RSCOEWR: Radical-Based Sentiment Classification of Online Education Website Reviews

Abstract Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of...

Full description

Saved in:
Bibliographic Details
Published inComputer journal Vol. 66; no. 12; pp. 3000 - 3014
Main Authors Li, Jie, Sun, GuoYing
Format Journal Article
LanguageEnglish
Published Oxford University Press 14.12.2023
Subjects
Online AccessGet full text
ISSN0010-4620
1460-2067
DOI10.1093/comjnl/bxac144

Cover

Loading…
Abstract Abstract Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR.
AbstractList Abstract Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR.
Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the world are increasing the popularity of online education, which makes the research on sentiment classification of course reviews of online education websites an important research direction in natural language processing tasks. Traditional sentiment classification models are mostly based on English. Unlike English, Chinese characters are based on pictograms. Radicals of Chinese characters can also express certain semantics, and characters with the same radical often have similar meanings. Therefore, RSCOEWR, a word-level and radical-level based sentiment classification model for course reviews of Chinese online education websites is proposed, which solves the problem of data sparsity of reviews by feature extraction of multiple dimensions. In addition, a deep learning model based on CNN, BILSTM, BIGRU and Attention is constructed to solve the problem of high dimension and assigning the same attention to context of traditional sentiment classification model. Extensive comparative experiment results show that RSCOEWR outperforms the state-of-the-art sentiment classification models, and the experimental results on public Chinese sentiment classification datasets prove the generalization ability of RSCOEWR.
Author Li, Jie
Sun, GuoYing
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: lijiewaityou@163.com
– sequence: 2
  givenname: GuoYing
  surname: Sun
  fullname: Sun, GuoYing
  email: sgywaityou@163.com
BookMark eNqFkM1Lw0AQxRepYFu9et6rh7Szm-2u8aYhVaEQSJQew2Y_YEu6KdnUj__eaHMSxMvM8IbfPObN0MS33iB0TWBBIImXqt3vfLOsP6QijJ2hKWEcIgpcTNAUgEDEOIULNAthBwAUEj5FZVGmebYt7nAhtVOyiR5kMBqXxvduPxScNjIEZ4dd71qPW4tz3zhvcKaPo7Y1dXC9wYV5c-Y9XKJzK5tgrsY-R6_r7CV9ijb543N6v4kUFXEfEdDEKGAUQDMi6EqC4DXXsUjgdsVrMBYSbQc5sUAZoWSYWLxKQMRCMhXP0eJ0V3VtCJ2x1aFze9l9VgSq70iqUyTVGMkAsF-Acv3PC30nXfM3dnPC2uPhP4svAz94Pg
CitedBy_id crossref_primary_10_1093_comjnl_bxae068
crossref_primary_10_1093_comjnl_bxae061
crossref_primary_10_3390_e25050794
Cites_doi 10.1109/ACCESS.2017.2785229
10.1109/ICASSP.2013.6638346
10.1016/j.knosys.2022.108586
10.3115/v1/P14-1062
10.1109/WACV.2016.7477679
10.1109/MIS.2020.3042253
10.1177/0165551516677911
10.1002/cem.873
10.1016/j.eswa.2016.03.045
10.1016/j.eswa.2015.07.028
10.1155/2018/2497471
10.1038/nbt1206-1565
10.1016/j.im.2016.04.005
10.1016/j.knosys.2021.107659
10.1016/j.neucom.2019.01.078
10.1016/j.chb.2018.12.029
10.1109/SWS.2010.5607460
10.1155/2019/5901087
10.15837/ijccc.2018.1.3176
10.1016/j.neucom.2020.01.006
10.1109/MIS.2021.3093660
10.1145/2623330.2623358
10.2747/1538-7216.47.2.129
10.1177/0165551515613226
10.1109/MIS.2021.3093659
10.4249/scholarpedia.1883
10.1016/j.eswa.2018.09.009
10.1016/j.ipm.2017.02.008
10.1109/FG.2011.5771366
10.1109/ACCESS.2021.3049734
10.1007/BF00351935
10.1016/S0164-1212(99)00062-X
10.1109/ICCIS.2008.4670735
10.1162/neco.1997.9.8.1735
10.1002/cae.22253
10.18653/v1/D15-1167
10.1080/10584609.1993.9962981
10.1109/ACCESS.2019.2945911
10.1007/s13042-019-00942-5
10.1109/ICME.2014.6890166
10.1002/cpe.5909
10.1002/cae.22179
ContentType Journal Article
Copyright The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
Copyright_xml – notice: The British Computer Society 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
DBID AAYXX
CITATION
DOI 10.1093/comjnl/bxac144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1460-2067
EndPage 3014
ExternalDocumentID 10_1093_comjnl_bxac144
10.1093/comjnl/bxac144
GroupedDBID -E4
-~X
.2P
.DC
.I3
0B8
0R~
123
18M
1OL
1TH
29F
3R3
4.4
41~
48X
5VS
5WA
6J9
6TJ
70D
85S
9M8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYOK
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABVGC
ABXVV
ABZBJ
ACBEA
ACFRR
ACGFS
ACGOD
ACIWK
ACNCT
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMLS
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGMDO
AGSYK
AHXPO
AI.
AIDUJ
AIJHB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ASAOO
ATDFG
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
F9B
FA8
FLIZI
FLUFQ
FOEOM
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
H~9
IOX
J21
JAVBF
KBUDW
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SC5
TAE
TJP
TN5
VH1
VOH
WH7
WHG
X7H
XJT
XOL
XSW
YAYTL
YKOAZ
YXANX
ZHY
ZKX
ZY4
~91
AAYXX
ACUXJ
ADYJX
AGORE
AHGBF
AJBYB
ALXQX
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c273t-10d1ec04200d41725a076b6d3790856b0ef09df5a09f024121a0943590737a4c3
ISSN 0010-4620
IngestDate Thu Apr 24 23:07:54 EDT 2025
Tue Jul 01 02:55:10 EDT 2025
Wed Mar 05 08:08:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords word-level
online education website
radical-level
sentiment classification
course reviews
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c273t-10d1ec04200d41725a076b6d3790856b0ef09df5a09f024121a0943590737a4c3
PageCount 15
ParticipantIDs crossref_primary_10_1093_comjnl_bxac144
crossref_citationtrail_10_1093_comjnl_bxac144
oup_primary_10_1093_comjnl_bxac144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-14
PublicationDateYYYYMMDD 2023-12-14
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-14
  day: 14
PublicationDecade 2020
PublicationTitle Computer journal
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kalchbrenner (2023121811454791300_ref58) 2014
Quan (2023121811454791300_ref37) 2009
Onan (2023121811454791300_ref42) 2016; 57
Xu (2023121811454791300_ref55) 2022; 245
Li (2023121811454791300_ref56) 2020; 387
Onan (2023121811454791300_ref26) 2020; 28
Bracewell (2023121811454791300_ref39) 2008
(2023121811454791300_ref24) 2017
Onan (2023121811454791300_ref44) 2017; 43
Yang (2023121811454791300_ref62) 2016
Noble (2023121811454791300_ref12) 2006; 24
Wright (2023121811454791300_ref15) 1995; 117
Qiao (2023121811454791300_ref35) 2019; 10
Wei-dong (2023121811454791300_ref7) 2018; 13
Chiong (2023121811454791300_ref38) 2021; 36
Onan (2023121811454791300_ref25) 2021
Zheng (2023121811454791300_ref23) 2014
Liu (2023121811454791300_ref61) 2019; 337
Cavnar (2023121811454791300_ref8) 1994
O’Loughlin (2023121811454791300_ref3) 2006; 47
Ramos (2023121811454791300_ref11) 2003
Hochreiter (2023121811454791300_ref31) 1997; 9
Pascanu (2023121811454791300_ref30) 2013
Kim (2023121811454791300_ref21) 2013
Ranganathan (2023121811454791300_ref22) 2016
Onan (2023121811454791300_ref19) 2021; 33
Onan (2023121811454791300_ref41) 2019; 2019
Xu (2023121811454791300_ref36) 2015; 42
Li (2023121811454791300_ref40) 2010
Dhall (2023121811454791300_ref45) 2011
Medsker (2023121811454791300_ref28) 2001; 5
Onan (2023121811454791300_ref43) 2018; 44
Slav (2023121811454791300_ref9) 2011
Ostermann (2023121811454791300_ref5) 2011
Turner (2023121811454791300_ref17) 1999; 49
Tripathi (2023121811454791300_ref51) 2017
Luo (2023121811454791300_ref34) 2017; 6
Onan (2023121811454791300_ref14) 2018; 2018
Onan (2023121811454791300_ref54) 2022; 34
Deepanway (2023121811454791300_ref53) 2019
Manas (2023121811454791300_ref48) 2020
Wang (2023121811454791300_ref59) 2016
Avvenuti (2023121811454791300_ref4) 2014
Tao (2023121811454791300_ref57) 2019
Majumder (2023121811454791300_ref29) 2019
Dai (2023121811454791300_ref64) 2022; 236
Rao (2023121811454791300_ref49) 2016; 53
Onan (2023121811454791300_ref27) 2021; 29
Edelman (2023121811454791300_ref6) 1993; 10
Sander (2023121811454791300_ref52) 2011; 3
Onan (2023121811454791300_ref47) 2017; 53
Karttunen (2023121811454791300_ref10) 1977; 1
Peterson (2023121811454791300_ref13) 2009; 4
Onan (2023121811454791300_ref20) 2019; 9
Zhou (2023121811454791300_ref33) 2013
Onan (2023121811454791300_ref18) 2019; 7
D’Andrea (2023121811454791300_ref2) 2019; 116
Myles (2023121811454791300_ref16) 2004; 18
Chowdhary, KR1442 (2023121811454791300_ref1) 2020
Chatterjee (2023121811454791300_ref60) 2019; 93
Tang (2023121811454791300_ref63) 2015
Dragoni (2023121811454791300_ref46) 2022; 37
Junyoung (2023121811454791300_ref32) 2014
Liu (2023121811454791300_ref50) 2021; 36
References_xml – start-page: 1480
  volume-title: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  year: 2016
  ident: 2023121811454791300_ref62
  article-title: Hierarchical attention networks for document classification
– start-page: 6818
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2019
  ident: 2023121811454791300_ref29
  article-title: Dialoguernn: An attentive rnn for emotion detection in conversations
– volume: 3
  start-page: 18
  year: 2011
  ident: 2023121811454791300_ref52
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE transactions on affective computing
– start-page: 1310
  volume-title: International conference on machine learning
  year: 2013
  ident: 2023121811454791300_ref30
  article-title: On the difficulty of training recurrent neural networks
– volume: 6
  start-page: 5705
  year: 2017
  ident: 2023121811454791300_ref34
  article-title: Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2785229
– start-page: 3687
  volume-title: 2013 IEEE international conference on acoustics, speech and signal processing
  year: 2013
  ident: 2023121811454791300_ref21
  article-title: Deep learning for robust feature generation in audiovisual emotion recognition
  doi: 10.1109/ICASSP.2013.6638346
– volume: 245
  year: 2022
  ident: 2023121811454791300_ref55
  article-title: Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108586
– year: 2014
  ident: 2023121811454791300_ref58
  article-title: A convolutional neural network for modelling sentences
  doi: 10.3115/v1/P14-1062
– start-page: 1
  volume-title: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV)
  year: 2016
  ident: 2023121811454791300_ref22
  article-title: Multimodal emotion recognition using deep learning architectures
  doi: 10.1109/WACV.2016.7477679
– volume: 36
  start-page: 122
  year: 2021
  ident: 2023121811454791300_ref50
  article-title: GSMNet: Global Semantic Memory Network for Aspect-Level Sentiment Classification
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2020.3042253
– start-page: 161175
  volume-title: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval
  year: 1994
  ident: 2023121811454791300_ref8
  article-title: N-gram-based text categorization
– volume: 44
  start-page: 28
  year: 2018
  ident: 2023121811454791300_ref43
  article-title: An ensemble scheme based on language function analysis and feature engineering for text genre classification
  publication-title: Journal of Information Science
  doi: 10.1177/0165551516677911
– start-page: 1446
  volume-title: Proceedings of the 2009 conference on empirical methods in natural language processing
  year: 2009
  ident: 2023121811454791300_ref37
  article-title: Construction of a blog emotion corpus for Chinese emotional expression analysis
– year: 2011
  ident: 2023121811454791300_ref9
  article-title: A universal part-of-speech tagset
– year: 2020
  ident: 2023121811454791300_ref48
  article-title: Speech emotion recognition using support vector machine
– volume: 18
  start-page: 275
  year: 2004
  ident: 2023121811454791300_ref16
  article-title: An introduction to decision tree modeling
  publication-title: Journal of Chemometrics: A Journal of the Chemometrics Society
  doi: 10.1002/cem.873
– volume: 57
  start-page: 232
  year: 2016
  ident: 2023121811454791300_ref42
  article-title: Ensemble of keyword extraction methods and classifiers in text classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.045
– volume: 42
  start-page: 8745
  year: 2015
  ident: 2023121811454791300_ref36
  article-title: Hierarchical emotion classification and emotion component analysis on Chinese micro-blog posts
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2015.07.028
– volume: 2018
  year: 2018
  ident: 2023121811454791300_ref14
  article-title: Biomedical text categorization based on ensemble pruning and optimized topic modelling
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2018/2497471
– volume: 24
  start-page: 1565
  year: 2006
  ident: 2023121811454791300_ref12
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 53
  start-page: 978
  year: 2016
  ident: 2023121811454791300_ref49
  article-title: Social emotion classification of short text via topic-level maximum entropy model
  publication-title: Inf. Manage.
  doi: 10.1016/j.im.2016.04.005
– volume: 236
  year: 2022
  ident: 2023121811454791300_ref64
  article-title: Graph fusion network for text classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107659
– start-page: 225
  volume-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
  year: 2016
  ident: 2023121811454791300_ref59
  article-title: Dimensional sentiment analysis using a regional CNN-LSTM model
– volume: 337
  start-page: 325
  year: 2019
  ident: 2023121811454791300_ref61
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 93
  start-page: 309
  year: 2019
  ident: 2023121811454791300_ref60
  article-title: Understanding emotions in text using deep learning and big data
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.12.029
– volume-title: Twenty-ninth IAAI conference
  year: 2017
  ident: 2023121811454791300_ref24
  article-title: Using deep and convolutional neural networks for accurate emotion classification on deap dataset
– volume: 34
  start-page: 2098
  year: 2022
  ident: 2023121811454791300_ref54
  article-title: Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 170
  volume-title: 2010 IEEE 2nd Symposium on Web Society
  year: 2010
  ident: 2023121811454791300_ref40
  article-title: Chinese text emotion classification based on emotion dictionary
  doi: 10.1109/SWS.2010.5607460
– volume: 2019
  year: 2019
  ident: 2023121811454791300_ref41
  article-title: Consensus clustering-based undersampling approach to imbalanced learning
  publication-title: Scientific Programming
  doi: 10.1155/2019/5901087
– volume: 13
  start-page: 129
  year: 2018
  ident: 2023121811454791300_ref7
  article-title: Tracing public opinion propagation and emotional evolution based on public emergencies in social networks
  publication-title: International Journal of Computers Communications & Control
  doi: 10.15837/ijccc.2018.1.3176
– volume: 387
  start-page: 63
  year: 2020
  ident: 2023121811454791300_ref56
  article-title: Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.006
– start-page: 29
  volume-title: Proceedings of the first instructional conference on machine learning
  year: 2003
  ident: 2023121811454791300_ref11
  article-title: Using tf-idf to determine word relevance in document queries
– volume: 36
  start-page: 99
  year: 2021
  ident: 2023121811454791300_ref38
  article-title: Combining sentiment lexicons and content-based features for depression detection
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2021.3093660
– year: 2019
  ident: 2023121811454791300_ref53
  article-title: Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation
– start-page: 1749
  volume-title: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining
  year: 2014
  ident: 2023121811454791300_ref4
  article-title: Ears (earthquake alert and report system) a real time decision support system for earthquake crisis management
  doi: 10.1145/2623330.2623358
– volume: 47
  start-page: 129
  year: 2006
  ident: 2023121811454791300_ref3
  article-title: The geopolitical orientations of ordinary Russians: A public opinion analysis
  publication-title: Eurasian Geogr. Econ.
  doi: 10.2747/1538-7216.47.2.129
– volume: 43
  start-page: 25
  year: 2017
  ident: 2023121811454791300_ref44
  article-title: A feature selection model based on genetic rank aggregation for text sentiment classification
  publication-title: Journal of Information Science
  doi: 10.1177/0165551515613226
– volume: 37
  start-page: 103
  year: 2022
  ident: 2023121811454791300_ref46
  article-title: OntoSenticNet 2: Enhancing Reasoning Within Sentiment Analysis
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2021.3093659
– volume: 4
  start-page: 1883
  year: 2009
  ident: 2023121811454791300_ref13
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 116
  start-page: 209
  year: 2019
  ident: 2023121811454791300_ref2
  article-title: Monitoring the public opinion about the vaccination topic from tweets analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.009
– volume: 53
  start-page: 814
  year: 2017
  ident: 2023121811454791300_ref47
  article-title: A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2017.02.008
– start-page: 878
  volume-title: 2011 IEEE International Conference on Automatic Face and Gesture Recognition (FG)
  year: 2011
  ident: 2023121811454791300_ref45
  article-title: Emotion recognition using PHOG and LPQ features
  doi: 10.1109/FG.2011.5771366
– start-page: 5125
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2019
  ident: 2023121811454791300_ref57
  article-title: A radical-aware attention-based model for chinese text classification
– volume: 5
  start-page: 64
  year: 2001
  ident: 2023121811454791300_ref28
  article-title: Recurrent neural networks
  publication-title: Design and Applications
– volume: 9
  start-page: 7701
  year: 2019
  ident: 2023121811454791300_ref20
  article-title: Topic-enriched word embeddings for sarcasm identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049734
– start-page: 603
  year: 2020
  ident: 2023121811454791300_ref1
  article-title: Natural language processing
  publication-title: Fundamentals of artificial intelligence
– volume: 1
  start-page: 3
  year: 1977
  ident: 2023121811454791300_ref10
  article-title: Syntax and semantics of questions
  publication-title: Linguistics and philosophy
  doi: 10.1007/BF00351935
– volume: 49
  start-page: 3
  year: 1999
  ident: 2023121811454791300_ref17
  article-title: A conceptual basis for feature engineering
  publication-title: Journal of Systems and Software
  doi: 10.1016/S0164-1212(99)00062-X
– start-page: 1385
  volume-title: 2008 IEEE Conference on Cybernetics and Intelligent Systems
  year: 2008
  ident: 2023121811454791300_ref39
  article-title: Semi-automatic creation of an emotion dictionary using wordnet and its evaluation
  doi: 10.1109/ICCIS.2008.4670735
– start-page: 1
  volume-title: Proceedings of AGILE
  year: 2011
  ident: 2023121811454791300_ref5
  article-title: A conceptual workflow for automatically assessing the quality of volunteered geographic information for crisis management
– volume: 117
  start-page: 2395
  year: 1995
  ident: 2023121811454791300_ref15
  article-title: Logistic regression
  publication-title: American Psychological Association
– volume: 9
  start-page: 1735
  year: 1997
  ident: 2023121811454791300_ref31
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 29
  start-page: 572
  year: 2021
  ident: 2023121811454791300_ref27
  article-title: Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach
  publication-title: Computer Applications in Engineering Education
  doi: 10.1002/cae.22253
– start-page: 293
  volume-title: Computer science on-line conference
  year: 2021
  ident: 2023121811454791300_ref25
  article-title: A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification
– start-page: 207
  volume-title: Proceedings of the 54th annual meeting of the association for computational linguistics
  year: 2013
  ident: 2023121811454791300_ref33
  article-title: Attention-based bidirectional long short-term memory networks for relation classification
– start-page: 1422
  volume-title: Proceedings of the 2015 conference on empirical methods in natural language processing
  year: 2015
  ident: 2023121811454791300_ref63
  article-title: Document modeling with gated recurrent neural network for sentiment classification
  doi: 10.18653/v1/D15-1167
– volume: 10
  start-page: 231
  year: 1993
  ident: 2023121811454791300_ref6
  article-title: Contestable categories and public opinion
  publication-title: Polit. Commun.
  doi: 10.1080/10584609.1993.9962981
– volume: 7
  start-page: 145614
  year: 2019
  ident: 2023121811454791300_ref18
  article-title: Two-stage topic extraction model for bibliometric data analysis based on word embeddings and clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945911
– volume-title: Twenty-ninth IAAI conference
  year: 2017
  ident: 2023121811454791300_ref51
  article-title: Using deep and convolutional neural networks for accurate emotion classification on deap dataset
– volume: 10
  start-page: 3521
  year: 2019
  ident: 2023121811454791300_ref35
  article-title: Word-character attention model for Chinese text classification
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-00942-5
– start-page: 1
  volume-title: 2014 IEEE international conference on multimedia and expo (ICME)
  year: 2014
  ident: 2023121811454791300_ref23
  article-title: EEG-based emotion classification using deep belief networks
  doi: 10.1109/ICME.2014.6890166
– year: 2014
  ident: 2023121811454791300_ref32
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 33
  year: 2021
  ident: 2023121811454791300_ref19
  article-title: Sentiment analysis on product reviews based on weighted word embeddings and deep neural networks
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.5909
– volume: 28
  start-page: 117
  year: 2020
  ident: 2023121811454791300_ref26
  article-title: Mining opinions from instructor evaluation reviews: a deep learning approach
  publication-title: Computer Applications in Engineering Education
  doi: 10.1002/cae.22179
SSID ssj0002096
Score 2.3831432
Snippet Abstract Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries...
Online education is becoming more and more popular with the development of the Internet. In particular, due to the COVID-19 pandemic, many countries around the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 3000
Title RSCOEWR: Radical-Based Sentiment Classification of Online Education Website Reviews
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFA5aX3xR94Zd3SUswj5IbGaSmTb75rquRXQXrNLuU0kyCbiUVrQF8dd7Msmk06WLl5dhCOmhzfn4zknPDaE9w7jMJGckLQpLuE0EER2jSZGL1CqrtOWuUPj8V9694qeDbDCf31lWl0zVgX5YWlfyGq3CGujVVcm-QLNRKCzAO-gXnqBheD5Lxxe9o9_H_YsyqU2WARfyHawSuJAuB6gM85dDL106UHQNfXPReWbHft8oF0IOYYK7urtazXzYr38dl75T5gCcXkdU9GYle53MJn8qWxj-SkiZS8vwJZwVPQIp8zz1gRLjGZHnlLge73XK9INSKmikNQJklNKaMXUXtqVE7ZtYwdH_HY_gRd1LnfhGkIs9sf-xVTGD0MfO2dBLGIbPr6K1FK4LQNBrhz_Oz3rRJqe0nNQWf2Bs38laXkIrSFhwT1zJY83buNxCG-GagA-9zt-gFTN-izYrdeDAyO9QL0DgG14AAI4AwIsAwBOLPQBwBAAOAMABAO_R1c_jy6MuCXMyiAbncwqWtEiMBvaltODgkGaStnOVF6wtwKHOFTWWisLCsrDgkiVpIl0-aSaA3tuSa_YBNcaTsdlGWGVSgddX6ExJLjRcPrnOBdOsnciOZrqJSHU8Qx2ayLtZJqPhcoU00de4_8a3T_nvzi9w2k9s-vhscTtofY7wXdSY3s7MJ3Afp-pzwMYjphRzvQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RSCOEWR%3A+Radical-Based+Sentiment+Classification+of+Online+Education+Website+Reviews&rft.jtitle=Computer+journal&rft.au=Li%2C+Jie&rft.au=Sun%2C+GuoYing&rft.date=2023-12-14&rft.issn=0010-4620&rft.eissn=1460-2067&rft.volume=66&rft.issue=12&rft.spage=3000&rft.epage=3014&rft_id=info:doi/10.1093%2Fcomjnl%2Fbxac144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_comjnl_bxac144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4620&client=summon