/dry085 10.1007/s00332-012-9150-5 10.57262/ade/1462298656 10.1111/sapm.12212 10.1137/1.9781611973822 10.1016/j.aml.2016.07.014 10.1088/0951-7715/18/4/019 10.1007/s00220-016-2690-z 10.1007/BF00828017 10.1016/j.jmaa.2018.05.064 10.1098/rspa.2013.0605 10.1007/978-3-642-14574-2 10.1093/imamat/hxv019 10.1017/S030500411100082X 10.1155/2008/347568 10.2307/20025584 10.1007/s40315-013-0038-7 10.1137/1.9780898717068 10.1137/110821871 10.1093/imamat/hxy030 10.1007/s00220-002-0681-8 10.1088/1751-8113/48/33/335001 10.1111/sapm.12070 10.1002/nme.1620191210 10.1007/s00707-015-1389-0 10.1016/0029-5493(72)90041-6 10.1137/18M1217309 10.1115/1.3450139 10.1098/rspa.2000.0671 10.1088/0951-7715/23/1/004 10.1017/S0305004103007205 10.1017/S0956792513000223 10.1007/BF00831837 10.4171/JST/123 10.1017/jfm.2019.194 10.1017/S0305004101005436 10.1007/BF00831276 10.1007/BF00828371 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792521000103 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 537 |
ExternalDocumentID | 10_1017_S0956792521000103 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB AAYXX ABBXD ABBZL ABEFU ABGDZ ABHFL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ABZUI ACAJB ACBMC ACDLN ACEJA ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACOZI ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AGQPQ AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AMVHM ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ GROUPED_DOAJ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c273t-1b98a74fdfeef2eb0920d2d12403430bc2106e8ddb25dc620ee89cc56fcd378c3 |
IEDL.DBID | 8FG |
ISSN | 0956-7925 |
IngestDate | Sat Sep 06 22:12:10 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c273t-1b98a74fdfeef2eb0920d2d12403430bc2106e8ddb25dc620ee89cc56fcd378c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3525-3142 |
PQID | 2813760608 |
PQPubID | 37129 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2813760608 crossref_primary_10_1017_S0956792521000103 crossref_citationtrail_10_1017_S0956792521000103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-00 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0956792521000103_ref55 S0956792521000103_ref10 S0956792521000103_ref54 S0956792521000103_ref57 S0956792521000103_ref13 S0956792521000103_ref56 S0956792521000103_ref59 S0956792521000103_ref15 S0956792521000103_ref58 S0956792521000103_ref17 S0956792521000103_ref16 S0956792521000103_ref51 S0956792521000103_ref52 Deconinck (S0956792521000103_ref14) 2020; 31 Becker (S0956792521000103_ref4) 1983; 19 S0956792521000103_ref21 S0956792521000103_ref23 S0956792521000103_ref25 S0956792521000103_ref28 Biondini (S0956792521000103_ref5) 2019; 77 S0956792521000103_ref20 Fokas (S0956792521000103_ref26) 2013; 24 Kilbas (S0956792521000103_ref38) 2002 S0956792521000103_ref18 Bobyk (S0956792521000103_ref6) 2012; 187 Fokas (S0956792521000103_ref19) 2002; 230 S0956792521000103_ref32 Chen (S0956792521000103_ref7) 2010; 59 S0956792521000103_ref34 S0956792521000103_ref37 S0956792521000103_ref36 S0956792521000103_ref39 S0956792521000103_ref9 S0956792521000103_ref31 Pinsky (S0956792521000103_ref50) 2011 Fokas (S0956792521000103_ref24) 2011; 24 Sheils (S0956792521000103_ref53) 2015; 48 Fokas (S0956792521000103_ref27) 2015; 26 Fokas (S0956792521000103_ref30) 2016; 21 Crowdy (S0956792521000103_ref12) 2018; 83 S0956792521000103_ref29 Ivanov (S0956792521000103_ref35) 1965; 9 S0956792521000103_ref44 S0956792521000103_ref43 S0956792521000103_ref46 S0956792521000103_ref45 S0956792521000103_ref47 S0956792521000103_ref49 Fokas (S0956792521000103_ref22) 2005; 18 Pelloni (S0956792521000103_ref48) 2016; 6 Govindarajan (S0956792521000103_ref33) 2019; 868 S0956792521000103_ref42 S0956792521000103_ref41 Baleanu (S0956792521000103_ref3) 2018; 339 S0956792521000103_ref8 S0956792521000103_ref1 S0956792521000103_ref2 Kozlov (S0956792521000103_ref40) 1970; 18 Crowdy (S0956792521000103_ref11) 2015; 80 |
References_xml | – ident: S0956792521000103_ref9 doi: 10.1016/j.jcp.2018.08.005 – volume: 24 start-page: 177 year: 2011 ident: S0956792521000103_ref24 article-title: Boundary-value problems for the stationary axisymmetric Einstein equations: a rotating disc publication-title: Nonlinearity doi: 10.1088/0951-7715/24/1/009 – volume: 187 start-page: 647 year: 2012 ident: S0956792521000103_ref6 article-title: Thermostressed state of a cylinder with thin near-surface layer having time-dependent thermophysical properties publication-title: J. Math. Sci. doi: 10.1007/s10958-012-1090-y – ident: S0956792521000103_ref2 doi: 10.1098/rspa.2011.0478 – ident: S0956792521000103_ref31 doi: 10.1137/100809647 – volume: 31 start-page: 57 year: 2020 ident: S0956792521000103_ref14 article-title: The time-dependent Schrödinger equation with piecewise constant potentials publication-title: E. J. Appl. Math. doi: 10.1017/S0956792518000475 – ident: S0956792521000103_ref57 doi: 10.1016/0022-247X(73)90147-9 – ident: S0956792521000103_ref20 doi: 10.1093/imamat/67.6.559 – volume: 339 start-page: 738 year: 2018 ident: S0956792521000103_ref3 article-title: Solving PDEs of fractional order using the unified transform method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.07.061 – volume-title: Fractional Integrals and Derivatives: Theory and Applications year: 2002 ident: S0956792521000103_ref38 – ident: S0956792521000103_ref47 doi: 10.1098/rspa.2013.0019 – ident: S0956792521000103_ref8 doi: 10.1093/imanum/dry085 – ident: S0956792521000103_ref25 doi: 10.1007/s00332-012-9150-5 – volume: 26 start-page: 887 year: 2015 ident: S0956792521000103_ref27 article-title: The unified method for the heat equation: II. Non-separable boundary conditions in two dimensions publication-title: J. Appl. Math. – volume: 59 start-page: 107 year: 2010 ident: S0956792521000103_ref7 article-title: Analytic closed solution for the heat conduction with time dependent heat convection coefficient at one boundary publication-title: Comput. Model. Eng. Sci. – ident: S0956792521000103_ref58 – volume: 21 start-page: 735 year: 2016 ident: S0956792521000103_ref30 article-title: Evolution PDEs and augmented eigenfunctions. Finite interval publication-title: Adv. Differ. Equations doi: 10.57262/ade/1462298656 – ident: S0956792521000103_ref49 doi: 10.1111/sapm.12212 – ident: S0956792521000103_ref39 – ident: S0956792521000103_ref29 doi: 10.1137/1.9781611973822 – ident: S0956792521000103_ref59 doi: 10.1016/j.aml.2016.07.014 – volume: 77 start-page: 689 year: 2019 ident: S0956792521000103_ref5 article-title: Evolution partial differential equations with discontinuous data publication-title: Quart. Appl. Math. – volume: 18 start-page: 1771 year: 2005 ident: S0956792521000103_ref22 article-title: The nonlinear Schrödinger equation on the half-line publication-title: Nonlinearity doi: 10.1088/0951-7715/18/4/019 – ident: S0956792521000103_ref15 doi: 10.1007/s00220-016-2690-z – ident: S0956792521000103_ref51 doi: 10.1007/BF00828017 – ident: S0956792521000103_ref42 doi: 10.1016/j.jmaa.2018.05.064 – ident: S0956792521000103_ref13 doi: 10.1098/rspa.2013.0605 – ident: S0956792521000103_ref17 doi: 10.1007/978-3-642-14574-2 – volume: 80 start-page: 1902 year: 2015 ident: S0956792521000103_ref11 article-title: A transform method for Laplace’s equation in multiply connected circular domains publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxv019 – ident: S0956792521000103_ref54 doi: 10.1017/S030500411100082X – ident: S0956792521000103_ref43 doi: 10.1155/2008/347568 – ident: S0956792521000103_ref37 doi: 10.2307/20025584 – ident: S0956792521000103_ref23 doi: 10.1007/s40315-013-0038-7 – ident: S0956792521000103_ref21 doi: 10.1137/1.9780898717068 – ident: S0956792521000103_ref16 doi: 10.1137/110821871 – ident: S0956792521000103_ref32 – volume: 83 start-page: 942 year: 2018 ident: S0956792521000103_ref12 article-title: A transform method for the biharmonic equation in multiply connected circular domains publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxy030 – volume: 230 start-page: 1 year: 2002 ident: S0956792521000103_ref19 article-title: Integrable nonlinear evolution equations on the half-line publication-title: Comm. Math. Phys. doi: 10.1007/s00220-002-0681-8 – volume: 48 start-page: 21 pp year: 2015 ident: S0956792521000103_ref53 article-title: Heat equation on a network using the Fokas method publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/48/33/335001 – ident: S0956792521000103_ref52 doi: 10.1111/sapm.12070 – volume: 19 start-page: 1871 year: 1983 ident: S0956792521000103_ref4 article-title: Heat diffusion with time-dependent convective boundary conditions publication-title: Int. J. Num. Methods Eng. doi: 10.1002/nme.1620191210 – ident: S0956792521000103_ref41 doi: 10.1007/s00707-015-1389-0 – ident: S0956792521000103_ref34 doi: 10.1016/0029-5493(72)90041-6 – ident: S0956792521000103_ref10 doi: 10.1137/18M1217309 – ident: S0956792521000103_ref44 doi: 10.1115/1.3450139 – ident: S0956792521000103_ref56 – volume-title: Paryial Differential Equations and Boundary-Value Problems year: 2011 ident: S0956792521000103_ref50 – ident: S0956792521000103_ref18 doi: 10.1098/rspa.2000.0671 – ident: S0956792521000103_ref46 doi: 10.1088/0951-7715/23/1/004 – ident: S0956792521000103_ref1 – ident: S0956792521000103_ref45 doi: 10.1017/S0305004103007205 – volume: 24 start-page: 857 year: 2013 ident: S0956792521000103_ref26 article-title: The unified method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792513000223 – volume: 9 start-page: 63 year: 1965 ident: S0956792521000103_ref35 article-title: On the calculation of the temperature field in solids with variable heat-transfer coefficients publication-title: J. Eng. Phys. doi: 10.1007/BF00831837 – volume: 6 start-page: 185 year: 2016 ident: S0956792521000103_ref48 article-title: Evolution PDEs and augmented eigenfunctions. Half line publication-title: J. Spectr. Theory doi: 10.4171/JST/123 – volume: 868 start-page: 428 year: 2019 ident: S0956792521000103_ref33 article-title: Accurate solution method for the Maxey-Riley equation, and the effects of Basset history publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.194 – ident: S0956792521000103_ref28 doi: 10.1017/S0305004101005436 – ident: S0956792521000103_ref36 doi: 10.1007/BF00831276 – volume: 18 start-page: 100 year: 1970 ident: S0956792521000103_ref40 article-title: Solution of heat-conduction problem with variable heat-exchange coefficient publication-title: J. Eng. Phys. doi: 10.1007/BF00828371 – ident: S0956792521000103_ref55 |
SSID | ssj0013079 |
Score | 2.3159604 |
Snippet | The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 505 |
SubjectTerms | Applied mathematics Boundary conditions Differential equations Dirichlet problem Fourier transforms Linear evolution equations Mathematical analysis Ordinary differential equations Thermodynamics |
Title | Linear evolution equations on the half-line with dynamic boundary conditions |
URI | https://www.proquest.com/docview/2813760608 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHDl4EoJpmqTpSVScQ9wQcbBbaZMXPIz9VvC_N2nTDRF2bJoemrzkfe_l5fsQutZgrHShDxFGAOFS5CTXwImD2hZMnIKwPqHfH8jekL-MxCgk3JahrLLeE8uN2ky1z5HfMhX5-g1J1d1sTrxqlD9dDRIau6gZOU_j7Vx1nzenCHTDtZekTNSnmiVltGv0bcwnuKNaM6v2S3-35dLXdA_RQQCJ-L6a1SO0A5NjtN9fM6wuT9CrCyKdkWL4DraDYV6xdi-xe3A98Wc-tsSjSOyTrdhU2vO4KIWUFj_YRcKmKtg6RcPu08djjwRlBKId3FiRqEhVnnBrLIBlUNCUUcNM5Mn1eEwL7f5KgjKmYMJoySiASrUW0moTJ0rHZ6gxmU7gHGHhIJjWMja6KLgSaU7BJA5T-eXIUy5aiNbjkulAG-7VK8ZZVR-WZP-GsoVu1p_MKs6MbZ3b9WBnYfkss81kX2x_fYn2mL-PUKZF2qixWnzBlUMJq6JTmkIHNR-eBm_vv3MmukY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCp2fIALkkXq2FkOCLGq0EUItVJvIbHH4lCVtimg_hTfiJ2FCiH11mMcJ1LGE8_q9wBOJSrtmdCHCiWQck_ENJbIqXG1NSo3RKFtQr_Z8mod_tQV3QX4Ls_C2LbKck_MNmr1Lm2O_IIFVdu_4TnB1WBILWuUra6WFBq5WtRx8mVCtvTy8c6s7xljD_ft2xotWAWoNKZ6TKtJGMQ-10ojaoaJEzJHMVW1wHTcdRJpgiAPA6USJpT0mIMYhFIKT0vl-oF0zXsXYYnbE60VWLq5bz2_TOsWzhTdzw-ZKOuoGUi1GbRjzKbUqyVLV2kJ_xqCzLo9rMNa4ZaS61yPNmAB-5uw2vzFdE23oGHCVvP9BD8LbSU4zHHCU2IuzEzyFvc0tX4rseldonK2e5Jk1E2jCTGxt8pbxLahMxep7UCl_97HXSDCOH1Seq6SScIDEcYOKt94cXYD4CEXe-CUcolkAVRu-TJ6Ud6R5kf_RLkH57-PDHKUjlmTD0thR8UPm0ZT9dqfffsElmvtZiNqPLbqB7DC7GmILClzCJXx6AOPjI8yTo4LxSDwOm9d_AFMNPgr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+evolution+equations+on+the+half-line+with+dynamic+boundary+conditions&rft.jtitle=European+journal+of+applied+mathematics&rft.au=SMITH%2C+D.+A.&rft.au=TOH%2C+W.+Y.&rft.date=2022-06-01&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=33&rft.issue=3&rft.spage=505&rft.epage=537&rft_id=info:doi/10.1017%2FS0956792521000103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0956792521000103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |