RSCOEWR: Radical-Based Sentiment Classification of Online Education Website Reviews
Abstract Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of...
Saved in:
Published in | Computer journal Vol. 66; no. 12; pp. 3000 - 3014 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
14.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4620 1460-2067 |
DOI | 10.1093/comjnl/bxac144 |
Cover
Loading…
Abstract | Abstract
Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR. |
---|---|
AbstractList | Abstract
Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR. Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR. |
Author | Li, Jie Sun, GuoYing |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie email: lijiewaityou@163.com – sequence: 2 givenname: GuoYing surname: Sun fullname: Sun, GuoYing email: sgywaityou@163.com |
BookMark | eNqFkM1Lw0AQxRepYFu9et6rh7Szm-2u8aYhVaEQSJQew2Y_YEu6KdnUj__eaHMSxMvM8IbfPObN0MS33iB0TWBBIImXqt3vfLOsP6QijJ2hKWEcIgpcTNAUgEDEOIULNAthBwAUEj5FZVGmebYt7nAhtVOyiR5kMBqXxvduPxScNjIEZ4dd71qPW4tz3zhvcKaPo7Y1dXC9wYV5c-Y9XKJzK5tgrsY-R6_r7CV9ijb543N6v4kUFXEfEdDEKGAUQDMi6EqC4DXXsUjgdsVrMBYSbQc5sUAZoWSYWLxKQMRCMhXP0eJ0V3VtCJ2x1aFze9l9VgSq70iqUyTVGMkAsF-Acv3PC30nXfM3dnPC2uPhP4svAz94Pg |
CitedBy_id | crossref_primary_10_1093_comjnl_bxae068 crossref_primary_10_1093_comjnl_bxae061 crossref_primary_10_3390_e25050794 |
Cites_doi | 10.1109/ACCESS.2017.2785229 10.1109/ICASSP.2013.6638346 10.1016/j.knosys.2022.108586 10.3115/v1/P14-1062 10.1109/WACV.2016.7477679 10.1109/MIS.2020.3042253 10.1177/0165551516677911 10.1002/cem.873 10.1016/j.eswa.2016.03.045 10.1016/j.eswa.2015.07.028 10.1155/2018/2497471 10.1038/nbt1206-1565 10.1016/j.im.2016.04.005 10.1016/j.knosys.2021.107659 10.1016/j.neucom.2019.01.078 10.1016/j.chb.2018.12.029 10.1109/SWS.2010.5607460 10.1155/2019/5901087 10.15837/ijccc.2018.1.3176 10.1016/j.neucom.2020.01.006 10.1109/MIS.2021.3093660 10.1145/2623330.2623358 10.2747/1538-7216.47.2.129 10.1177/0165551515613226 10.1109/MIS.2021.3093659 10.4249/scholarpedia.1883 10.1016/j.eswa.2018.09.009 10.1016/j.ipm.2017.02.008 10.1109/FG.2011.5771366 10.1109/ACCESS.2021.3049734 10.1007/BF00351935 10.1016/S0164-1212(99)00062-X 10.1109/ICCIS.2008.4670735 10.1162/neco.1997.9.8.1735 10.1002/cae.22253 10.18653/v1/D15-1167 10.1080/10584609.1993.9962981 10.1109/ACCESS.2019.2945911 10.1007/s13042-019-00942-5 10.1109/ICME.2014.6890166 10.1002/cpe.5909 10.1002/cae.22179 |
ContentType | Journal Article |
Copyright | The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
Copyright_xml | – notice: The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
DBID | AAYXX CITATION |
DOI | 10.1093/comjnl/bxac144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1460-2067 |
EndPage | 3014 |
ExternalDocumentID | 10_1093_comjnl_bxac144 10.1093/comjnl/bxac144 |
GroupedDBID | -E4 -~X .2P .DC .I3 0B8 0R~ 123 18M 1OL 1TH 29F 3R3 4.4 41~ 48X 5VS 5WA 6J9 6TJ 70D 85S 9M8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAYOK ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABSMQ ABTAH ABVGC ABXVV ABZBJ ACBEA ACFRR ACGFS ACGOD ACIWK ACNCT ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMLS ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGMDO AGSYK AHXPO AI. AIDUJ AIJHB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ASAOO ATDFG ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD F9B FA8 FLIZI FLUFQ FOEOM GAUVT GJXCC H13 H5~ HAR HW0 HZ~ H~9 IOX J21 JAVBF KBUDW KOP KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZO SC5 TAE TJP TN5 VH1 VOH WH7 WHG X7H XJT XOL XSW YAYTL YKOAZ YXANX ZHY ZKX ZY4 ~91 AAYXX ACUXJ ADYJX AGORE AHGBF AJBYB ALXQX ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c273t-10d1ec04200d41725a076b6d3790856b0ef09df5a09f024121a0943590737a4c3 |
ISSN | 0010-4620 |
IngestDate | Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 02:55:10 EDT 2025 Wed Mar 05 08:08:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | word-level online education website radical-level sentiment classification course reviews |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c273t-10d1ec04200d41725a076b6d3790856b0ef09df5a09f024121a0943590737a4c3 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1093_comjnl_bxac144 crossref_citationtrail_10_1093_comjnl_bxac144 oup_primary_10_1093_comjnl_bxac144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-14 |
PublicationDateYYYYMMDD | 2023-12-14 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Computer journal |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kalchbrenner (2023121811454791300_ref58) 2014 Quan (2023121811454791300_ref37) 2009 Onan (2023121811454791300_ref42) 2016; 57 Xu (2023121811454791300_ref55) 2022; 245 Li (2023121811454791300_ref56) 2020; 387 Onan (2023121811454791300_ref26) 2020; 28 Bracewell (2023121811454791300_ref39) 2008 (2023121811454791300_ref24) 2017 Onan (2023121811454791300_ref44) 2017; 43 Yang (2023121811454791300_ref62) 2016 Noble (2023121811454791300_ref12) 2006; 24 Wright (2023121811454791300_ref15) 1995; 117 Qiao (2023121811454791300_ref35) 2019; 10 Wei-dong (2023121811454791300_ref7) 2018; 13 Chiong (2023121811454791300_ref38) 2021; 36 Onan (2023121811454791300_ref25) 2021 Zheng (2023121811454791300_ref23) 2014 Liu (2023121811454791300_ref61) 2019; 337 Cavnar (2023121811454791300_ref8) 1994 O’Loughlin (2023121811454791300_ref3) 2006; 47 Ramos (2023121811454791300_ref11) 2003 Hochreiter (2023121811454791300_ref31) 1997; 9 Pascanu (2023121811454791300_ref30) 2013 Kim (2023121811454791300_ref21) 2013 Ranganathan (2023121811454791300_ref22) 2016 Onan (2023121811454791300_ref19) 2021; 33 Onan (2023121811454791300_ref41) 2019; 2019 Xu (2023121811454791300_ref36) 2015; 42 Li (2023121811454791300_ref40) 2010 Dhall (2023121811454791300_ref45) 2011 Medsker (2023121811454791300_ref28) 2001; 5 Onan (2023121811454791300_ref43) 2018; 44 Slav (2023121811454791300_ref9) 2011 Ostermann (2023121811454791300_ref5) 2011 Turner (2023121811454791300_ref17) 1999; 49 Tripathi (2023121811454791300_ref51) 2017 Luo (2023121811454791300_ref34) 2017; 6 Onan (2023121811454791300_ref14) 2018; 2018 Onan (2023121811454791300_ref54) 2022; 34 Deepanway (2023121811454791300_ref53) 2019 Manas (2023121811454791300_ref48) 2020 Wang (2023121811454791300_ref59) 2016 Avvenuti (2023121811454791300_ref4) 2014 Tao (2023121811454791300_ref57) 2019 Majumder (2023121811454791300_ref29) 2019 Dai (2023121811454791300_ref64) 2022; 236 Rao (2023121811454791300_ref49) 2016; 53 Onan (2023121811454791300_ref27) 2021; 29 Edelman (2023121811454791300_ref6) 1993; 10 Sander (2023121811454791300_ref52) 2011; 3 Onan (2023121811454791300_ref47) 2017; 53 Karttunen (2023121811454791300_ref10) 1977; 1 Peterson (2023121811454791300_ref13) 2009; 4 Onan (2023121811454791300_ref20) 2019; 9 Zhou (2023121811454791300_ref33) 2013 Onan (2023121811454791300_ref18) 2019; 7 D’Andrea (2023121811454791300_ref2) 2019; 116 Myles (2023121811454791300_ref16) 2004; 18 Chowdhary, KR1442 (2023121811454791300_ref1) 2020 Chatterjee (2023121811454791300_ref60) 2019; 93 Tang (2023121811454791300_ref63) 2015 Dragoni (2023121811454791300_ref46) 2022; 37 Junyoung (2023121811454791300_ref32) 2014 Liu (2023121811454791300_ref50) 2021; 36 |
References_xml | – start-page: 1480 volume-title: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies year: 2016 ident: 2023121811454791300_ref62 article-title: Hierarchical attention networks for document classification – start-page: 6818 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2019 ident: 2023121811454791300_ref29 article-title: Dialoguernn: An attentive rnn for emotion detection in conversations – volume: 3 start-page: 18 year: 2011 ident: 2023121811454791300_ref52 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE transactions on affective computing – start-page: 1310 volume-title: International conference on machine learning year: 2013 ident: 2023121811454791300_ref30 article-title: On the difficulty of training recurrent neural networks – volume: 6 start-page: 5705 year: 2017 ident: 2023121811454791300_ref34 article-title: Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2785229 – start-page: 3687 volume-title: 2013 IEEE international conference on acoustics, speech and signal processing year: 2013 ident: 2023121811454791300_ref21 article-title: Deep learning for robust feature generation in audiovisual emotion recognition doi: 10.1109/ICASSP.2013.6638346 – volume: 245 year: 2022 ident: 2023121811454791300_ref55 article-title: Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.108586 – year: 2014 ident: 2023121811454791300_ref58 article-title: A convolutional neural network for modelling sentences doi: 10.3115/v1/P14-1062 – start-page: 1 volume-title: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) year: 2016 ident: 2023121811454791300_ref22 article-title: Multimodal emotion recognition using deep learning architectures doi: 10.1109/WACV.2016.7477679 – volume: 36 start-page: 122 year: 2021 ident: 2023121811454791300_ref50 article-title: GSMNet: Global Semantic Memory Network for Aspect-Level Sentiment Classification publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2020.3042253 – start-page: 161175 volume-title: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval year: 1994 ident: 2023121811454791300_ref8 article-title: N-gram-based text categorization – volume: 44 start-page: 28 year: 2018 ident: 2023121811454791300_ref43 article-title: An ensemble scheme based on language function analysis and feature engineering for text genre classification publication-title: Journal of Information Science doi: 10.1177/0165551516677911 – start-page: 1446 volume-title: Proceedings of the 2009 conference on empirical methods in natural language processing year: 2009 ident: 2023121811454791300_ref37 article-title: Construction of a blog emotion corpus for Chinese emotional expression analysis – year: 2011 ident: 2023121811454791300_ref9 article-title: A universal part-of-speech tagset – year: 2020 ident: 2023121811454791300_ref48 article-title: Speech emotion recognition using support vector machine – volume: 18 start-page: 275 year: 2004 ident: 2023121811454791300_ref16 article-title: An introduction to decision tree modeling publication-title: Journal of Chemometrics: A Journal of the Chemometrics Society doi: 10.1002/cem.873 – volume: 57 start-page: 232 year: 2016 ident: 2023121811454791300_ref42 article-title: Ensemble of keyword extraction methods and classifiers in text classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.045 – volume: 42 start-page: 8745 year: 2015 ident: 2023121811454791300_ref36 article-title: Hierarchical emotion classification and emotion component analysis on Chinese micro-blog posts publication-title: Expert systems with applications doi: 10.1016/j.eswa.2015.07.028 – volume: 2018 year: 2018 ident: 2023121811454791300_ref14 article-title: Biomedical text categorization based on ensemble pruning and optimized topic modelling publication-title: Comput. Math. Methods Med. doi: 10.1155/2018/2497471 – volume: 24 start-page: 1565 year: 2006 ident: 2023121811454791300_ref12 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 53 start-page: 978 year: 2016 ident: 2023121811454791300_ref49 article-title: Social emotion classification of short text via topic-level maximum entropy model publication-title: Inf. Manage. doi: 10.1016/j.im.2016.04.005 – volume: 236 year: 2022 ident: 2023121811454791300_ref64 article-title: Graph fusion network for text classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107659 – start-page: 225 volume-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics year: 2016 ident: 2023121811454791300_ref59 article-title: Dimensional sentiment analysis using a regional CNN-LSTM model – volume: 337 start-page: 325 year: 2019 ident: 2023121811454791300_ref61 article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 93 start-page: 309 year: 2019 ident: 2023121811454791300_ref60 article-title: Understanding emotions in text using deep learning and big data publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.12.029 – volume-title: Twenty-ninth IAAI conference year: 2017 ident: 2023121811454791300_ref24 article-title: Using deep and convolutional neural networks for accurate emotion classification on deap dataset – volume: 34 start-page: 2098 year: 2022 ident: 2023121811454791300_ref54 article-title: Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification publication-title: Concurrency and Computation: Practice and Experience – start-page: 170 volume-title: 2010 IEEE 2nd Symposium on Web Society year: 2010 ident: 2023121811454791300_ref40 article-title: Chinese text emotion classification based on emotion dictionary doi: 10.1109/SWS.2010.5607460 – volume: 2019 year: 2019 ident: 2023121811454791300_ref41 article-title: Consensus clustering-based undersampling approach to imbalanced learning publication-title: Scientific Programming doi: 10.1155/2019/5901087 – volume: 13 start-page: 129 year: 2018 ident: 2023121811454791300_ref7 article-title: Tracing public opinion propagation and emotional evolution based on public emergencies in social networks publication-title: International Journal of Computers Communications & Control doi: 10.15837/ijccc.2018.1.3176 – volume: 387 start-page: 63 year: 2020 ident: 2023121811454791300_ref56 article-title: Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.006 – start-page: 29 volume-title: Proceedings of the first instructional conference on machine learning year: 2003 ident: 2023121811454791300_ref11 article-title: Using tf-idf to determine word relevance in document queries – volume: 36 start-page: 99 year: 2021 ident: 2023121811454791300_ref38 article-title: Combining sentiment lexicons and content-based features for depression detection publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2021.3093660 – year: 2019 ident: 2023121811454791300_ref53 article-title: Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation – start-page: 1749 volume-title: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining year: 2014 ident: 2023121811454791300_ref4 article-title: Ears (earthquake alert and report system) a real time decision support system for earthquake crisis management doi: 10.1145/2623330.2623358 – volume: 47 start-page: 129 year: 2006 ident: 2023121811454791300_ref3 article-title: The geopolitical orientations of ordinary Russians: A public opinion analysis publication-title: Eurasian Geogr. Econ. doi: 10.2747/1538-7216.47.2.129 – volume: 43 start-page: 25 year: 2017 ident: 2023121811454791300_ref44 article-title: A feature selection model based on genetic rank aggregation for text sentiment classification publication-title: Journal of Information Science doi: 10.1177/0165551515613226 – volume: 37 start-page: 103 year: 2022 ident: 2023121811454791300_ref46 article-title: OntoSenticNet 2: Enhancing Reasoning Within Sentiment Analysis publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2021.3093659 – volume: 4 start-page: 1883 year: 2009 ident: 2023121811454791300_ref13 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 116 start-page: 209 year: 2019 ident: 2023121811454791300_ref2 article-title: Monitoring the public opinion about the vaccination topic from tweets analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.009 – volume: 53 start-page: 814 year: 2017 ident: 2023121811454791300_ref47 article-title: A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2017.02.008 – start-page: 878 volume-title: 2011 IEEE International Conference on Automatic Face and Gesture Recognition (FG) year: 2011 ident: 2023121811454791300_ref45 article-title: Emotion recognition using PHOG and LPQ features doi: 10.1109/FG.2011.5771366 – start-page: 5125 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2019 ident: 2023121811454791300_ref57 article-title: A radical-aware attention-based model for chinese text classification – volume: 5 start-page: 64 year: 2001 ident: 2023121811454791300_ref28 article-title: Recurrent neural networks publication-title: Design and Applications – volume: 9 start-page: 7701 year: 2019 ident: 2023121811454791300_ref20 article-title: Topic-enriched word embeddings for sarcasm identification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049734 – start-page: 603 year: 2020 ident: 2023121811454791300_ref1 article-title: Natural language processing publication-title: Fundamentals of artificial intelligence – volume: 1 start-page: 3 year: 1977 ident: 2023121811454791300_ref10 article-title: Syntax and semantics of questions publication-title: Linguistics and philosophy doi: 10.1007/BF00351935 – volume: 49 start-page: 3 year: 1999 ident: 2023121811454791300_ref17 article-title: A conceptual basis for feature engineering publication-title: Journal of Systems and Software doi: 10.1016/S0164-1212(99)00062-X – start-page: 1385 volume-title: 2008 IEEE Conference on Cybernetics and Intelligent Systems year: 2008 ident: 2023121811454791300_ref39 article-title: Semi-automatic creation of an emotion dictionary using wordnet and its evaluation doi: 10.1109/ICCIS.2008.4670735 – start-page: 1 volume-title: Proceedings of AGILE year: 2011 ident: 2023121811454791300_ref5 article-title: A conceptual workflow for automatically assessing the quality of volunteered geographic information for crisis management – volume: 117 start-page: 2395 year: 1995 ident: 2023121811454791300_ref15 article-title: Logistic regression publication-title: American Psychological Association – volume: 9 start-page: 1735 year: 1997 ident: 2023121811454791300_ref31 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 29 start-page: 572 year: 2021 ident: 2023121811454791300_ref27 article-title: Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach publication-title: Computer Applications in Engineering Education doi: 10.1002/cae.22253 – start-page: 293 volume-title: Computer science on-line conference year: 2021 ident: 2023121811454791300_ref25 article-title: A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification – start-page: 207 volume-title: Proceedings of the 54th annual meeting of the association for computational linguistics year: 2013 ident: 2023121811454791300_ref33 article-title: Attention-based bidirectional long short-term memory networks for relation classification – start-page: 1422 volume-title: Proceedings of the 2015 conference on empirical methods in natural language processing year: 2015 ident: 2023121811454791300_ref63 article-title: Document modeling with gated recurrent neural network for sentiment classification doi: 10.18653/v1/D15-1167 – volume: 10 start-page: 231 year: 1993 ident: 2023121811454791300_ref6 article-title: Contestable categories and public opinion publication-title: Polit. Commun. doi: 10.1080/10584609.1993.9962981 – volume: 7 start-page: 145614 year: 2019 ident: 2023121811454791300_ref18 article-title: Two-stage topic extraction model for bibliometric data analysis based on word embeddings and clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2945911 – volume-title: Twenty-ninth IAAI conference year: 2017 ident: 2023121811454791300_ref51 article-title: Using deep and convolutional neural networks for accurate emotion classification on deap dataset – volume: 10 start-page: 3521 year: 2019 ident: 2023121811454791300_ref35 article-title: Word-character attention model for Chinese text classification publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-00942-5 – start-page: 1 volume-title: 2014 IEEE international conference on multimedia and expo (ICME) year: 2014 ident: 2023121811454791300_ref23 article-title: EEG-based emotion classification using deep belief networks doi: 10.1109/ICME.2014.6890166 – year: 2014 ident: 2023121811454791300_ref32 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 33 year: 2021 ident: 2023121811454791300_ref19 article-title: Sentiment analysis on product reviews based on weighted word embeddings and deep neural networks publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5909 – volume: 28 start-page: 117 year: 2020 ident: 2023121811454791300_ref26 article-title: Mining opinions from instructor evaluation reviews: a deep learning approach publication-title: Computer Applications in Engineering Education doi: 10.1002/cae.22179 |
SSID | ssj0002096 |
Score | 2.3831432 |
Snippet | Abstract
Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries... Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3000 |
Title | RSCOEWR: Radical-Based Sentiment Classification of Online Education Website Reviews |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFA5aX3xR94Zd3SUswj5IbGaSmTb75rquRXQXrNLuU0kyCbiUVrQF8dd7Msmk06WLl5dhCOmhzfn4zknPDaE9w7jMJGckLQpLuE0EER2jSZGL1CqrtOWuUPj8V9694qeDbDCf31lWl0zVgX5YWlfyGq3CGujVVcm-QLNRKCzAO-gXnqBheD5Lxxe9o9_H_YsyqU2WARfyHawSuJAuB6gM85dDL106UHQNfXPReWbHft8oF0IOYYK7urtazXzYr38dl75T5gCcXkdU9GYle53MJn8qWxj-SkiZS8vwJZwVPQIp8zz1gRLjGZHnlLge73XK9INSKmikNQJklNKaMXUXtqVE7ZtYwdH_HY_gRd1LnfhGkIs9sf-xVTGD0MfO2dBLGIbPr6K1FK4LQNBrhz_Oz3rRJqe0nNQWf2Bs38laXkIrSFhwT1zJY83buNxCG-GagA-9zt-gFTN-izYrdeDAyO9QL0DgG14AAI4AwIsAwBOLPQBwBAAOAMABAO_R1c_jy6MuCXMyiAbncwqWtEiMBvaltODgkGaStnOVF6wtwKHOFTWWisLCsrDgkiVpIl0-aSaA3tuSa_YBNcaTsdlGWGVSgddX6ExJLjRcPrnOBdOsnciOZrqJSHU8Qx2ayLtZJqPhcoU00de4_8a3T_nvzi9w2k9s-vhscTtofY7wXdSY3s7MJ3Afp-pzwMYjphRzvQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RSCOEWR%3A+Radical-Based+Sentiment+Classification+of+Online+Education+Website+Reviews&rft.jtitle=Computer+journal&rft.au=Li%2C+Jie&rft.au=Sun%2C+GuoYing&rft.date=2023-12-14&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=66&rft.issue=12&rft.spage=3000&rft.epage=3014&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxac144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxac144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon |