Spatio-Temporal Location Privacy Quantification for Vehicular Networks
Connected vehicles continuously reveal their location information to the potential observers that then track vehicles over time and space. However, safety applications require disseminating such location information to the vicinity, which essentially urges to develop the awareness ability of the exp...
Saved in:
Published in | IEEE access Vol. 6; pp. 62963 - 62974 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Connected vehicles continuously reveal their location information to the potential observers that then track vehicles over time and space. However, safety applications require disseminating such location information to the vicinity, which essentially urges to develop the awareness ability of the exposed location-privacy quantity. We propose an analytic framework to quantify location privacy from the perspective of temporal and spatial correlation, which permits connected vehicles to flexibly configure their preferential location-privacy sensitivity extent. We offer a novel approach so as to make the disclosure of location privacy more human-understandable and independent of the suffered attack pattern. This paradigm enables users to customize the location-privacy protection mechanisms for adapting to the frequently varying traffic context. Moreover, we put forward an adaptive lived-term pseudonym scheme for exampling how to utilize the presented quantitative framework. Finally, we move from theory to practice by applying the proposed theoretical framework to a simulation vehicular mobility data set TAPASCologne composed of more than two hundred and fifty thousand vehicles and a real trace set of more than ten million location sample points obtained from the Roman taxis. We investigate the accuracy and applicability of the presented quantification model and effects of combinations of various concerned parameters. The results show that the quantification model can identify the real-time exposure of location privacy efficiently and effectively as vehicles move and then provide quantitative control feedback to privacy protection mechanisms, which facilitates restrict the location privacy to a target value and tradeoff between the location privacy and service enjoyment. |
---|---|
AbstractList | Connected vehicles continuously reveal their location information to the potential observers that then track vehicles over time and space. However, safety applications require disseminating such location information to the vicinity, which essentially urges to develop the awareness ability of the exposed location-privacy quantity. We propose an analytic framework to quantify location privacy from the perspective of temporal and spatial correlation, which permits connected vehicles to flexibly configure their preferential location-privacy sensitivity extent. We offer a novel approach so as to make the disclosure of location privacy more human-understandable and independent of the suffered attack pattern. This paradigm enables users to customize the location-privacy protection mechanisms for adapting to the frequently varying traffic context. Moreover, we put forward an adaptive lived-term pseudonym scheme for exampling how to utilize the presented quantitative framework. Finally, we move from theory to practice by applying the proposed theoretical framework to a simulation vehicular mobility data set TAPASCologne composed of more than two hundred and fifty thousand vehicles and a real trace set of more than ten million location sample points obtained from the Roman taxis. We investigate the accuracy and applicability of the presented quantification model and effects of combinations of various concerned parameters. The results show that the quantification model can identify the real-time exposure of location privacy efficiently and effectively as vehicles move and then provide quantitative control feedback to privacy protection mechanisms, which facilitates restrict the location privacy to a target value and tradeoff between the location privacy and service enjoyment. |
Author | Wang, Jian Shao, Yameng Zhu, Jianqi Ge, Yuming |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-7701-8511 surname: Wang fullname: Wang, Jian organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 2 givenname: Yameng surname: Shao fullname: Shao, Yameng organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 3 givenname: Jianqi surname: Zhu fullname: Zhu, Jianqi email: zhujq@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 4 givenname: Yuming surname: Ge fullname: Ge, Yuming organization: Technology and Standards Research Institute, China Academy of Information and Communications Technology, Beijing, China |
BookMark | eNpNkF1LwzAYhYNM8Gu_wJuC1535aJv0UorTwfCDTW9DmrzRzNrMtFX892Z2iMlFXg7nPG84J2jS-hYQOid4RgguL6-q6nq1mlFMxIwKznEuDtAxJUWZspwVk3_zEZp23QbHI6KU82M0X21V73y6hvetD6pJll7vhDZ5CO5T6e_kcVBt76zby9aH5BlenR4aFZI76L98eOvO0KFVTQfT_XuKnubX6-o2Xd7fLKqrZaopZyIFzLKC55yaDDMlaqJURhmvDQEDglorwJa6wCUXQltaM2MpzqzGBjNcE85O0WLkGq82chvcuwrf0isnfwUfXqQKvdMNSChNEW9WA7OZsaXSEQuFEdYIAqWIrIuRtQ3-Y4Culxs_hDZ-X9Isz4XIGSmii40uHXzXBbB_WwmWu_7l2L_c9S_3_cfU-ZhyAPCXEDkmZWT-AJFwg1M |
CODEN | IAECCG |
Cites_doi | 10.1109/MPRV.2003.1186725 10.1109/LCOMM.2016.2637902 10.1007/978-3-642-22263-4_4 10.1016/j.adhoc.2010.05.005 10.1016/j.jnca.2011.11.016 10.24251/HICSS.2018.731 10.1145/3009908 10.1109/TVT.2009.2034669 10.1109/MPRV.2006.69 10.1109/TITS.2015.2506579 10.1109/ICCVE.2013.6799890 10.1109/TMC.2016.2561281 10.1109/MCOM.2014.6871669 10.1109/WoWMoM.2013.6583473 10.1109/WONS.2010.5437115 10.1109/SP.2011.18 10.1145/1653662.1653702 10.1007/s00779-008-0200-9 10.1109/COMST.2014.2345420 10.1145/1066116.1189037 10.1016/j.trc.2015.04.005 10.1109/VNC.2017.8275631 10.1145/586111.586114 10.1007/978-3-540-72037-9_8 10.1007/s00779-008-0212-5 10.1109/TMC.2011.116 10.1109/LCOMM.2013.070113.122816 10.1016/j.trb.2013.07.010 10.1177/1550147717700899 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2877058 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 62974 |
ExternalDocumentID | oai_doaj_org_article_e9d6d6d4be3f4df9ac097e6d8fd81e98 10_1109_ACCESS_2018_2877058 8501916 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61572229; 6171101066 funderid: 10.13039/501100001809 – fundername: Jilin Provincial Science and Technology Development Foundation grantid: 20170204074GX; 20180201068GX – fundername: CERNET Innovation Project grantid: NGII20170413 – fundername: Jilin Provincial International Cooperation Foundation grantid: 20180414015GH |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2738-e03467572d403a8b1aa4237bd1ede82ff8ef9c609788cf2b3df204fc0d030b173 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:01:02 EDT 2024 Thu Oct 10 17:36:42 EDT 2024 Fri Aug 23 01:48:36 EDT 2024 Wed Jun 26 19:28:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2738-e03467572d403a8b1aa4237bd1ede82ff8ef9c609788cf2b3df204fc0d030b173 |
ORCID | 0000-0002-7701-8511 |
OpenAccessLink | https://doaj.org/article/e9d6d6d4be3f4df9ac097e6d8fd81e98 |
PQID | 2455885316 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e9d6d6d4be3f4df9ac097e6d8fd81e98 proquest_journals_2455885316 crossref_primary_10_1109_ACCESS_2018_2877058 ieee_primary_8501916 |
PublicationCentury | 2000 |
PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 20180000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref1 ref17 ref16 ref19 cui (ref2) 0 hoh (ref18) 2005 (ref9) 2017 ref24 ref23 uppoor (ref38) 2011 ref26 ref25 ref20 ref22 ref21 (ref10) 2016 ref28 ref27 chaum (ref6) 1991 ref29 saranya (ref35) 2013; 5 ref8 ref4 ref3 ref5 shokri (ref34) 2011 bracciale (ref39) 2014 ahmad (ref36) 2014; 96 rivest (ref7) 2001 |
References_xml | – ident: ref15 doi: 10.1109/MPRV.2003.1186725 – volume: 5 start-page: 2701 year: 2013 ident: ref35 article-title: A study on normalization techniques for privacy preserving data mining publication-title: Int J Eng Technol contributor: fullname: saranya – ident: ref3 doi: 10.1109/LCOMM.2016.2637902 – start-page: 57 year: 2011 ident: ref34 article-title: Quantifying location privacy: The case of sporadic location exposure publication-title: Proc Int Symp Privacy Enhancing Technol Symp doi: 10.1007/978-3-642-22263-4_4 contributor: fullname: shokri – ident: ref20 doi: 10.1016/j.adhoc.2010.05.005 – ident: ref37 doi: 10.1016/j.jnca.2011.11.016 – ident: ref13 doi: 10.24251/HICSS.2018.731 – ident: ref27 doi: 10.1145/3009908 – ident: ref26 doi: 10.1109/TVT.2009.2034669 – start-page: 552 year: 2001 ident: ref7 article-title: How to leak a secret publication-title: Proc Int Conf Theory Appl Cryptol Inf Secur contributor: fullname: rivest – ident: ref30 doi: 10.1109/MPRV.2006.69 – ident: ref33 doi: 10.1109/TITS.2015.2506579 – ident: ref17 doi: 10.1109/ICCVE.2013.6799890 – start-page: 194 year: 2005 ident: ref18 article-title: Protecting location privacy through path confusion publication-title: Proc 1st Int Conf Secur Privacy Emerg Areas Commun Netw (SECURECOMM) contributor: fullname: hoh – year: 2014 ident: ref39 publication-title: CRAWDAD Dataset Roma/Taxi (v 2014-07-17) contributor: fullname: bracciale – year: 0 ident: ref2 article-title: Efficient privacy-preserving scheme for real-time location data in vehicular ad-hoc network publication-title: IEEE Internet of Things Journal contributor: fullname: cui – ident: ref12 doi: 10.1109/TMC.2016.2561281 – ident: ref19 doi: 10.1109/MCOM.2014.6871669 – ident: ref16 doi: 10.1109/WoWMoM.2013.6583473 – volume: 96 start-page: 14 year: 2014 ident: ref36 article-title: Privacy preserving in data mining by normalization publication-title: Int J Comput Appl contributor: fullname: ahmad – ident: ref21 doi: 10.1109/WONS.2010.5437115 – ident: ref11 doi: 10.1109/SP.2011.18 – ident: ref5 doi: 10.1145/1653662.1653702 – year: 2016 ident: ref10 – ident: ref28 doi: 10.1007/s00779-008-0200-9 – ident: ref25 doi: 10.1109/COMST.2014.2345420 – start-page: 257 year: 1991 ident: ref6 article-title: Group signatures publication-title: Proc Workshop Theory Appl Cryptograph Techn contributor: fullname: chaum – ident: ref32 doi: 10.1145/1066116.1189037 – ident: ref14 doi: 10.1016/j.trc.2015.04.005 – ident: ref4 doi: 10.1109/VNC.2017.8275631 – ident: ref8 doi: 10.1145/586111.586114 – ident: ref31 doi: 10.1007/978-3-540-72037-9_8 – ident: ref29 doi: 10.1007/s00779-008-0212-5 – ident: ref22 doi: 10.1109/TMC.2011.116 – ident: ref24 doi: 10.1109/LCOMM.2013.070113.122816 – year: 2011 ident: ref38 publication-title: Vehicular Mobility Trace of the City of Cologne Germany contributor: fullname: uppoor – ident: ref23 doi: 10.1016/j.trb.2013.07.010 – year: 2017 ident: ref9 – ident: ref1 doi: 10.1177/1550147717700899 |
SSID | ssj0000816957 |
Score | 2.1329792 |
Snippet | Connected vehicles continuously reveal their location information to the potential observers that then track vehicles over time and space. However, safety... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 62963 |
SubjectTerms | Ad hoc networks location privacy Measurement Mobile nodes Observers Parameter identification Privacy quantification metric Safety Vehicles Vehicular ad hoc networks Vehicular ad-hoc network |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BnsoB2gJiYVvl0CNZnNhO7CNddYWqglrxEDfLj7FAoF207CLBr68f2RUqPaBcIit2JjN-jCefvwH4ZrkRxFNXEul4ycISU2oTMWJhM4TSytrqGIc8PWtOLtnPa369BoerszCImMBnOIy36V--m9pFDJUdCR4ckqpZh_VWynxWaxVPiQkkJG87YqGKyKPj0Sh8Q0RviWHYF7QkpnV_tfgkjv4uqcqbmTgtL-MtOF0KllEld8PF3Aztyz-cje-V_CNsdn5mcZw7xidYw8ln2HjFPrgN4_OEpi4vMjvVffFrmuN3xe_Z7ZO2z8Wfhc5Yolwc_NviCm9uE3S1OMsA8scduBz_uBidlF1ahdLGczglEhpmR97WjhGqham0jtgY4yp0KGrvBXppm3jAQ1hfG-p8TZi3xIUJwVQt3YXeZDrBPShkqOIlayyNJDlIdeMZ99TUzHCONe3D4VLf6iGzZ6i06yBSZfOoaB7VmacP36NNVo9G6utUEHSpupGkULomXMwg9Sy8XdsgKTZOeCcqlKGR7aj_VSOd6vswWFpYdcP0UdWMcxEclqrZ_3-tA_gQBcwxlwH05rMFfgleyNx8Td3vLxA42ok priority: 102 providerName: IEEE |
Title | Spatio-Temporal Location Privacy Quantification for Vehicular Networks |
URI | https://ieeexplore.ieee.org/document/8501916 https://www.proquest.com/docview/2455885316 https://doaj.org/article/e9d6d6d4be3f4df9ac097e6d8fd81e98 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1ar7MGja7ObxyZHLZYiWhRb6S3kiQVppbWC_948tmXBgxfZW_aZmc1kZvjmGwAuNVEMOmRyyA3Jsd9icqkCRswHQ5ZrXmoZ8pCPQzoY4_sJmTRafQVMWKIHToLrWm6oP7CyyGHjuNSQV5Ya5gwrLE9lvpA3gqlog1lBOalqmiF_vnvT6_kZBSwXu_ZRQgVDk_fGVhQZ--sWK7_sctxs-ntgt_YSs5v0dftgy84OwE6DO_AQ9F8iFjofJW6p9-xhnrJv2dNi-iX1d_a8kgkJlIa9d5q92rdpBJ5mwwT_Xh6Bcf9u1BvkdVOEXIcqmtxC5G0bqUqDIZJMFVIGZIsyhTWWlc4x67imoTyDaVcqZFwJsdPQ-OWsigodg9ZsPrMnIOP-Fscx1ShQ3FgkqcPEIVViRYgtURtcreUjPhL3hYgxA-QiiVMEcYpanG1wG2S4uTQQV8cBr05Rq1P8pc42OAwa2DyEEe-DFrQNOmuNiHqRLUWJCWHe3Sjo6X-8-gxsh-mk_EoHtD4XK3vuPY5PdRF_rotYHPgDKSzT7Q |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeeBXU0AJ74NhNvetH7GOJiAIkEYgU9Wb5MRZVqwS1CRL8-vqxiSrggPaystbe2Rk_xrOfvwF467iVJFBfE-V5zeISUxubMGJxM4TKqdaZFIeczsT4jH085-c7cLw9C4OIGXyG_XSb_-X7pVunUNmJ5NEhacQ9uB_9ainKaa1tRCWlkFB80FELNUSdnA6H8SsSfkv2485gQFJi9zvLT2bp79Kq_DUX5wVm9BimG9EKruSyv17Zvvv9B2vj_8r-BB51nmZ1WrrGU9jBxTPYu8M_uA-jrxlPXc8LP9VVNVmWCF71-frip3G_qi9rU9BEpTh6uNU3_H6RwavVrEDIb57D2ej9fDiuu8QKtUsncWokNM6PfNB6RqiRtjEmoWOsb9CjbEOQGJQT6YiHdKG11IeWsOCIj1OCbQb0Bewulgs8gErFKkEx4WiiyUFqRGA8UNsyyzm2tAfHG33rH4U_Q-d9B1G6mEcn8-jOPD14l2yyfTSRX-eCqEvdjSWNyot4MYs0sPh246KkKLwMXjaoYiP7Sf_bRjrV9-BoY2HdDdQb3TLOZXRZGvHy37XewIPxfDrRkw-zT4fwMAlbIjBHsLu6XuOr6JOs7OvcFW8BonXd1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Location+Privacy+Quantification+for+Vehicular+Networks&rft.jtitle=IEEE+access&rft.au=Wang%2C+Jian&rft.au=Shao%2C+Yameng&rft.au=Zhu%2C+Jianqi&rft.au=Ge%2C+Yuming&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=62963&rft.epage=62974&rft_id=info:doi/10.1109%2FACCESS.2018.2877058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2877058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |