Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem

Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energ...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 2; no. 4
Main Authors Zhu, Jianxiong, Zhu, Minglu, Shi, Qiongfeng, Wen, Feng, Liu, Long, Dong, Bowei, Haroun, Ahmed, Yang, Yanqin, Vachon, Philippe, Guo, Xinge, He, Tianyiyi, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems. Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, etc. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies.
AbstractList Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems. image
Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems. Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, etc. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies.
Author Haroun, Ahmed
Zhu, Jianxiong
Shi, Qiongfeng
Wen, Feng
Yang, Yanqin
Zhu, Minglu
Vachon, Philippe
Guo, Xinge
Liu, Long
Dong, Bowei
Lee, Chengkuo
He, Tianyiyi
Author_xml – sequence: 1
  givenname: Jianxiong
  surname: Zhu
  fullname: Zhu, Jianxiong
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 2
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 3
  givenname: Qiongfeng
  surname: Shi
  fullname: Shi, Qiongfeng
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 4
  givenname: Feng
  surname: Wen
  fullname: Wen, Feng
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 5
  givenname: Long
  surname: Liu
  fullname: Liu, Long
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 6
  givenname: Bowei
  surname: Dong
  fullname: Dong, Bowei
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 7
  givenname: Ahmed
  surname: Haroun
  fullname: Haroun, Ahmed
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 8
  givenname: Yanqin
  surname: Yang
  fullname: Yang, Yanqin
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 9
  givenname: Philippe
  surname: Vachon
  fullname: Vachon, Philippe
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 10
  givenname: Xinge
  surname: Guo
  fullname: Guo, Xinge
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 11
  givenname: Tianyiyi
  surname: He
  fullname: He, Tianyiyi
  organization: NUS Suzhou Research Institute (NUSRI)
– sequence: 12
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: National University of Singapore
BookMark eNp9kMtOwzAQRS1UJErphi_wGillxs7DWVZVKUiFsigrFpHjuGmqxEZ2AGXHR_CFfAl9LRBCrGZGc-5dnHPSM9ZoQi4RRgjArrVt2AgZROKE9FkUJwHHhPd-7Gdk6P0GtnAEIQuxT54fnS2d9p5Whi6nDzPaarU2trZl9_XxOaYb--qM7ujK2YZqo13Z0bV0b9q3lSlpa6mRxh4f0hT703e-1c0FOV3J2uvhcQ7I0810ObkN5ovZ3WQ8DxRLuAhEigXEigFXaa6RIwqVhxrTKAXIQ8YQcykQCgwTFquQxwVIwWQCPEQRcz4gV4de5az3Tq-yF1c10nUZQrYzk-3MZHszWxh-wapqZVtZ0zpZ1X9H8BB5r2rd_VOeTRf37JD5Bp_Zd8Y
CitedBy_id crossref_primary_10_1016_j_nanoso_2023_100980
crossref_primary_10_1039_D4TC05325G
crossref_primary_10_1016_j_nanoen_2023_108392
crossref_primary_10_1631_jzus_A2300530
crossref_primary_10_1002_smll_202103430
crossref_primary_10_1016_j_isci_2020_101934
crossref_primary_10_1021_acsanm_4c02292
crossref_primary_10_1016_j_nanoen_2023_108959
crossref_primary_10_1002_advs_202308560
crossref_primary_10_1039_D4TC04321A
crossref_primary_10_1016_j_apenergy_2021_118037
crossref_primary_10_1021_acsami_3c17203
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1021_acssensors_2c00097
crossref_primary_10_1016_j_nanoen_2021_106894
crossref_primary_10_1016_j_nanoen_2023_109004
crossref_primary_10_1021_acsnano_3c10033
crossref_primary_10_1038_s41578_024_00728_4
crossref_primary_10_1134_S1063739724700793
crossref_primary_10_1021_acsami_3c03045
crossref_primary_10_1016_j_nanoen_2023_108729
crossref_primary_10_1002_smtd_202200653
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_1002_adma_202203073
crossref_primary_10_1016_j_nanoen_2022_107219
crossref_primary_10_1002_adma_202307963
crossref_primary_10_1016_j_sna_2024_115201
crossref_primary_10_1016_j_mseb_2023_116637
crossref_primary_10_1021_acsami_4c22207
crossref_primary_10_1016_j_nanoen_2024_109753
crossref_primary_10_1016_j_sna_2022_113821
crossref_primary_10_1016_j_mtcomm_2024_108184
crossref_primary_10_3390_nano12172960
crossref_primary_10_1002_adhm_202100975
crossref_primary_10_1038_s41378_022_00349_3
crossref_primary_10_1016_j_cej_2022_137263
crossref_primary_10_1109_JSEN_2022_3216872
crossref_primary_10_1016_j_nanoen_2021_106517
crossref_primary_10_1016_j_nanoen_2021_106078
crossref_primary_10_1016_j_cej_2024_149442
crossref_primary_10_1016_j_nanoen_2022_107245
crossref_primary_10_1109_JSEN_2024_3398003
crossref_primary_10_3390_nano12060934
crossref_primary_10_1039_D2TC03058F
crossref_primary_10_1002_advs_202100230
crossref_primary_10_1007_s40820_023_01238_8
crossref_primary_10_1016_j_nanoen_2023_108183
crossref_primary_10_1016_j_nanoso_2023_100990
crossref_primary_10_1002_adsu_202400731
crossref_primary_10_1002_aenm_202405398
crossref_primary_10_1007_s11431_022_2085_4
crossref_primary_10_1002_admt_202201245
crossref_primary_10_1002_er_7283
crossref_primary_10_3390_electronics10060661
crossref_primary_10_1016_j_rsurfi_2022_100075
crossref_primary_10_1016_j_sna_2023_114877
crossref_primary_10_1021_acsami_2c08162
crossref_primary_10_1016_j_nanoen_2023_108983
crossref_primary_10_1039_D3MH01529G
crossref_primary_10_1016_j_sna_2022_113696
crossref_primary_10_1002_smll_202207600
crossref_primary_10_1007_s40820_022_00903_8
crossref_primary_10_3390_s23146634
crossref_primary_10_1016_j_cej_2021_131698
crossref_primary_10_1016_j_nanoen_2024_110558
crossref_primary_10_1002_admt_202300495
crossref_primary_10_1063_5_0227686
crossref_primary_10_3390_en15207495
crossref_primary_10_1007_s10853_021_06637_z
crossref_primary_10_1002_eom2_12357
crossref_primary_10_1016_j_cej_2025_160507
crossref_primary_10_1002_aenm_202101116
crossref_primary_10_3390_nano12071168
crossref_primary_10_1016_j_sna_2024_116046
crossref_primary_10_1016_j_snb_2022_133225
crossref_primary_10_1002_adsr_202400086
crossref_primary_10_3390_mi15091149
crossref_primary_10_1021_acsami_3c17241
crossref_primary_10_1016_j_jallcom_2025_179623
crossref_primary_10_1016_j_mattod_2022_11_005
crossref_primary_10_1002_chem_202301076
crossref_primary_10_1021_acsnano_3c11281
crossref_primary_10_1002_aesr_202200051
crossref_primary_10_1002_aisy_202100228
crossref_primary_10_1016_j_matdes_2022_111005
crossref_primary_10_1021_acsnano_1c07579
crossref_primary_10_1016_j_microc_2022_107833
crossref_primary_10_1021_acsami_2c00384
crossref_primary_10_1016_j_nanoen_2025_110844
crossref_primary_10_1021_acs_chemrev_3c00356
crossref_primary_10_3390_mi12020218
crossref_primary_10_1016_j_seta_2022_102595
crossref_primary_10_1016_j_jallcom_2021_163381
crossref_primary_10_1080_15599612_2024_2332242
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1021_acsnano_2c04043
crossref_primary_10_3390_molecules29153576
crossref_primary_10_1016_j_nanoen_2023_108365
crossref_primary_10_1021_acsaelm_2c00887
crossref_primary_10_1002_adfm_202408708
crossref_primary_10_3390_mi12080946
crossref_primary_10_1002_aesr_202200087
crossref_primary_10_1002_adfm_202214859
crossref_primary_10_1016_j_sna_2023_114162
crossref_primary_10_1021_acsnano_2c12592
crossref_primary_10_1016_j_nanoen_2024_110096
crossref_primary_10_3390_catal11121435
crossref_primary_10_1016_j_pmatsci_2023_101206
crossref_primary_10_1021_acsaelm_3c01145
crossref_primary_10_1039_D2TA04433A
crossref_primary_10_1016_j_nanoen_2024_110092
crossref_primary_10_1016_j_nanoen_2021_106154
crossref_primary_10_1016_j_nanoen_2024_109429
crossref_primary_10_1016_j_cej_2025_161013
crossref_primary_10_1016_j_nanoen_2024_109548
crossref_primary_10_1021_acsmaterialsau_2c00001
crossref_primary_10_1016_j_nanoen_2021_106035
crossref_primary_10_1016_j_nanoen_2024_110640
crossref_primary_10_1016_j_sna_2021_113022
crossref_primary_10_1002_aesr_202400127
crossref_primary_10_1016_j_isci_2024_109479
crossref_primary_10_1109_JFLEX_2022_3225128
crossref_primary_10_3390_textiles4030023
crossref_primary_10_1002_advs_202201056
crossref_primary_10_1016_j_susmat_2024_e01096
crossref_primary_10_1002_cnma_202300614
crossref_primary_10_1016_j_mtcomm_2025_112151
crossref_primary_10_3390_nanoenergyadv3020006
crossref_primary_10_1002_appl_202400124
crossref_primary_10_3390_en15218268
crossref_primary_10_1002_advs_202202815
crossref_primary_10_1016_j_nanoen_2024_109655
crossref_primary_10_1016_j_nanoen_2024_110112
crossref_primary_10_1109_JSEN_2021_3087253
crossref_primary_10_3390_mi14061273
crossref_primary_10_1016_j_nanoen_2023_109080
crossref_primary_10_1007_s12274_021_3540_7
crossref_primary_10_1016_j_mseb_2024_117859
crossref_primary_10_1016_j_nanoen_2025_110763
crossref_primary_10_1088_1361_6439_ac3ab9
crossref_primary_10_3390_nanoenergyadv3030010
crossref_primary_10_3390_nano11102496
crossref_primary_10_1088_1361_665X_ad3bfd
crossref_primary_10_3390_ma18010033
crossref_primary_10_3390_polym15010222
crossref_primary_10_1002_eom2_12145
crossref_primary_10_1016_j_matchemphys_2022_126736
crossref_primary_10_1109_JSEN_2023_3342792
crossref_primary_10_1002_er_7585
crossref_primary_10_1016_j_seta_2021_101757
crossref_primary_10_1016_j_nanoen_2021_106826
crossref_primary_10_1039_D4TA05825A
crossref_primary_10_3390_nano11112975
crossref_primary_10_1016_j_nanoen_2023_108444
crossref_primary_10_1002_eom2_12493
crossref_primary_10_1038_s41467_021_23020_3
crossref_primary_10_1016_j_mtsust_2024_100781
crossref_primary_10_3390_catal12080804
crossref_primary_10_3390_bios12050323
crossref_primary_10_1002_adom_202301028
crossref_primary_10_1016_j_molliq_2024_124190
crossref_primary_10_3390_polym13132213
crossref_primary_10_1016_j_cej_2023_145088
crossref_primary_10_1016_j_apmt_2024_102503
crossref_primary_10_1021_acsami_2c05610
crossref_primary_10_1021_acsami_1c15268
crossref_primary_10_1021_acsnano_3c12035
crossref_primary_10_1088_1361_665X_ac9e2c
crossref_primary_10_1002_adsu_202400575
crossref_primary_10_1016_j_mseb_2025_118084
crossref_primary_10_1002_adfm_202302147
crossref_primary_10_1007_s12274_023_5490_8
crossref_primary_10_1016_j_nanoen_2022_107633
crossref_primary_10_1016_j_cej_2022_141012
crossref_primary_10_1002_open_202400373
crossref_primary_10_1016_j_gerr_2023_100006
crossref_primary_10_1088_2515_7639_ad05e7
crossref_primary_10_1016_j_nanoen_2022_107819
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_3390_s23042021
crossref_primary_10_1039_D4RA07550A
crossref_primary_10_1021_acssuschemeng_4c03742
crossref_primary_10_1002_adfm_202107143
crossref_primary_10_1016_j_nanoen_2022_107824
crossref_primary_10_1002_adem_202301897
crossref_primary_10_1016_j_nanoso_2023_100949
crossref_primary_10_1177_0958305X231193873
crossref_primary_10_1016_j_sna_2025_116449
crossref_primary_10_1002_adfm_202202360
crossref_primary_10_1021_acsnano_1c04464
crossref_primary_10_1016_j_nanoen_2024_110383
crossref_primary_10_1002_adfm_202308353
crossref_primary_10_1002_adfm_202409608
crossref_primary_10_1039_D3SE00714F
crossref_primary_10_3390_nano13030385
crossref_primary_10_1016_j_matlet_2022_132214
crossref_primary_10_1002_admt_202201902
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1016_j_apsusc_2022_155522
crossref_primary_10_1016_j_compositesb_2020_108602
crossref_primary_10_1109_OJCAS_2021_3123272
crossref_primary_10_1002_adfm_202404744
crossref_primary_10_1002_adfm_202401593
crossref_primary_10_1002_advs_202409914
crossref_primary_10_1016_j_enconman_2022_116098
crossref_primary_10_1002_advs_202400785
crossref_primary_10_1016_j_apenergy_2023_122081
crossref_primary_10_1039_D2TC01014C
crossref_primary_10_1021_acssensors_4c00375
crossref_primary_10_1016_j_biomaterials_2023_122421
crossref_primary_10_1016_j_nanoen_2023_108898
crossref_primary_10_1016_j_eswa_2023_120244
crossref_primary_10_1016_j_nanoen_2023_108651
crossref_primary_10_1016_j_nanoen_2022_107030
crossref_primary_10_1016_j_nanoen_2024_110126
crossref_primary_10_3390_polym16020260
crossref_primary_10_1016_j_measurement_2022_112010
crossref_primary_10_1016_j_sna_2023_114311
crossref_primary_10_1016_j_materresbull_2024_113116
crossref_primary_10_1093_iti_liad014
crossref_primary_10_1016_j_jallcom_2022_168157
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_nanoen_2023_108308
crossref_primary_10_1016_j_egyr_2024_09_034
crossref_primary_10_1016_j_biotechadv_2023_108297
crossref_primary_10_3390_polym15224383
crossref_primary_10_1016_j_nanoen_2023_108787
crossref_primary_10_1080_15599612_2022_2137608
crossref_primary_10_1016_j_nanoen_2023_108789
crossref_primary_10_1002_adma_202415099
Cites_doi 10.1016/j.nanoen.2018.12.054
10.1002/aenm.201601705
10.1002/admt.201900741
10.1016/j.nanoen.2020.104675
10.1016/j.nanoen.2017.11.028
10.1016/j.nanoen.2019.104039
10.1021/acsnano.7b05213
10.1007/s12274-018-2018-8
10.1016/j.nanoen.2018.03.032
10.1016/j.nanoen.2012.11.015
10.1063/1.5134100
10.1021/acsami.8b05636
10.1002/advs.201500441
10.1016/j.nanoen.2019.103933
10.1016/j.nanoen.2019.05.033
10.1016/j.nanoen.2016.11.025
10.1016/j.mattod.2019.05.016
10.1038/s41467-019-10433-4
10.1038/s41467-018-03781-0
10.1039/C5EE02711J
10.1016/j.nanoen.2018.12.032
10.1016/j.nanoen.2014.01.001
10.1016/j.nanoen.2018.11.075
10.1039/c3ee41485j
10.1002/adma.201902549
10.1016/j.nanoen.2017.06.035
10.1002/admt.201800487
10.3390/en81112340
10.1016/j.nanoen.2019.03.090
10.1109/JSEN.2015.2411313
10.1021/acs.nanolett.6b01968
10.1016/j.nanoen.2018.10.044
10.1007/s12274-016-1331-3
10.1002/adfm.201803684
10.1016/j.nanoen.2020.105241
10.1002/adma.201802405
10.1016/j.nanoen.2019.104419
10.1063/1.4863565
10.1016/j.nanoen.2018.06.022
10.1002/smtd.201800078
10.1002/aenm.201301798
10.1021/acsnano.5b06372
10.1016/j.nanoen.2015.09.012
10.1021/acsnano.7b05317
10.1002/adma.201404071
10.1002/adma.201503407
10.1088/0964-1726/21/3/035005
10.1002/adfm.201807241
10.1002/adma.201302808
10.1016/j.nanoen.2019.103871
10.1126/science.aau0780
10.1016/j.nanoen.2019.04.026
10.1109/TNANO.2018.2823342
10.1007/s12274-012-0272-8
10.1002/admt.201700184
10.1002/adma.201603527
10.1016/j.nanoen.2014.11.034
10.1039/C4FD00159A
10.1002/aenm.201900801
10.1126/science.347.6226.1084
10.1002/adma.201705195
10.1016/j.nanoen.2019.103912
10.1021/acsnano.8b08329
10.1016/j.nantod.2018.08.001
10.1021/nn403021m
10.1016/j.nanoen.2017.08.018
10.1016/j.nanoen.2018.12.078
10.1016/j.nanoen.2017.08.025
10.1021/acsnano.7b03657
10.1002/aenm.201600988
10.1038/s41586-019-1234-z
10.1021/acsnano.6b02693
10.1016/j.nanoen.2015.04.020
10.1016/j.nanoen.2020.104500
10.1039/C5EE01532D
10.1016/j.compscitech.2019.107963
10.1007/s10854-017-7020-5
10.1002/aenm.201800069
10.1016/j.nanoen.2019.03.082
10.1039/C8TA04443K
10.1021/acssuschemeng.8b00834
10.1021/am406018h
10.1002/aenm.202000137
10.1038/s41598-016-0001-8
10.1021/nn5012732
10.1021/acssensors.9b01509
10.1016/j.cobme.2018.05.004
10.1088/0960-1317/19/3/035001
10.1016/j.nanoen.2017.10.064
10.1021/acsnano.8b05359
10.1021/nn405209u
10.1016/j.snb.2016.03.063
10.1088/2053-1591/aabd22
10.1002/adma.201404291
10.1016/j.nanoen.2019.01.096
10.1021/acsnano.0c00524
10.1016/j.nanoen.2019.01.002
10.1007/s00542-012-1424-1
10.1002/adfm.201905426
10.1016/j.nanoen.2019.104266
10.1016/j.nanoen.2019.04.085
10.1088/1361-6528/ab6677
10.1088/0960-1317/22/12/125020
10.1002/adbi.201800281
10.1038/542159a
10.1016/j.nanoen.2019.06.040
10.1038/s41467-016-0009-6
10.1002/adma.201904988
10.1021/acsnano.7b00396
10.1109/TNANO.2018.2869934
10.1063/1.4948973
10.1016/j.nanoen.2016.10.046
10.1002/advs.201900617
10.1016/j.nanoen.2018.04.004
10.1021/acsami.8b01635
10.1002/adfm.201806388
10.1002/adma.201402064
10.1039/C9NR01271K
10.1007/s12274-014-0523-y
10.1088/0960-1317/20/6/065017
10.1021/nn501983s
10.1016/j.nanoen.2019.05.063
10.1039/C4TA02747G
10.1007/s11431-013-5270-x
10.1016/j.nanoen.2016.12.038
10.1016/j.nanoen.2017.11.039
10.1016/j.nanoen.2019.104272
10.1016/j.enconman.2018.08.018
10.1109/JMEMS.2014.2317718
10.1021/acsnano.5b07407
10.1002/aenm.201601569
10.1039/C9TA02711D
10.1007/s12274-018-1989-9
10.1002/adma.201605817
10.1109/TNANO.2020.2976154
10.1063/1.4905553
10.1021/acsnano.8b07935
10.1021/acsami.6b11108
10.1021/acsnano.6b02384
10.1016/j.nanoen.2018.12.041
10.1002/admt.201700317
10.1021/acsnano.7b03818
10.1002/adfm.201606695
10.1021/acsaelm.0c00022
10.1002/adfm.201302453
10.1038/srep09309
10.1016/j.nanoen.2017.05.039
10.1002/advs.201903636
10.1002/adhm.201700987
10.1016/j.elstat.2004.05.005
10.1002/adma.201706738
10.1088/1361-6528/ab793e
10.1021/acsami.7b17314
10.1038/s41551-018-0287-x
10.3390/nano5010036
10.1016/j.smaim.2020.07.005
10.1021/acsnano.8b00303
10.1021/acsnano.8b01532
10.1002/adfm.201908252
10.1038/srep36409
10.1016/j.nanoen.2019.04.005
10.1021/acsnano.8b02477
10.1038/s41467-019-13166-6
10.1002/aenm.201800705
10.1109/JMEMS.2015.2404037
10.1016/j.nanoen.2017.08.045
10.1016/j.sna.2013.09.015
10.1016/j.nanoen.2019.03.071
10.1088/2057-1976/ab268e
10.1126/scirobotics.aau6914
10.1039/C6NR06319E
10.1063/1.4967001
10.1038/s41467-018-05755-8
10.1002/advs.201500386
10.1021/acsnano.6b06621
10.1021/acsnano.8b06747
10.1021/acsami.9b22572
10.1002/aenm.202000886
10.1007/s12274-015-0894-8
10.1016/j.nanoen.2017.09.025
10.1021/acsami.8b16023
10.1016/j.nanoen.2016.12.035
10.1016/j.nanoen.2019.103923
10.1039/C9EE03258D
10.1126/scirobotics.aaw6339
10.1002/adma.201804944
10.1002/adma.201503423
10.1109/TNANO.2018.2828302
10.1021/nl300988z
10.1016/j.nanoen.2019.01.091
10.1016/j.nanoen.2018.05.061
10.1126/scirobotics.aax2198
10.1016/j.nanoen.2017.08.024
10.1016/j.nanoen.2019.02.052
10.1016/j.nanoen.2019.06.043
10.1007/s12274-018-1978-z
10.1002/advs.201700143
10.1038/s41467-019-13773-3
10.1002/aenm.201601852
10.1021/nl5005652
10.1126/scirobotics.aat2516
10.1021/acsami.8b15410
10.1088/0960-1317/24/10/104002
10.1039/C6NR07781A
10.1021/acsnano.8b02479
10.1016/j.nanoen.2020.104456
10.1021/acsami.5b09907
10.1016/j.nanoen.2014.10.034
10.1002/adfm.201502450
10.3390/nano8070503
10.1016/j.nanoen.2016.11.056
10.1109/JMEMS.2011.2162488
10.1016/j.nanoen.2019.104228
10.1021/acsnano.0c03728
10.1002/advs.201901980
10.1016/j.mattod.2019.10.025
10.1021/acsnano.5b01478
10.1039/C5EE01705J
10.1002/ente.201700779
10.1021/acsnano.5b07074
10.1016/j.nanoen.2017.08.001
10.1021/acsnano.9b00140
10.1021/nn403151t
10.1016/j.nanoen.2018.12.062
10.1049/mnl.2013.0750
10.1002/adma.201705918
10.1002/adfm.201604378
10.1002/adfm.201901069
10.1109/TNANO.2018.2876824
10.1002/adfm.201404087
10.1016/j.materresbull.2018.02.020
10.1002/adfm.201907893
10.1016/j.nanoen.2019.05.039
10.1016/j.sna.2017.12.067
10.1038/srep22253
10.1016/j.joule.2017.09.004
10.1038/s41467-019-10061-y
10.1126/sciadv.1501478
10.1126/sciadv.aay2840
10.1016/j.nanoen.2019.103997
10.1109/JMEMS.2015.2403256
10.1016/j.nanoen.2018.03.062
10.1039/C6TC05193F
10.1021/acsami.9b02313
10.1039/C9SE01184F
10.1021/acsnano.5b01187
10.1038/s41467-018-06759-0
10.1016/j.nanoen.2019.03.054
10.1021/acsnano.7b03683
10.1109/TNANO.2017.2789300
10.1002/adma.201402491
10.1016/j.nanoen.2020.104642
10.1016/j.nanoen.2012.01.004
10.1021/acsnano.7b08716
10.1021/acsami.6b06866
10.1016/j.nanoen.2018.02.031
10.1002/aenm.201802892
10.1002/advs.201700881
10.1002/adfm.201909252
10.1021/am404611h
10.1038/508302a
10.1039/C9EE03566D
10.1021/nn4050408
10.1063/1.5053945
10.1016/j.nanoen.2016.08.024
10.1126/sciadv.1700694
10.1063/5.0016485
10.1002/advs.201700658
10.1039/C9TA02345C
10.1021/acsnano.8b00147
10.1002/adfm.201808633
10.1002/advs.201900149
10.1016/j.nanoen.2019.03.005
10.1016/j.nanoen.2015.12.001
10.1016/j.nanoen.2019.04.025
10.1021/acsaem.9b00836
10.3390/nano8080613
10.1021/acsnano.6b04201
10.1016/j.mattod.2017.10.006
10.1016/j.nanoen.2020.104760
10.1016/j.nanoen.2018.04.059
10.1016/j.nanoen.2020.104462
10.1021/acsnano.9b06272
10.1016/j.nanoen.2017.04.012
10.1002/aenm.201501799
10.1002/adma.201600604
10.1016/j.nanoen.2019.104167
10.1016/j.nanoen.2018.06.034
10.1002/adfm.201402703
10.1002/adma.201404794
10.1016/j.nanoen.2019.103994
10.1109/ACCESS.2019.2927394
10.1002/advs.201901437
10.1002/advs.201500169
10.1109/TNANO.2019.2895137
10.1039/C8TC02964D
10.1016/j.nanoen.2018.06.060
10.1021/nl303539c
10.1016/j.nanoen.2017.04.053
10.1021/nn404614z
10.1002/adfm.201602529
10.1038/s41467-019-10298-7
10.1021/acsnano.9b02690
10.1021/acsnano.9b07165
10.1021/acsnano.6b05507
10.1109/JMEMS.2016.2588529
10.1038/s41598-017-00418-y
10.1016/j.sna.2012.06.006
10.1016/j.nanoen.2017.11.044
10.1002/adma.201500121
10.1016/j.nanoen.2017.10.004
10.1364/OL.36.001389
10.1016/j.mattod.2016.12.001
10.1002/adma.201702181
10.1002/smll.201501772
10.1016/j.nanoen.2018.04.033
10.1016/j.nanoen.2018.03.044
10.1021/acsnano.5b07157
10.1016/j.nanoen.2019.01.042
10.1016/j.nanoen.2019.01.088
10.1021/acsami.7b08526
10.1016/j.sna.2017.06.012
10.1109/JMEMS.2012.2190716
10.1002/adfm.201603788
10.3390/s17020282
10.1016/j.nanoen.2019.104121
10.1002/admi.201700750
10.1016/j.nanoen.2018.03.033
10.1088/1361-6528/28/3/035405
10.1021/acsami.5b04516
10.1016/j.nanoen.2020.105155
10.1002/adma.201505684
10.1021/acsnano.6b03007
10.1016/j.nanoen.2019.04.089
10.1002/admi.201701063
ContentType Journal Article
Copyright 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOI 10.1002/eom2.12058
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID 10_1002_eom2_12058
EOM212058
Genre reviewArticle
GrantInformation_xml – fundername: A*STAR‐NCBR
  funderid: R‐263‐000‐C91‐305
– fundername: HIFES Seed Funding
  funderid: R‐263‐501‐012‐133
– fundername: RIE Advanced Manufacturing and Engineering (AME) programmatic grant
  funderid: A18A4b0055
– fundername: National Key Research and Development Program of China
  funderid: 2019YFB2004800; R‐2020‐S‐002
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
ID FETCH-LOGICAL-c2738-891d06c203c9be13118cb4e195900b42211ba810d14726c436d0a82a703418633
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 16:31:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2738-891d06c203c9be13118cb4e195900b42211ba810d14726c436d0a82a703418633
Notes Funding information
A*STAR‐NCBR, Grant/Award Number: R‐263‐000‐C91‐305; HIFES Seed Funding, Grant/Award Number: R‐263‐501‐012‐133; National Key Research and Development Program of China, Grant/Award Numbers: 2019YFB2004800, R‐2020‐S‐002; RIE Advanced Manufacturing and Engineering (AME) programmatic grant, Grant/Award Number: A18A4b0055
Jianxiong Zhu, Minglu Zhu, and Qiongfeng Shi contributed equally to this work.
ORCID 0000-0002-8886-3649
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12058
PageCount 45
ParticipantIDs crossref_primary_10_1002_eom2_12058
crossref_citationtrail_10_1002_eom2_12058
wiley_primary_10_1002_eom2_12058_EOM212058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2020; 2000605
2020; 2000965
2013; 2
2019; 11
2019; 10
2019; 13
2014; 26
2016; 30
2014; 24
2020; 14
2019; 18
2012; 18
2020; 13
2020; 12
2020; 11
2020; 10
2019; 569
2013; 7
2018; 44
2012; 12
2018; 43
2013; 6
2018; 49
2018; 48
2018; 47
2020; 19
2018; 7
2018; 6
2018; 174
2018; 9
2010; 20
2018; 8
2018; 3
2018; 2
2018; 5
2013; 56
2014; 14
2019; 29
2018; 30
2009; 19
2012; 22
2012; 21
2012; 183
2019; 7
2018; 28
2019; 9
2019; 4
2012; 100
2019; 3
2019; 6
2019; 5
2016; 19
2019; 31
2019; 30
2019; 2
2018; 102
2016; 10
2020; 32
2018; 22
2018; 21
2016; 16
2016; 6
2018; 17
2009; 74
2016; 2
2016; 3
2020; 31
2020; 30
2018; 113
2016; 20
2017; 263
2018; 12
2016; 28
2018; 11
2017; 542
2018; 10
2016; 26
2016; 8
2016; 25
2018; 14
2017; 40
2017; 5
2017; 7
2017; 42
2017; 8
2017; 41
2017; 1
2013; 25
2004; 62
2017; 3
2017; 4
2015; 347
2016; 109
2016; 108
2020; 2000886
2013; 204
2019; 57
2018; 124
2019; 56
2019; 59
2019; 58
2015; 106
2014; 176
2017; 9
2019; 363
2020; 7
2020; 6
2017; 31
2019; 60
2020; 4
2014; 5
2014; 4
2019; 62
2020; 2
2019; 61
2014; 2
2020; 1
2019; 64
2019; 63
2013; 13
2017; 39
2019; 66
2017; 38
2019; 65
2017; 33
2017; 32
2017; 35
2011; 20
2016; 231
2014; 9
2014; 8
2014; 7
2014; 6
2015; 2
2015; 15
2017; 20
2015; 5
2015; 3
2015; 18
2017; 28
2017; 27
2015; 11
2020; 188
2017; 29
2020; 78
2011; 36
2015; 9
2015; 8
2015; 7
2015; 24
2015; 25
2015; 27
2014; 508
2012; 1
2018; 271
2020; 73
2017; 17
2020; 72
2020; 71
2017; 11
2020; 70
2017; 10
2017; 13
2020; 116
2018
2020; 69
2020; 68
2018; 51
2020; 67
2018; 50
2018; 54
2012; 5
2014; 104
e_1_2_9_79_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_216_1
Luo J (e_1_2_9_378_1) 2018; 8
Zhang C (e_1_2_9_257_1) 2020; 32
e_1_2_9_337_1
e_1_2_9_314_1
e_1_2_9_183_1
Wang ZL (e_1_2_9_36_1) 2020; 68
e_1_2_9_160_1
Xia K (e_1_2_9_361_1) 2018; 124
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_204_1
Xu W (e_1_2_9_332_1) 2017; 40
e_1_2_9_119_1
e_1_2_9_280_1
e_1_2_9_325_1
e_1_2_9_348_1
e_1_2_9_195_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_217_1
Xu C (e_1_2_9_88_1) 2018; 30
Lee JW (e_1_2_9_173_1) 2019; 9
e_1_2_9_106_1
e_1_2_9_338_1
e_1_2_9_315_1
e_1_2_9_182_1
Wang X (e_1_2_9_121_1) 2017; 29
Xiao TX (e_1_2_9_54_1) 2018; 28
e_1_2_9_46_1
e_1_2_9_205_1
Chen T (e_1_2_9_80_1) 2018; 8
e_1_2_9_5_1
Liu L (e_1_2_9_358_1) 2018; 3
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_326_1
e_1_2_9_349_1
e_1_2_9_303_1
e_1_2_9_69_1
Song JK (e_1_2_9_144_1) 2017; 27
e_1_2_9_171_1
e_1_2_9_194_1
Bai Y (e_1_2_9_55_1) 2020; 2000605
e_1_2_9_77_1
e_1_2_9_339_1
e_1_2_9_294_1
e_1_2_9_109_1
Zheng Q (e_1_2_9_99_1) 2016; 2
Guo H (e_1_2_9_269_1) 2016; 6
Ren Z (e_1_2_9_139_1) 2018; 28
e_1_2_9_316_1
e_1_2_9_162_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_282_1
Liu D (e_1_2_9_95_1) 2019; 5
e_1_2_9_327_1
e_1_2_9_380_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
He C (e_1_2_9_259_1) 2018; 3
Parida K (e_1_2_9_108_1) 2019; 10
Lee KY (e_1_2_9_124_1) 2016; 6
Wen F (e_1_2_9_389_1) 2020; 78
e_1_2_9_219_1
e_1_2_9_370_1
e_1_2_9_184_1
Wang ZL (e_1_2_9_32_1) 2019; 30
e_1_2_9_393_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_283_1
e_1_2_9_7_1
Liu M (e_1_2_9_122_1) 2017; 29
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_381_1
e_1_2_9_196_1
Meng K (e_1_2_9_130_1) 2019; 29
Wu F (e_1_2_9_218_1) 2017; 17
e_1_2_9_318_1
e_1_2_9_273_1
Qin H (e_1_2_9_110_1) 2018; 28
e_1_2_9_250_1
Wang H (e_1_2_9_66_1) 2016; 3
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_371_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_329_1
e_1_2_9_261_1
e_1_2_9_199_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_176_1
e_1_2_9_153_1
Lou Z (e_1_2_9_287_1) 2017; 13
e_1_2_9_319_1
Tollefson J (e_1_2_9_186_1) 2014; 508
Seung W (e_1_2_9_301_1) 2017; 7
e_1_2_9_91_1
e_1_2_9_274_1
Wang X (e_1_2_9_297_1) 2016; 6
e_1_2_9_251_1
Wang J (e_1_2_9_270_1) 2019; 9
Zhang C (e_1_2_9_105_1) 2019; 29
Chen SW (e_1_2_9_126_1) 2017; 7
e_1_2_9_15_1
e_1_2_9_163_1
Zhu J (e_1_2_9_362_1) 2017; 10
e_1_2_9_372_1
e_1_2_9_307_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_360_1
e_1_2_9_383_1
e_1_2_9_35_1
e_1_2_9_298_1
e_1_2_9_12_1
e_1_2_9_275_1
e_1_2_9_252_1
Wei XY (e_1_2_9_245_1) 2015; 5
Yang B (e_1_2_9_38_1) 2009; 19
e_1_2_9_166_1
e_1_2_9_189_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_350_1
e_1_2_9_308_1
Hassani FA (e_1_2_9_391_1) 2020; 1
Ryu H (e_1_2_9_264_1) 2019; 31
e_1_2_9_286_1
e_1_2_9_263_1
e_1_2_9_240_1
e_1_2_9_155_1
e_1_2_9_178_1
Ding W (e_1_2_9_230_1) 2019; 4
e_1_2_9_47_1
e_1_2_9_132_1
Heo JS (e_1_2_9_177_1) 2018; 14
Liu H (e_1_2_9_185_1) 2020; 6
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_188_1
e_1_2_9_374_1
e_1_2_9_351_1
Khandelwal G (e_1_2_9_175_1) 2019; 9
e_1_2_9_309_1
Liu H (e_1_2_9_20_1) 2018; 5
e_1_2_9_241_1
Zhang P (e_1_2_9_376_1) 2020; 30
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
Dong K (e_1_2_9_117_1) 2020; 32
Hassani FA (e_1_2_9_64_1) 2018; 3
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_277_1
e_1_2_9_71_1
e_1_2_9_231_1
Wang H (e_1_2_9_390_1) 2020; 78
e_1_2_9_375_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_352_1
Li S (e_1_2_9_107_1) 2017; 7
e_1_2_9_265_1
e_1_2_9_83_1
e_1_2_9_288_1
e_1_2_9_242_1
Yan C (e_1_2_9_258_1) 2020; 67
e_1_2_9_111_1
Liu H (e_1_2_9_42_1) 2012; 18
e_1_2_9_134_1
Zhu Y (e_1_2_9_292_1) 2015; 24
Zhao C (e_1_2_9_233_1) 2019; 29
e_1_2_9_363_1
Rahman MT (e_1_2_9_271_1) 2020; 10
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
Wang X (e_1_2_9_6_1) 2015; 2
Chen T (e_1_2_9_26_1) 2018; 8
e_1_2_9_278_1
Lee S (e_1_2_9_61_1) 2017; 4
e_1_2_9_353_1
e_1_2_9_167_1
Chen S (e_1_2_9_296_1) 2017; 7
e_1_2_9_19_1
Hassani FA (e_1_2_9_60_1) 2017; 4
e_1_2_9_84_1
e_1_2_9_266_1
e_1_2_9_289_1
e_1_2_9_220_1
Quan Z (e_1_2_9_51_1) 2016; 6
Bui VT (e_1_2_9_161_1) 2019; 29
e_1_2_9_364_1
e_1_2_9_387_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_341_1
Lin Z (e_1_2_9_129_1) 2019; 4
e_1_2_9_210_1
Yao S (e_1_2_9_328_1) 2020; 32
e_1_2_9_279_1
e_1_2_9_92_1
e_1_2_9_331_1
e_1_2_9_354_1
e_1_2_9_377_1
e_1_2_9_101_1
Lai YC (e_1_2_9_127_1) 2018; 30
e_1_2_9_147_1
e_1_2_9_16_1
e_1_2_9_221_1
Zhu M (e_1_2_9_25_1) 2020; 6
e_1_2_9_267_1
Shi Q (e_1_2_9_392_1) 2020; 11
Bian Y (e_1_2_9_239_1) 2018; 3
e_1_2_9_81_1
e_1_2_9_159_1
e_1_2_9_342_1
e_1_2_9_388_1
e_1_2_9_365_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_211_1
e_1_2_9_234_1
Yao G (e_1_2_9_23_1) 2020; 30
Dong B (e_1_2_9_244_1) 2020; 7
e_1_2_9_93_1
e_1_2_9_70_1
Pu X (e_1_2_9_225_1) 2017; 3
Kollosche M (e_1_2_9_320_1) 2011; 36
Wu W (e_1_2_9_152_1) 2019; 29
e_1_2_9_100_1
e_1_2_9_355_1
e_1_2_9_169_1
Jung W‐S (e_1_2_9_293_1) 2015; 5
e_1_2_9_146_1
Lee S (e_1_2_9_382_1) 2019; 7
e_1_2_9_222_1
Yi F (e_1_2_9_113_1) 2019; 29
e_1_2_9_268_1
e_1_2_9_82_1
e_1_2_9_343_1
e_1_2_9_366_1
e_1_2_9_135_1
Su L (e_1_2_9_253_1) 2019; 6
Liu H (e_1_2_9_9_1) 2012; 100
e_1_2_9_29_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
Liu W (e_1_2_9_90_1) 2020; 11
e_1_2_9_103_1
e_1_2_9_149_1
e_1_2_9_356_1
e_1_2_9_379_1
Liu H (e_1_2_9_17_1) 2014; 104
Yang B (e_1_2_9_39_1) 2009; 74
e_1_2_9_310_1
Song W (e_1_2_9_368_1) 2017; 7
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
Dong K (e_1_2_9_340_1) 2018; 30
e_1_2_9_2_1
Wang J (e_1_2_9_237_1) 2019; 3
e_1_2_9_138_1
e_1_2_9_321_1
Zhang SL (e_1_2_9_142_1) 2017; 27
e_1_2_9_344_1
e_1_2_9_115_1
Chen L (e_1_2_9_120_1) 2018; 30
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
Shi Q (e_1_2_9_59_1) 2017; 7
e_1_2_9_213_1
Lee Y (e_1_2_9_228_1) 2018; 9
e_1_2_9_236_1
e_1_2_9_76_1
Lee HE (e_1_2_9_157_1) 2018; 28
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_334_1
e_1_2_9_357_1
e_1_2_9_125_1
e_1_2_9_311_1
Tao J (e_1_2_9_112_1) 2019; 29
Yi F (e_1_2_9_333_1) 2016; 2
Cho A (e_1_2_9_187_1) 2015; 347
e_1_2_9_224_1
e_1_2_9_201_1
Wang J (e_1_2_9_62_1) 2018; 7
e_1_2_9_247_1
Xia K (e_1_2_9_386_1) 2018; 17
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_345_1
Shi Q (e_1_2_9_18_1) 2016; 108
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_290_1
Zhang C (e_1_2_9_373_1) 2014; 4
e_1_2_9_335_1
e_1_2_9_312_1
e_1_2_9_181_1
Tang Y (e_1_2_9_215_1) 2020; 30
Wen F (e_1_2_9_227_1) 2020; 7
Chen X (e_1_2_9_256_1) 2017; 27
e_1_2_9_202_1
Zhou L (e_1_2_9_24_1) 2020; 2000965
e_1_2_9_85_1
Pu X (e_1_2_9_140_1) 2017; 3
e_1_2_9_248_1
Zhu M (e_1_2_9_128_1) 2019; 13
Deng J (e_1_2_9_330_1) 2018; 30
e_1_2_9_4_1
e_1_2_9_323_1
e_1_2_9_346_1
e_1_2_9_369_1
Xiang Z (e_1_2_9_65_1) 2016; 3
e_1_2_9_193_1
e_1_2_9_300_1
Dhakar L (e_1_2_9_123_1) 2016; 6
e_1_2_9_170_1
e_1_2_9_74_1
Liu H (e_1_2_9_31_1) 2018; 9
e_1_2_9_238_1
Wang DF (e_1_2_9_384_1) 2018; 17
e_1_2_9_97_1
Gao L (e_1_2_9_260_1) 2019; 9
e_1_2_9_291_1
e_1_2_9_336_1
e_1_2_9_104_1
e_1_2_9_359_1
Bahoumina P (e_1_2_9_385_1) 2018
Pang Y (e_1_2_9_243_1) 2015; 3
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
Yu H (e_1_2_9_150_1) 2017; 7
e_1_2_9_3_1
Yang B (e_1_2_9_10_1) 2012; 21
Yuan Z (e_1_2_9_158_1) 2018; 5
e_1_2_9_324_1
e_1_2_9_347_1
e_1_2_9_116_1
Kuang SY (e_1_2_9_165_1) 2018; 5
e_1_2_9_192_1
Zhu J (e_1_2_9_367_1) 2017; 7
References_xml – volume: 29
  start-page: 1
  issue: 41
  year: 2019
  end-page: 9
  article-title: Triboelectric nanogenerator boosts smart green tires
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  end-page: 23
  article-title: Self‐powered tactile sensor array systems based on the triboelectric effect
  publication-title: Adv Funct Mater
– volume: 58
  start-page: 499
  year: 2019
  end-page: 507
  article-title: Torus structured triboelectric nanogenerator array for water wave energy harvesting
  publication-title: Nano Energy
– volume: 29
  issue: 41
  year: 2019
  article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 1
  issue: 12
  year: 2020
  end-page: 14
  article-title: Biomechanical energy‐driven hybridized generator as a universal portable power source for smart/wearable electronics
  publication-title: Adv Energy Mater
– volume: 51
  start-page: 333
  year: 2018
  end-page: 339
  article-title: Near‐infrared irradiation induced remote and efficient self‐healable triboelectric nanogenerator for potential implantable electronics
  publication-title: Nano Energy
– volume: 31
  start-page: 302
  year: 2017
  end-page: 310
  article-title: An inductor‐free auto‐power‐management design built‐in triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 11
  start-page: 13796
  issue: 14
  year: 2019
  end-page: 13802
  article-title: Enhanced high‐resolution triboelectrification‐induced electroluminescence for self‐powered visualized interactive sensing
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  issue: 23
  year: 2019
  article-title: Low detection limit and high sensitivity wind speed sensor based on triboelectrification‐induced electroluminescence
  publication-title: Adv Sci
– volume: 7
  start-page: 1
  issue: 5
  year: 2018
  end-page: 8
  article-title: A highly selective 3D spiked ultraflexible neural (SUN) interface for decoding peripheral nerve sensory information
  publication-title: Adv Healthc Mater
– volume: 61
  start-page: 327
  year: 2019
  end-page: 336
  article-title: Lithium doped zinc oxide based flexible piezoelectric‐triboelectric hybrid nanogenerator
  publication-title: Nano Energy
– volume: 8
  start-page: 1
  issue: 8
  year: 2018
  end-page: 15
  article-title: Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad
  publication-title: Nanomaterials
– volume: 66
  year: 2019
  article-title: Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications
  publication-title: Nano Energy
– volume: 58
  start-page: 612
  year: 2019
  end-page: 623
  article-title: Self‐powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors
  publication-title: Nano Energy
– volume: 7
  issue: 6
  year: 2017
  article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies
  publication-title: Adv Energy Mater
– volume: 116
  issue: 2
  year: 2020
  article-title: Remarkably enhanced hybrid piezo/triboelectric nanogenerator via rational modulation of piezoelectric and dielectric properties for self‐powered electronics
  publication-title: Appl Phys Lett
– volume: 18
  start-page: 484
  year: 2019
  end-page: 490
  article-title: The flexible urea biosensor using magnetic nanoparticles
  publication-title: IEEE Trans Nanotechnol
– volume: 22
  start-page: 10
  year: 2018
  end-page: 13
  article-title: Piezoelectric and triboelectric nanogenerators: trends and impacts
  publication-title: Nano Today
– volume: 124
  start-page: 1
  issue: 8
  year: 2018
  end-page: 7
  article-title: A triboelectric nanogenerator as self‐powered temperature sensor based on PVDF and PTFE
  publication-title: Appl Phys A Mater Sci Process
– volume: 10
  start-page: 10580
  issue: 11
  year: 2016
  end-page: 10588
  article-title: All‐in‐one shape‐adaptive self‐charging power package for wearable electronics
  publication-title: ACS Nano
– volume: 5
  issue: 5
  year: 2019
  article-title: Versatile microfluidic platform embedded with sidewall three‐dimensional electrodes for cell manipulation
  publication-title: Biomed Phys Eng Express
– volume: 8
  start-page: 2250
  issue: 8
  year: 2015
  end-page: 2282
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self‐powered sensors
  publication-title: Energ Environ Sci
– volume: 67
  year: 2020
  article-title: A self‐powered and high sensitivity acceleration sensor with V‐Q‐a model based on triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
– volume: 5
  start-page: 824
  year: 2017
  end-page: 834
  article-title: Dielectric elastomers with dual piezo‐electrostatic response optimized through chemical design for electromechanical transducers
  publication-title: J Mater Chem C
– volume: 7
  start-page: 11263
  issue: 12
  year: 2013
  end-page: 11271
  article-title: Motion charged battery as sustainable flexible‐power‐unit
  publication-title: ACS Nano
– volume: 10
  start-page: 32281
  issue: 38
  year: 2018
  end-page: 32288
  article-title: Poly(dimethylsiloxane)/ZnO nanoflakes/three‐dimensional graphene heterostructures for high‐performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation
  publication-title: ACS Appl Mater Interfaces
– volume: 27
  start-page: 1
  issue: 4
  year: 2017
  end-page: 8
  article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 1
  issue: 6
  year: 2015
  end-page: 7
  article-title: Tribotronic enhanced photoresponsivity of a MOS phototransistor
  publication-title: Adv Sci
– volume: 2
  start-page: 1
  issue: 6
  year: 2016
  end-page: 11
  article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring
  publication-title: Sci Adv
– volume: 61
  start-page: 78
  year: 2019
  end-page: 85
  article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self‐powered sensing
  publication-title: Nano Energy
– volume: 6
  start-page: 1
  year: 2020
  end-page: 15
  article-title: Haptic‐feedback smart glove as a creative human‐machine interface ( HMI ) for virtual / augmented reality applications
  publication-title: Sci Adv
– volume: 10
  start-page: 6510
  issue: 7
  year: 2016
  end-page: 6518
  article-title: In vivo self‐powered wireless cardiac monitoring via implantable triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 24
  start-page: 1401
  issue: 10
  year: 2014
  end-page: 1407
  article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor
  publication-title: Adv Funct Mater
– volume: 6
  start-page: 1901437
  issue: 24
  year: 2019
  article-title: Self‐sustainable wearable textile nano‐energy nano‐system (NENS) for next‐generation healthcare applications
  publication-title: Adv Sci
– volume: 24
  start-page: 513
  issue: 3
  year: 2015
  end-page: 515
  article-title: An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF
  publication-title: J Microelectromech Syst
– volume: 42
  start-page: 129
  year: 2017
  end-page: 137
  article-title: Digitalized self‐powered strain gauge for static and dynamic measurement
  publication-title: Nano Energy
– volume: 8
  start-page: 3006
  issue: 10
  year: 2015
  end-page: 3012
  article-title: Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments
  publication-title: Energ Environ Sci
– volume: 29
  start-page: 1
  issue: 28
  year: 2019
  end-page: 10
  article-title: Treefrog toe pad‐inspired micropatterning for high‐power triboelectric nanogenerator
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 6031
  issue: 6
  year: 2014
  end-page: 6037
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin‐film surface
  publication-title: ACS Nano
– volume: 6
  start-page: 1
  issue: 5
  year: 2016
  end-page: 11
  article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy
  publication-title: Adv Energy Mater
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: Switched‐capacitor‐convertors based on fractal design for output power management of triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 31
  start-page: 469
  year: 2017
  end-page: 477
  article-title: A self‐powered acceleration sensor with flexible materials based on triboelectric effect
  publication-title: Nano Energy
– volume: 7
  issue: 7
  year: 2017
  article-title: Self‐powered wireless sensor node enabled by a duck‐shaped triboelectric nanogenerator for harvesting water wave energy
  publication-title: Adv Energy Mater
– volume: 40
  start-page: 203
  year: 2017
  end-page: 213
  article-title: Self‐powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm
  publication-title: Nano Energy
– volume: 8
  start-page: 34335
  issue: 50
  year: 2016
  end-page: 34341
  article-title: Piezoelectric and triboelectric dual effects in mechanical‐energy harvesting using BaTiO3/polydimethylsiloxane composite film
  publication-title: ACS Appl Mater Interfaces
– volume: 231
  start-page: 601
  year: 2016
  end-page: 608
  article-title: A self‐powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect
  publication-title: Sens Actuators B
– volume: 6
  start-page: 1
  year: 2020
  end-page: 13
  article-title: An epidermal sEMG tattoo‐like patch as a new human – machine interface for patients with loss of voice
  publication-title: Microsyst Nanoeng
– volume: 51
  start-page: 162
  year: 2018
  end-page: 172
  article-title: Novel augmented reality interface using a self‐powered triboelectric based virtual reality 3D‐control sensor
  publication-title: Nano Energy
– volume: 8
  start-page: 26697
  issue: 40
  year: 2016
  end-page: 26703
  article-title: Robust multilayered encapsulation for high‐performance triboelectric nanogenerator in harsh environment
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 1780
  issue: 2
  year: 2016
  end-page: 1787
  article-title: Freestanding flag‐type triboelectric nanogenerator for harvesting high‐altitude wind energy from arbitrary directions
  publication-title: ACS Nano
– volume: 70
  year: 2020
  article-title: Self‐powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications
  publication-title: Nano Energy
– volume: 347
  start-page: 1084
  issue: 6226
  year: 2015
  end-page: 1088
  article-title: To catch a wave
  publication-title: Science
– volume: 3
  start-page: 1
  issue: 9
  year: 2016
  end-page: 8
  article-title: Mapping of small nerve trunks and branches using adaptive flexible electrodes
  publication-title: Adv Sci
– volume: 7
  start-page: 1
  issue: 5
  year: 2017
  end-page: 9
  article-title: Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units
  publication-title: Adv Energy Mater
– volume: 6
  issue: 14
  year: 2019
  article-title: Investigation of low‐current direct stimulation for rehabilitation treatment related to muscle function loss using self‐powered TENG system
  publication-title: Adv Sci
– volume: 25
  start-page: 1798
  issue: 12
  year: 2015
  end-page: 1803
  article-title: Stretchable self‐powered fiber‐based strain sensor
  publication-title: Adv Funct Mater
– volume: 30
  start-page: 1
  issue: 15
  year: 2018
  end-page: 9
  article-title: On the electron‐transfer mechanism in the contact‐electrification effect
  publication-title: Adv Mater
– volume: 3
  issue: 7
  year: 2017
  article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelecric nanogenerator
  publication-title: Sci Adv
– volume: 14
  start-page: 3208
  issue: 6
  year: 2014
  end-page: 3213
  article-title: Self‐powered, ultrasensitive, flexible tactile sensors based on contact electrification
  publication-title: Nano Lett
– volume: 14
  start-page: 1
  issue: 3
  year: 2018
  end-page: 16
  article-title: Recent progress of textile‐based wearable electronics: a comprehensive review of materials, devices, and applications
  publication-title: Small
– volume: 2
  start-page: 687
  issue: 9
  year: 2018
  end-page: 695
  article-title: Monitoring of the central blood pressure waveform via a conformal ultrasonic device
  publication-title: Nat Biomed Eng
– volume: 30
  start-page: 1
  issue: 14
  year: 2018
  end-page: 10
  article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv Mater
– volume: 27
  start-page: 272
  issue: 2
  year: 2015
  end-page: 276
  article-title: Self‐powered water splitting using flowing kinetic energy
  publication-title: Adv Mater
– volume: 3
  start-page: 1
  issue: 9
  year: 2016
  end-page: 10
  article-title: Toward self‐powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery
  publication-title: Adv Sci
– volume: 29
  issue: 51
  year: 2019
  article-title: Self‐healing and stretchable 3D‐printed organic thermoelectrics
  publication-title: Adv Funct Mater
– volume: 30
  start-page: 1
  issue: 43
  year: 2018
  end-page: 12
  article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv Mater
– volume: 63
  year: 2019
  article-title: Direct muscle stimulation using diode‐amplified triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
– volume: 30
  start-page: 1
  issue: 5
  year: 2020
  end-page: 9
  article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 1
  issue: 3
  year: 2018
  end-page: 7
  article-title: A self‐powered portable power bank based on a hybridized nanogenerator
  publication-title: Adv Mater Technol
– volume: 12
  start-page: 5190
  year: 2018
  end-page: 5196
  article-title: Screen‐printed washable electronic textiles as self‐powered touch/gesture tribo‐sensors for intelligent human‐machine interaction
  publication-title: ACS Nano
– volume: 7
  year: 2020
  article-title: Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems
  publication-title: Appl Phys Rev
– volume: 10
  start-page: 4083
  issue: 4
  year: 2016
  end-page: 4091
  article-title: Self‐powered analogue smart skin
  publication-title: ACS Nano
– volume: 40
  start-page: 399
  issue: June
  year: 2017
  end-page: 407
  article-title: Fully self‐healing and shape‐tailorable triboelectric nanogenerators based on healable polymer and magnetic‐assisted electrode
  publication-title: Nano Energy
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics
  publication-title: Adv Mater Technol
– volume: 9
  start-page: 1263
  issue: 3
  year: 2017
  end-page: 1270
  article-title: A wave‐shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF‐TrFE) nanofibers
  publication-title: Nanoscale
– volume: 13
  start-page: 277
  issue: 1
  year: 2020
  end-page: 285
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energ Environ Sci
– volume: 4
  start-page: 150
  year: 2014
  end-page: 156
  article-title: Applicability of triboelectric generator over a wide range of temperature
  publication-title: Nano Energy
– volume: 30
  start-page: 450
  year: 2016
  end-page: 459
  article-title: Self‐powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications
  publication-title: Nano Energy
– volume: 2
  start-page: 1
  issue: 3
  year: 2016
  end-page: 10
  article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source
  publication-title: Sci Adv
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  article-title: Effective weight control via an implanted self‐powered vagus nerve stimulation device
  publication-title: Nat Commun
– volume: 69
  year: 2020
  article-title: A universal and arbitrary tactile interactive system based on self‐powered optical communication
  publication-title: Nano Energy
– volume: 10
  start-page: 785
  issue: 3
  year: 2017
  end-page: 793
  article-title: Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity
  publication-title: Nano Res
– volume: 19
  start-page: 532
  year: 2016
  end-page: 540
  article-title: An intelligent skin based self‐powered finger motion sensor integrated with triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 5
  start-page: 1
  issue: 2
  year: 2018
  end-page: 8
  article-title: Triboelectrification‐enabled self‐powered data storage
  publication-title: Adv Sci
– volume: 12
  start-page: 2027
  issue: 2
  year: 2018
  end-page: 2034
  article-title: Liquid‐metal‐based super‐stretchable and structure‐designable triboelectric nanogenerator for wearable electronics
  publication-title: ACS Nano
– volume: 32
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: A contact‐sliding‐triboelectrification‐driven dynamic optical transmittance modulator for self‐powered information covering and selective visualization
  publication-title: Adv Mater
– volume: 4
  start-page: 1
  issue: 9
  year: 2014
  end-page: 7
  article-title: Rotating‐disk‐based direct‐current triboelectric nanogenerator
  publication-title: Adv Energy Mater
– volume: 31
  start-page: 1
  issue: 34
  year: 2019
  end-page: 19
  article-title: Hybrid energy harvesters: toward sustainable energy harvesting
  publication-title: Adv Mater
– volume: 31
  issue: 15
  year: 2020
  article-title: Hybrid nano‐textured nanogenerator and self‐powered sensor for on‐skin triggered biomechanical motions
  publication-title: Nanotechnology
– volume: 40
  start-page: 65
  year: 2017
  end-page: 72
  article-title: Fingertip‐inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection
  publication-title: Nano Energy
– volume: 8
  start-page: 1
  issue: 27
  year: 2018
  end-page: 8
  article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel
  publication-title: Adv Energy Mater
– volume: 27
  start-page: 1
  issue: 6
  year: 2017
  end-page: 9
  article-title: Wearable force touch sensor array using a flexible and transparent electrode
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 1
  issue: 11
  year: 2017
  end-page: 10
  article-title: Toward bioelectronic medicine—neuromodulation of small peripheral nerves using flexible neural clip
  publication-title: Adv Sci
– volume: 63
  year: 2019
  article-title: A rotational pendulum based electromagnetic/triboelectric hybrid‐generator for ultra‐low‐frequency vibrations aiming at human motion and blue energy applications
  publication-title: Nano Energy
– volume: 18
  start-page: 497
  issue: 4
  year: 2012
  end-page: 506
  article-title: A new S‐shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
  publication-title: Microsyst Technol
– volume: 569
  start-page: 698
  issue: 7758
  year: 2019
  end-page: 702
  article-title: Learning the signatures of the human grasp using a scalable tactile glove
  publication-title: Nature
– volume: 29
  start-page: 1
  issue: 41
  year: 2017
  end-page: 9
  article-title: Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals
  publication-title: Adv Mater
– volume: 9
  start-page: 26126
  issue: 31
  year: 2017
  end-page: 26133
  article-title: Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  year: 2020
  article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing
  publication-title: Adv Sci
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nat Commun
– volume: 31
  start-page: 242001
  issue: 24
  year: 2020
  article-title: Environmental energy harvesting based on triboelectric nanogenerator
  publication-title: Nanotechnology
– volume: 2
  start-page: 1
  issue: 10
  year: 2015
  end-page: 21
  article-title: Recent progress in electronic skin
  publication-title: Adv Sci
– volume: 7
  start-page: 7383
  issue: 8
  year: 2013
  end-page: 7391
  article-title: Pulsed nanogenerator with huge instantaneous output power density
  publication-title: ACS Nano
– volume: 57
  start-page: 338
  year: 2019
  end-page: 352
  article-title: Beyond energy harvesting ‐ multi‐functional triboelectric nanosensors on a textile
  publication-title: Nano Energy
– volume: 59
  start-page: 268
  year: 2019
  end-page: 276
  article-title: All‐electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets
  publication-title: Nano Energy
– volume: 12
  start-page: 3109
  issue: 6
  year: 2012
  end-page: 3114
  article-title: Transparent triboelectric nanogenerators and self‐powered pressure sensors based on micropatterned plastic films
  publication-title: Nano Lett
– volume: 1
  start-page: 328
  issue: 2
  year: 2012
  end-page: 334
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 5
  start-page: 888
  issue: 12
  year: 2012
  end-page: 895
  article-title: Nanowire‐composite based flexible thermoelectric nanogenerators and self‐powered temperature sensors
  publication-title: Nano Res
– volume: 5
  issue: 1
  year: 2015
  article-title: High output piezo/triboelectric hybrid generator
  publication-title: Sci Rep
– volume: 263
  start-page: 317
  year: 2017
  end-page: 325
  article-title: The d‐arched piezoelectric‐triboelectric hybrid nanogenerator as a self‐powered vibration sensor
  publication-title: Sens Actuators A Phys
– volume: 21
  start-page: 88
  year: 2018
  end-page: 97
  article-title: Water wave energy harvesting and self‐powered liquid‐surface fluctuation sensing based on bionic‐jellyfish triboelectric nanogenerator
  publication-title: Mater Today
– volume: 43
  start-page: 326
  year: 2018
  end-page: 339
  article-title: Triboelectric‐piezoelectric‐electromagnetic hybrid nanogenerator for high‐efficient vibration energy harvesting and self‐powered wireless monitoring system
  publication-title: Nano Energy
– volume: 60
  start-page: 440
  year: 2019
  end-page: 448
  article-title: Intuitive‐augmented human‐machine multidimensional nano‐manipulation terminal using triboelectric stretchable strip sensors based on minimalist design
  publication-title: Nano Energy
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 9
  article-title: An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv Energy Mater
– volume: 542
  start-page: 159
  issue: 7640
  year: 2017
  end-page: 160
  article-title: Catch wave power in floating nets
  publication-title: Nature
– volume: 2000605
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
  publication-title: Adv Energy Mater
– volume: 108
  issue: 19
  year: 2016
  article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting
  publication-title: Appl Phys Lett
– volume: 9
  start-page: 3421
  issue: 4
  year: 2015
  end-page: 3427
  article-title: Triboelectric generators and sensors for self‐powered wearable electronics
  publication-title: ACS Nano
– volume: 7
  start-page: 10424
  issue: 11
  year: 2013
  end-page: 10432
  article-title: Triboelectric nanogenerator built on suspended 3d spiral structure as vibration and positioning sensor and wave energy harvester
  publication-title: ACS Nano
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  article-title: Transparent and attachable ionic communicators based on self‐cleanable triboelectric nanogenerators
  publication-title: Nat Commun
– volume: 56
  start-page: 1835
  issue: 8
  year: 2013
  end-page: 1841
  article-title: Low‐frequency wide‐band hybrid energy harvester based on piezoelectric and triboelectric mechanism
  publication-title: Sci China Technol Sci
– volume: 8
  start-page: 3934
  issue: 12
  year: 2015
  end-page: 3943
  article-title: Integration of micro‐supercapacitors with triboelectric nanogenerators for a flexible self‐charging power unit
  publication-title: Nano Res
– volume: 7
  start-page: 13347
  issue: 21
  year: 2019
  end-page: 13355
  article-title: Flexible composite‐nanofiber based piezo‐triboelectric nanogenerators for wearable electronics
  publication-title: J Mater Chem A
– volume: 4
  start-page: 1
  issue: 11
  year: 2017
  end-page: 10
  article-title: A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators
  publication-title: Adv Sci
– volume: 12
  start-page: 10262
  issue: 10
  year: 2018
  end-page: 10271
  article-title: Giant voltage enhancement via triboelectric charge supplement channel for self‐powered electroadhesion
  publication-title: ACS Nano
– volume: 11
  start-page: 8370
  issue: 8
  year: 2017
  end-page: 8378
  article-title: Rotating‐sleeve triboelectric‐electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy
  publication-title: ACS Nano
– volume: 8
  start-page: 18489
  issue: 43
  year: 2016
  end-page: 18494
  article-title: High performance triboelectric nanogenerators with aligned carbon nanotubes
  publication-title: Nanoscale
– volume: 11
  start-page: 5409
  issue: 40
  year: 2015
  end-page: 5415
  article-title: Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing
  publication-title: Small
– volume: 5
  issue: 4
  year: 2018
  article-title: High‐intensity triboelectrification‐induced electroluminescence by microsized contacts for self‐powered display and illumination
  publication-title: Adv Mater Interfaces
– volume: 7
  start-page: 7342
  issue: 8
  year: 2013
  end-page: 7351
  article-title: Single‐electrode‐based sliding triboelectric nanogenerator for self‐powered displacement vector sensor system
  publication-title: ACS Nano
– volume: 4
  start-page: 1
  issue: 2
  year: 2019
  end-page: 7
  article-title: A triboelectric nanogenerator‐based smart insole for multifunctional gait monitoring
  publication-title: Adv Mater Technol
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 3
  start-page: 1
  issue: 5
  year: 2017
  end-page: 11
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci Adv
– volume: 106
  issue: 1
  year: 2015
  article-title: Low temperature dependence of triboelectric effect for energy harvesting and self‐powered active sensing
  publication-title: Appl Phys Lett
– volume: 19
  issue: 3
  year: 2009
  article-title: Electromagnetic energy harvesting from vibrations of multiple frequencies
  publication-title: J Micromech Microeng
– volume: 25
  start-page: 6184
  issue: 43
  year: 2013
  end-page: 6193
  article-title: Theory of sliding‐mode triboelectric nanogenerators
  publication-title: Adv Mater
– volume: 17
  start-page: 723
  issue: 4
  year: 2018
  end-page: 726
  article-title: A ball‐impact piezoelectric converter wrapped by copper coils
  publication-title: IEEE Trans Nanotechnol
– volume: 6
  start-page: 1
  issue: 11
  year: 2016
  end-page: 5
  article-title: Fully packaged self‐powered triboelectric pressure sensor using hemispheres‐array
  publication-title: Adv Energy Mater
– volume: 65
  year: 2019
  article-title: Development of neural interfaces and energy harvesters towards self‐powered implantable systems for healthcare monitoring and rehabilitation purposes
  publication-title: Nano Energy
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  end-page: 82
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater Today
– volume: 13
  start-page: 698
  issue: 1
  year: 2019
  end-page: 705
  article-title: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact‐separation mode
  publication-title: ACS Nano
– volume: 9
  start-page: 286
  issue: 4
  year: 2014
  end-page: 289
  article-title: Flow sensing and energy harvesting characteristics of a wind‐driven piezoelectric Pb(Zr0.52, Ti0.48)O microcantilever
  publication-title: Micro Nano Lett
– volume: 183
  start-page: 140
  year: 2012
  end-page: 147
  article-title: Static and dynamic measurement of low‐level strains with carbon fibers
  publication-title: Sens Actuators A Phys
– volume: 12
  start-page: 11561
  issue: 11
  year: 2018
  end-page: 11571
  article-title: Triboelectric self‐powered wearable flexible patch as 3D motion control interface for robotic manipulator
  publication-title: ACS Nano
– volume: 4
  start-page: 1063
  issue: 3
  year: 2020
  end-page: 1077
  article-title: Triboelectric nanogenerators for a macro‐scale blue energy harvesting and self‐powered marine environmental monitoring system
  publication-title: Sustain Energy Fuels
– volume: 29
  issue: 41
  year: 2019
  article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces
  publication-title: Adv Funct Mater
– volume: 64
  year: 2019
  article-title: Piezoelectric‐enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting
  publication-title: Nano Energy
– volume: 10
  start-page: 1
  issue: 17
  year: 2020
  end-page: 6
  article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution
  publication-title: Adv Energy Mater
– volume: 3
  issue: 24
  year: 2018
  article-title: A hierarchically patterned, bioinspired e‐skin able to detect the direction of applied pressure for robotics
  publication-title: Sci Robot
– volume: 12
  start-page: 3954
  issue: 4
  year: 2018
  end-page: 3963
  article-title: Self‐powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 28
  issue: 3
  year: 2017
  article-title: Inductively‐coupled‐plasma‐induced electret enhancement for triboelectric nanogenerators
  publication-title: Nanotechnology
– volume: 11
  start-page: 8356
  issue: 8
  year: 2017
  end-page: 8363
  article-title: Enhanced triboelectric nanogenerators based on MoS monolayer nanocomposites acting as electron‐acceptor layers
  publication-title: ACS Nano
– volume: 29
  issue: 37
  year: 2017
  article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications
  publication-title: Adv Mater
– volume: 40
  start-page: 289
  year: 2017
  end-page: 299
  article-title: Full paper flexible transparent high‐voltage diodes for energy management in wearable electronics
  publication-title: Nano Energy
– volume: 5
  start-page: 1
  issue: 4
  year: 2019
  end-page: 7
  article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown
  publication-title: Sci Adv
– volume: 51
  start-page: 173
  year: 2018
  end-page: 184
  article-title: A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 28
  start-page: 6656
  issue: 31
  year: 2016
  end-page: 6664
  article-title: Dynamic Triboelectrification‐induced electroluminescence and its use in visualized sensing
  publication-title: Adv Mater
– volume: 100
  start-page: 1
  issue: 22
  year: 2012
  end-page: 4
  article-title: Development of piezoelectric microcantilever flow sensor with wind‐driven energy harvesting capability
  publication-title: Appl Phys Lett
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  end-page: 7
  article-title: Triboelectric‐based transparent secret code
  publication-title: Adv Sci
– volume: 22
  issue: 12
  year: 2012
  article-title: Feasibility study of a 3D vibration‐driven electromagnetic MEMS energy harvester with multiple vibration modes
  publication-title: J Micromech Microeng
– volume: 27
  start-page: 2340
  issue: 14
  year: 2015
  end-page: 2347
  article-title: Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing
  publication-title: Adv Mater
– volume: 7
  start-page: 3
  issue: 4
  year: 2017
  end-page: 7
  article-title: Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode
  publication-title: AIP Adv
– volume: 61
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Self‐powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
  publication-title: Nano Energy
– volume: 74
  start-page: 165
  year: 2009
  end-page: 168
  article-title: A wideband electromagnetic energy harvester for random vibration sources
  publication-title: Adv Mat Res
– volume: 62
  start-page: 355
  year: 2019
  end-page: 366
  article-title: Minimalist and multi‐functional human machine interface (HMI) using a flexible wearable triboelectric patch
  publication-title: Nano Energy
– volume: 14
  start-page: 161
  year: 2014
  end-page: 192
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 11
  start-page: 7513
  issue: 15
  year: 2019
  end-page: 7519
  article-title: A liquid PEDOT:PSS electrode‐based stretchable triboelectric nanogenerator for a portable self‐charging power source
  publication-title: Nanoscale
– volume: 18
  start-page: 28
  year: 2015
  end-page: 36
  article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead‐free ZnSnO nanocubes
  publication-title: Nano Energy
– volume: 5
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Interface‐free area‐scalable self‐powered electroluminescent system driven by triboelectric generator
  publication-title: Sci Rep
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 7
  article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting
  publication-title: Nat Commun
– volume: 11
  start-page: 9490
  issue: 9
  year: 2017
  end-page: 9499
  article-title: A highly stretchable and washable all‐yarn‐based self‐charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
– volume: 30
  start-page: 1
  issue: 6
  year: 2020
  end-page: 9
  article-title: Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing
  publication-title: Adv Funct Mater
– volume: 66
  year: 2019
  article-title: A multifunctional and highly flexible triboelectric nanogenerator based on MXene‐enabled porous film integrated with laser‐induced graphene electrode
  publication-title: Nano Energy
– volume: 5
  issue: 4
  year: 2018
  article-title: Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self‐powered micro‐shock sensing
  publication-title: Mater Res Express
– volume: 27
  start-page: 719
  issue: 4
  year: 2015
  end-page: 726
  article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 7
  start-page: 1
  issue: 3
  year: 2019
  end-page: 13
  article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks
  publication-title: APL Mater
– volume: 8
  issue: 21
  year: 2018
  article-title: Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low‐frequency blue energy
  publication-title: Adv Energy Mater
– volume: 176
  start-page: 447
  year: 2014
  end-page: 458
  article-title: Triboelectric nanogenerators as new energy technology and self‐powered sensors—principles, problems and perspectives
  publication-title: Faraday Discuss
– volume: 28
  start-page: 2896
  issue: 15
  year: 2016
  end-page: 2903
  article-title: Self‐powered high‐resolution and pressure‐sensitive triboelectric sensor matrix for real‐time tactile mapping
  publication-title: Adv Mater
– volume: 13
  year: 2019
  article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring
  publication-title: ACS Nano
– volume: 65
  year: 2019
  article-title: A highly elastic self‐charging power system for simultaneously harvesting solar and mechanical energy
  publication-title: Nano Energy
– volume: 11
  start-page: 5200
  issue: 5
  year: 2019
  end-page: 5207
  article-title: Self‐powered motion‐driven triboelectric electroluminescence textile system
  publication-title: ACS Appl Mater Interfaces
– volume: 104
  issue: 5
  year: 2014
  article-title: Ultra‐wide frequency broadening mechanism for micro‐scale electromagnetic energy harvester
  publication-title: Appl Phys Lett
– volume: 25
  start-page: 5625
  issue: 35
  year: 2015
  end-page: 5632
  article-title: Organic tribotronic transistor for contact‐electrification‐gated light‐emitting diode
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 3944
  issue: 4
  year: 2016
  end-page: 3950
  article-title: Triboelectric nanogenerator as a self‐powered communication unit for processing and transmitting information
  publication-title: ACS Nano
– volume: 4
  start-page: 2809
  issue: 10
  year: 2019
  end-page: 2818
  article-title: Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO e‐textile gas sensor
  publication-title: ACS Sensors
– volume: 56
  start-page: 651
  year: 2019
  end-page: 661
  article-title: A self‐powered 3D activity inertial sensor using hybrid sensing mechanisms
  publication-title: Nano Energy
– start-page: 1
  year: 2018
  end-page: 1
  article-title: VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS‐MWCNTs nanocomposite film for environmental applications
  publication-title: IEEE Transactions on Nanotechnology
– volume: 9
  start-page: 1
  issue: 8
  year: 2018
  end-page: 10
  article-title: Development of a thermoelectric and electromagnetic hybrid energy harvester from water flow in an irrigation system
  publication-title: Micromachines
– volume: 20
  start-page: 1131
  issue: 5
  year: 2011
  end-page: 1142
  article-title: Piezoelectric MEMS energy harvester for low‐frequency vibrations with wideband operation range and steadily increased output power
  publication-title: J Microelectromech Syst
– volume: 61
  start-page: 158
  year: 2019
  end-page: 164
  article-title: Fully‐integrated motion‐driven electroluminescence enabled by triboelectrification for customized flexible display
  publication-title: Nano Energy
– volume: 13
  start-page: 91
  issue: 1
  year: 2013
  end-page: 94
  article-title: Flexible fiber nanogenerator with 209 V output voltage directly powers a light‐emitting diode
  publication-title: Nano Lett
– volume: 6
  issue: 15
  year: 2019
  article-title: Self‐powered bio‐inspired spider‐net‐coding interface using single‐electrode triboelectric nanogenerator
  publication-title: Adv Sci
– volume: 17
  start-page: 1217
  issue: 6
  year: 2018
  end-page: 1223
  article-title: High output compound triboelectric nanogenerator based on paper for self‐powered height sensing system
  publication-title: IEEE Trans Nanotechnol
– volume: 64
  year: 2019
  article-title: Highly skin‐conformal wearable tactile sensor based on piezoelectric‐enhanced triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Broadband energy harvester using non‐linear polymer spring and electromagnetic/triboelectric hybrid mechanism
  publication-title: Sci Rep
– volume: 68
  issue: October 2019
  year: 2020
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
– volume: 24
  start-page: 1338
  issue: 5
  year: 2015
  end-page: 1345
  article-title: A triboelectric energy harvester using low‐cost, flexible, and biocompatible ethylene vinyl acetate (EVA)
  publication-title: J Microelectromech Syst
– volume: 10
  year: 2019
  article-title: Triboelectric micromotors actuated by ultralow frequency mechanical stimuli
  publication-title: Nat Commun
– volume: 41
  start-page: 387
  year: 2017
  end-page: 393
  article-title: Triboelectrification‐enabled touch sensing for self‐powered position mapping and dynamic tracking by a flexible and area‐scalable sensor array
  publication-title: Nano Energy
– volume: 13
  start-page: 13257
  issue: 11
  year: 2019
  end-page: 13263
  article-title: On the maximal output energy density of nanogenerators
  publication-title: ACS Nano
– volume: 4
  issue: 12
  year: 2019
  article-title: An easily assembled electromagnetic‐triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self‐powered flow monitoring in a smart home/city
  publication-title: Adv Mater Technol
– volume: 6
  start-page: 3680
  issue: 5
  year: 2014
  end-page: 3688
  article-title: Electret film‐enhanced triboelectric nanogenerator matrix for self‐powered instantaneous tactile imaging
  publication-title: ACS Appl Mater Interfaces
– volume: 20
  start-page: 48
  year: 2016
  end-page: 56
  article-title: Self‐powered flat panel displays enabled by motion‐driven alternating current electroluminescence
  publication-title: Nano Energy
– volume: 8
  start-page: 6440
  issue: 6
  year: 2014
  end-page: 6448
  article-title: Dual‐mode triboelectric nanogenerator for harvesting water energy and as a self‐powered ethanol nanosensor
  publication-title: ACS Nano
– volume: 3
  start-page: 1
  issue: 7
  year: 2017
  end-page: 8
  article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci Adv
– volume: 62
  start-page: 660
  year: 2019
  end-page: 666
  article-title: Power‐generating footwear based on a triboelectric‐electromagnetic‐piezoelectric hybrid nanogenerator
  publication-title: Nano Energy
– volume: 17
  start-page: 220
  issue: 2
  year: 2018
  end-page: 230
  article-title: Biocompatible, flexible, and compliant energy harvesters based on piezoelectric thin films
  publication-title: IEEE Trans Nanotechnol
– volume: 61
  start-page: 584
  year: 2019
  end-page: 593
  article-title: Self‐restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self‐powered water temperature sensor
  publication-title: Nano Energy
– volume: 71
  year: 2020
  article-title: Self‐driven power management system for triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 7
  start-page: 1
  issue: 14
  year: 2020
  end-page: 15
  article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications
  publication-title: Adv Sci
– volume: 10
  start-page: 10912
  issue: 12
  year: 2016
  end-page: 10920
  article-title: Tribotronic transistor array as an active tactile sensing system
  publication-title: ACS Nano
– volume: 1
  start-page: 480
  issue: 3
  year: 2017
  end-page: 521
  article-title: Reviving vibration energy harvesting and self‐powered sensing by a triboelectric nanogenerator
  publication-title: Joule
– volume: 6
  start-page: 1112
  issue: 6
  year: 2018
  end-page: 1118
  article-title: Single‐electrode, nylon‐fiber‐enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting
  publication-title: Energ Technol
– volume: 40
  start-page: 300
  year: 2017
  end-page: 307
  article-title: A low‐frequency piezoelectric‐electromagnetic‐triboelectric hybrid broadband vibration energy harvester
  publication-title: Nano Energy
– volume: 11
  start-page: 436
  year: 2015
  end-page: 462
  article-title: Triboelectric nanogenerators as self‐powered active sensors
  publication-title: Nano Energy
– volume: 188
  year: 2020
  article-title: Piezo/triboelectric hybrid nanogenerators based on Ca‐doped barium zirconate titanate embedded composite polymers for wearable electronics
  publication-title: Compos Sci Technol
– volume: 30
  start-page: 1
  issue: 8
  year: 2018
  end-page: 8
  article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing
  publication-title: Adv Mater
– volume: 11
  start-page: 3950
  issue: 4
  year: 2017
  end-page: 3956
  article-title: From dual‐mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design
  publication-title: ACS Nano
– volume: 9
  start-page: 4553
  issue: 4
  year: 2015
  end-page: 4562
  article-title: Hybridized electromagnetic‐triboelectric nanogenerator for scavenging air‐flow energy to sustainably power temperature sensors
  publication-title: ACS Nano
– volume: 12
  start-page: 6147
  issue: 6
  year: 2018
  end-page: 6155
  article-title: Self‐healable, stretchable, transparent triboelectric nanogenerators as soft power sources
  publication-title: ACS Nano
– volume: 78
  issue: July
  year: 2020
  article-title: Programmed‐triboelectric nanogenerators—a multi‐switch regulation methodology for energy manipulation
  publication-title: Nano Energy
– volume: 43
  start-page: 253
  year: 2018
  end-page: 258
  article-title: A self‐powered 2D barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification
  publication-title: Nano Energy
– volume: 24
  start-page: 91
  issue: 1
  year: 2015
  end-page: 99
  article-title: Development of a broadband triboelectric energy harvester with SU‐8 micropillars
  publication-title: J Microelectromech Syst
– volume: 48
  start-page: 152
  year: 2018
  end-page: 160
  article-title: All‐fiber hybrid piezoelectric‐enhanced triboelectric nanogenerator for wearable gesture monitoring
  publication-title: Nano Energy
– volume: 62
  start-page: 277
  issue: 4
  year: 2004
  end-page: 290
  article-title: A semi‐quantitative tribo‐electric series for polymeric materials: the influence of chemical structure and properties
  publication-title: J Electrostat
– volume: 32
  start-page: 1
  issue: 5
  year: 2020
  end-page: 43
  article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv Mater
– volume: 30
  start-page: 1
  issue: 47
  year: 2018
  end-page: 15
  article-title: Controlling surface charge generated by contact electrification: strategies and applications
  publication-title: Adv Mater
– volume: 27
  start-page: 1
  issue: 25
  year: 2017
  end-page: 7
  article-title: Auxetic foam‐based contact‐mode triboelectric nanogenerator with highly sensitive self‐powered strain sensing capabilities to monitor human body movement
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 6241
  issue: 6
  year: 2016
  end-page: 6247
  article-title: Rotating‐disk‐based hybridized electromagnetic‐triboelectric nanogenerator for sustainably powering wireless traffic volume sensors
  publication-title: ACS Nano
– volume: 63
  year: 2019
  article-title: Ionogel‐based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range
  publication-title: Nano Energy
– volume: 6
  issue: 11
  year: 2020
  article-title: Machine‐knitted washable sensor array textile for precise epidermal physiological signal monitoring
  publication-title: Sci Adv
– volume: 6
  start-page: 130
  year: 2018
  end-page: 137
  article-title: Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications
  publication-title: Curr Opin Biomed Eng
– volume: 47
  start-page: 316
  year: 2018
  end-page: 324
  article-title: Self‐powered room temperature NO detection driven by triboelectric nanogenerator under UV illumination
  publication-title: Nano Energy
– volume: 13
  start-page: 8936
  issue: 8
  year: 2019
  end-page: 8945
  article-title: Shape‐adaptive, self‐healable triboelectric nanogenerator with enhanced performances by soft solid‐solid contact electrification
  publication-title: ACS Nano
– volume: 67
  year: 2020
  article-title: Battery‐free short‐range self‐powered wireless sensor network (SS‐WSN) using TENG based direct sensory transmission (TDST) mechanism
  publication-title: Nano Energy
– volume: 73
  year: 2020
  article-title: Continuous direct current by charge transportation for next‐generation IoT and real‐time virtual reality applications
  publication-title: Nano Energy
– volume: 70
  year: 2020
  article-title: Impact induced compound method for triboelectric‐piezoelectric hybrid nanogenerators to achieve watt level average power in low frequency rotations
  publication-title: Nano Energy
– volume: 32
  start-page: 84
  year: 2020
  end-page: 93
  article-title: 3D double‐faced interlock fabric triboelectric nanogenerator for bio‐motion energy harvesting and as self‐powered stretching and 3D tactile sensors
  publication-title: Mater Today
– volume: 26
  start-page: 6720
  issue: 39
  year: 2014
  end-page: 6728
  article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding
  publication-title: Adv Mater
– volume: 38
  start-page: 91
  year: 2017
  end-page: 100
  article-title: Self‐powered modulation of elastomeric optical grating by using triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 36
  start-page: 1389
  issue: 8
  year: 2011
  article-title: Voltage‐controlled compression for period tuning of optical surface relief gratings
  publication-title: Opt Lett
– volume: 62
  start-page: 259
  year: 2019
  end-page: 267
  article-title: Nano energy graphene‐based stretchable/wearable self‐powered touch sensor
  publication-title: Nano Energy
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Skin‐touch‐actuated textile‐based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting
  publication-title: Nat Commun
– volume: 28
  start-page: 1
  issue: 47
  year: 2018
  end-page: 9
  article-title: Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body‐enhanced induction of ambient electromagnetic waves
  publication-title: Adv Funct Mater
– volume: 28
  start-page: 172
  year: 2016
  end-page: 178
  article-title: A size‐unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 10
  start-page: 6433
  issue: 7
  year: 2018
  end-page: 6440
  article-title: Piezoelectric‐induced triboelectric hybrid nanogenerators based on the ZnO nanowire layer decorated on the au/polydimethylsiloxane‐Al structure for enhanced triboelectric performance
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 1
  issue: 44
  year: 2019
  end-page: 11
  article-title: Enhancing the output performance of triboelectric nanogenerator via grating‐electrode‐enabled surface plasmon excitation
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 13948
  issue: 23
  year: 2019
  end-page: 13955
  article-title: Highly efficient self‐healable and dual responsive hydrogel‐based deformable triboelectric nanogenerators for wearable electronics
  publication-title: J Mater Chem A
– volume: 3
  issue: 20
  year: 2018
  article-title: A highly sensitive, self‐powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Sci Robot
– volume: 47
  start-page: 566
  year: 2018
  end-page: 572
  article-title: Self‐powered wireless optical transmission of mechanical agitation signals
  publication-title: Nano Energy
– volume: 28
  start-page: 1
  issue: 32
  year: 2018
  end-page: 18
  article-title: Novel electronics for flexible and neuromorphic computing
  publication-title: Adv Funct Mater
– volume: 10
  issue: 1
  year: 2019
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat Commun
– volume: 13
  start-page: 1300
  year: 2020
  end-page: 1308
  article-title: Blue energy fuels: converting ocean wave energy to carbon‐based liquid fuels via CO reduction
  publication-title: Energ Environ Sci
– volume: 2
  start-page: 863
  issue: 4
  year: 2020
  end-page: 878
  article-title: Research progress and prospect of triboelectric nanogenerators as self‐powered human body sensors
  publication-title: ACS Appl Electron Mater
– volume: 7
  start-page: 1
  issue: 19
  year: 2017
  end-page: 8
  article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer
  publication-title: Adv Energy Mater
– volume: 28
  start-page: 2881
  issue: 15
  year: 2016
  end-page: 2887
  article-title: A one‐structure‐based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric‐piezoelectric‐pyroelectric effects
  publication-title: Adv Mater
– volume: 11
  start-page: 4313
  issue: 8
  year: 2018
  end-page: 4322
  article-title: Flexible self‐charging power units for portable electronics based on folded carbon paper
  publication-title: Nano Res
– volume: 6
  start-page: 16548
  issue: 34
  year: 2018
  end-page: 16555
  article-title: A flexible comb electrode triboelectric‐electret nanogenerator with separated microfibers for a self‐powered position, motion direction and acceleration tracking sensor
  publication-title: J Mater Chem A
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  article-title: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self‐powered implantable biomedical devices
  publication-title: Sci Rep
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 7
  article-title: High performance lithium‐sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators
  publication-title: Sci Rep
– volume: 8
  issue: 23
  year: 2018
  article-title: Hybrid piezo/triboelectric‐driven self‐charging electrochromic supercapacitor power package
  publication-title: Adv Energy Mater
– volume: 26
  start-page: 8194
  issue: 45
  year: 2016
  end-page: 8201
  article-title: Triboelectric and piezoelectric effects in a combined tribo‐piezoelectric nanogenerator based on an interfacial ZnO nanostructure
  publication-title: Adv Funct Mater
– volume: 11
  start-page: 10337
  issue: 10
  year: 2017
  end-page: 10346
  article-title: Self‐powered dual‐mode amenity sensor based on the water‐air triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 12
  start-page: 3487
  issue: 4
  year: 2018
  end-page: 3501
  article-title: Toward self‐control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro‐actuator
  publication-title: ACS Nano
– volume: 19
  start-page: 230
  year: 2020
  end-page: 235
  article-title: Self‐powered active spherical triboelectric sensor for fluid velocity detection
  publication-title: IEEE Trans Nanotechnol
– volume: 57
  start-page: 851
  year: 2019
  end-page: 871
  article-title: More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro‐/nano‐systems
  publication-title: Nano Energy
– volume: 30
  year: 2020
  article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy
  publication-title: Adv Funct Mater
– volume: 78
  issue: July
  year: 2020
  article-title: Advances in chemical sensing technology for enabling the next‐generation self‐sustainable integrated wearable system in the IoT era
  publication-title: Nano Energy
– volume: 102
  start-page: 130
  year: 2018
  end-page: 136
  article-title: A flexible multi‐layer electret nanogenerator for bending deformation energy harvesting and strain sensing
  publication-title: Mater Res Bull
– volume: 48
  start-page: 421
  year: 2018
  end-page: 429
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nano Energy
– volume: 363
  issue: 6430
  year: 2019
  article-title: Binodal, wireless epidermal electronic systems with in‐sensor analytics for neonatal intensive care
  publication-title: Science
– volume: 32
  start-page: 1
  issue: 15
  year: 2020
  end-page: 31
  article-title: Nanomaterial‐enabled flexible and stretchable sensing systems: processing, integration, and applications
  publication-title: Adv Mater
– volume: 28
  start-page: 1
  issue: 35
  year: 2018
  end-page: 8
  article-title: Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 1
  issue: 7
  year: 2019
  end-page: 11
  article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode
  publication-title: Adv Biosyst
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  end-page: 11
  article-title: Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator
  publication-title: Adv Funct Mater
– volume: 113
  issue: 20
  year: 2018
  article-title: A non‐resonant rotational electromagnetic energy harvester for low‐frequency and irregular human motion
  publication-title: Appl Phys Lett
– volume: 35
  start-page: 415
  year: 2017
  end-page: 423
  article-title: Performance‐enhanced triboelectric nanogenerator enabled by wafer‐scale nanogrates of multistep pattern downscaling
  publication-title: Nano Energy
– volume: 109
  issue: 19
  year: 2016
  article-title: Soft tunable diffractive optics with multifunctional transparent electrodes enabling integrated actuation
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 1
  issue: 13
  year: 2017
  end-page: 9
  article-title: Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators
  publication-title: Adv Energy Mater
– volume: 2
  issue: 7
  year: 2018
  article-title: Self‐powered cursor using a triboelectric mechanism
  publication-title: Small Methods
– volume: 508
  start-page: 302
  issue: 7496
  year: 2014
  end-page: 304
  article-title: Power from the oceans: blue energy
  publication-title: Nature
– volume: 13
  start-page: 3589
  issue: 3
  year: 2019
  end-page: 3599
  article-title: Self‐powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple‐channel intramuscular electrode
  publication-title: ACS Nano
– volume: 60
  start-page: 545
  year: 2019
  end-page: 556
  article-title: Triboelectric single‐electrode‐output control interface using patterned grid electrode
  publication-title: Nano Energy
– volume: 6
  start-page: 553
  issue: 1
  year: 2014
  end-page: 559
  article-title: Fully enclosed cylindrical single‐electrode‐based triboelectric nanogenerator
  publication-title: ACS Appl Mater Interfaces
– volume: 48
  start-page: 128
  year: 2018
  end-page: 133
  article-title: Generators to harvest ocean wave energy through electrokinetic principle
  publication-title: Nano Energy
– volume: 2
  start-page: 491
  issue: 4
  year: 2013
  end-page: 497
  article-title: Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs
  publication-title: Nano Energy
– volume: 58
  start-page: 641
  year: 2019
  end-page: 651
  article-title: Self‐powered glove‐based intuitive interface for diversified control applications in real/cyber space
  publication-title: Nano Energy
– volume: 10
  start-page: 8078
  issue: 8
  year: 2016
  end-page: 8086
  article-title: Transparent and flexible self‐charging power film and its application in a sliding unlock system in touchpad technology
  publication-title: ACS Nano
– volume: 3
  start-page: 1
  issue: 4
  year: 2018
  end-page: 7
  article-title: Radial‐grating pendulum‐structured triboelectric nanogenerator for energy harvesting and tilting‐angle sensing
  publication-title: Adv Mater Technol
– volume: 6
  start-page: 8525
  issue: 7
  year: 2018
  end-page: 8535
  article-title: High‐performance flexible piezoelectric‐assisted triboelectric hybrid nanogenerator via polydimethylsiloxane‐encapsulated nanoflower‐like ZnO composite films for scavenging energy from daily human activities
  publication-title: ACS Sustain Chem Eng
– volume: 6
  start-page: 11893
  issue: 44
  year: 2018
  end-page: 11902
  article-title: Toward self‐powered photodetection enabled by triboelectric nanogenerators
  publication-title: J Mater Chem C
– volume: 54
  start-page: 453
  year: 2018
  end-page: 460
  article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor
  publication-title: Nano Energy
– volume: 50
  start-page: 148
  year: 2018
  end-page: 158
  article-title: Battery‐free neuromodulator for peripheral nerve direct stimulation
  publication-title: Nano Energy
– volume: 59
  start-page: 689
  year: 2019
  end-page: 696
  article-title: Triboelectric vibration sensor for a human‐machine interface built on ubiquitous surfaces
  publication-title: Nano Energy
– volume: 44
  start-page: 103
  year: 2018
  end-page: 110
  article-title: Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 28
  start-page: 12080
  issue: 16
  year: 2017
  end-page: 12085
  article-title: Electrospinning poly(l‐lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting
  publication-title: J Mater Sci Mater Electron
– volume: 14
  start-page: 8915
  issue: 7
  year: 2020
  end-page: 8930
  article-title: Wearable triboelectric‐human‐machine‐interface (THMI) using robust nanophotonic readout
  publication-title: ACS Nano
– volume: 10
  issue: 1
  year: 2019
  article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics
  publication-title: Nat Commun
– volume: 4
  issue: 31
  year: 2019
  article-title: A myoelectric prosthetic hand with muscle synergy‐based motion determination and impedance model‐based biomimetic control
  publication-title: Sci Robot
– volume: 20
  issue: 6
  year: 2010
  article-title: A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations
  publication-title: J Micromech Microeng
– volume: 14
  start-page: 4716
  issue: 4
  year: 2020
  end-page: 4726
– volume: 27
  start-page: 1316
  issue: 8
  year: 2015
  end-page: 1326
  article-title: Eardrum‐inspired active sensors for self‐powered cardiovascular system characterization and throat‐attached anti‐interference voice recognition
  publication-title: Adv Mater
– volume: 32
  start-page: 542
  year: 2017
  end-page: 550
  article-title: Reduced graphene‐oxide acting as electron‐trapping sites in the friction layer for giant triboelectric enhancement
  publication-title: Nano Energy
– volume: 50
  start-page: 497
  year: 2018
  end-page: 503
  article-title: Triboelectrification‐enabled thin‐film tactile matrix for self‐powered high‐resolution imaging
  publication-title: Nano Energy
– volume: 14
  start-page: 1390
  issue: 2
  year: 2020
  end-page: 1398
  article-title: Self‐powered tactile sensor with learning and memory
  publication-title: ACS Nano
– volume: 3
  start-page: 1
  issue: 3
  year: 2018
  end-page: 7
  article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel
  publication-title: Adv Mater Technol
– volume: 58
  start-page: 312
  year: 2019
  end-page: 321
  article-title: A facile respiration‐driven triboelectric nanogenerator for multifunctional respiratory monitoring
  publication-title: Nano Energy
– volume: 42
  start-page: 241
  year: 2017
  end-page: 248
  article-title: Utilization of self‐powered electrochemical systems: metallic nanoparticle synthesis and lactate detection
  publication-title: Nano Energy
– volume: 65
  year: 2019
  article-title: Self‐powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators
  publication-title: Nano Energy
– volume: 33
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Development of battery‐free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
– volume: 7
  start-page: 9533
  issue: 11
  year: 2013
  end-page: 9557
  article-title: Triboelectric nanogenerators as new energy technology for self‐powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
– volume: 7
  start-page: 1
  issue: 2
  year: 2017
  end-page: 8
  article-title: Boosting power‐generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties
  publication-title: Adv Energy Mater
– volume: 69
  year: 2020
  article-title: Switchable textile‐triboelectric nanogenerators (S‐TENGs) for continuous profile sensing application without environmental interferences
  publication-title: Nano Energy
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Large scale triboelectric nanogenerator and self‐powered pressure sensor array using low cost roll‐to‐roll UV embossing
  publication-title: Sci Rep
– volume: 28
  start-page: 10024
  issue: 45
  year: 2016
  end-page: 10032
  article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications
  publication-title: Adv Mater
– volume: 17
  start-page: 282
  issue: 2
  year: 2017
  article-title: Real‐time performance of a self‐powered environmental IoT sensor network system
  publication-title: Sensors (Switzerland)
– volume: 49
  start-page: 31
  year: 2018
  end-page: 39
  article-title: Self‐powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 72
  year: 2020
  article-title: Self‐powered eye motion sensor based on triboelectric interaction and near‐field electrostatic induction for wearable assistive technologies
  publication-title: Nano Energy
– volume: 9
  start-page: 1
  issue: 14
  year: 2019
  end-page: 8
  article-title: Metal–organic framework: a novel material for triboelectric nanogenerator‐based self‐powered sensors and systems
  publication-title: Adv Energy Mater
– volume: 2000886
  start-page: 1
  year: 2020
  end-page: 8
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
– volume: 15
  start-page: 4782
  issue: 9
  year: 2015
  end-page: 4790
  article-title: An intermittent self‐powered energy harvesting system from low‐frequency hand shaking
  publication-title: IEEE Sens J
– volume: 4
  issue: 32
  year: 2019
  article-title: A neuro‐inspired artificial peripheral nervous system for scalable electronic skins
  publication-title: Sci Robot
– volume: 11
  start-page: 3972
  issue: 8
  year: 2018
  end-page: 3978
  article-title: Self‐powered versatile shoes based on hybrid nanogenerators
  publication-title: Nano Res
– volume: 24
  issue: 10
  year: 2014
  article-title: Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures
  publication-title: J Micromech Microeng
– volume: 49
  start-page: 274
  year: 2018
  end-page: 282
  article-title: Triboelectric electronic‐skin based on graphene quantum dots for application in self‐powered, smart, artificial fingers
  publication-title: Nano Energy
– volume: 5
  start-page: 36
  issue: 1
  year: 2014
  end-page: 46
  article-title: A novel arch‐shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting
  publication-title: Nanomaterials
– volume: 174
  start-page: 188
  year: 2018
  end-page: 197
  article-title: A hybrid piezoelectric‐triboelectric generator for low‐frequency and broad‐bandwidth energy harvesting
  publication-title: Energ Conver Manage
– volume: 28
  start-page: 1
  issue: 37
  year: 2018
  end-page: 8
  article-title: A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors
  publication-title: Adv Funct Mater
– volume: 24
  start-page: 7488
  issue: 47
  year: 2014
  end-page: 7494
  article-title: Self‐powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor
  publication-title: Adv Funct Mater
– volume: 12
  start-page: 19384
  issue: 17
  year: 2020
  end-page: 19392
  article-title: Flexible self‐powered real‐time ultraviolet photodetector by coupling triboelectric and photoelectric effects
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 4062
  issue: 8
  year: 2018
  end-page: 4073
  article-title: Liquid‐FEP‐based U‐tube triboelectric nanogenerator for harvesting water‐wave energy
  publication-title: Nano Res
– volume: 57
  start-page: 440
  year: 2019
  end-page: 449
  article-title: Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting
  publication-title: Nano Energy
– volume: 64
  year: 2019
  article-title: Liquid‐metal‐elastomer foam for moldable multi‐functional triboelectric energy harvesting and force sensing
  publication-title: Nano Energy
– volume: 30
  start-page: 34
  issue: November
  year: 2019
  end-page: 51
  article-title: On the origin of contact‐electrification
  publication-title: Mater Today
– volume: 16
  start-page: 6042
  issue: 10
  year: 2016
  end-page: 6051
  article-title: Self‐powered, one‐stop, and multifunctional implantable triboelectric active sensor for real‐time biomedical monitoring
  publication-title: Nano Lett
– volume: 57
  start-page: 616
  year: 2019
  end-page: 624
  article-title: A fully‐packaged ship‐shaped hybrid nanogenerator for blue energy harvesting toward seawater self‐desalination and self‐powered positioning
  publication-title: Nano Energy
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 26
  start-page: 5851
  issue: 33
  year: 2014
  end-page: 5856
  article-title: In vivo powering of pacemaker by breathing‐driven implanted triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 28
  start-page: 1
  issue: 51
  year: 2018
  end-page: 10
  article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits
  publication-title: Adv Funct Mater
– volume: 7
  start-page: 1
  issue: 22
  year: 2017
  end-page: 11
  article-title: Self‐powered gyroscope ball using a triboelectric mechanism
  publication-title: Adv Energy Mater
– volume: 29
  start-page: 1
  issue: 13
  year: 2019
  end-page: 8
  article-title: Self‐powered optical switch based on triboelectrification‐triggered liquid crystal alignment for wireless sensing
  publication-title: Adv Funct Mater
– volume: 29
  start-page: 1
  issue: 15
  year: 2017
  end-page: 7
  article-title: Full dynamic‐range pressure sensor matrix based on optical and electrical dual‐mode sensing
  publication-title: Adv Mater
– volume: 9
  start-page: 1
  issue: 8
  year: 2019
  end-page: 12
  article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting
  publication-title: Adv Energy Mater
– volume: 2
  start-page: 4027
  issue: 6
  year: 2019
  end-page: 4032
  article-title: Hybrid tribo‐piezo‐electric nanogenerator with unprecedented performance based on ferroelectric composite contacting layers
  publication-title: ACS Appl Energy Mater
– volume: 30
  issue: 12
  year: 2018
  article-title: A highly stretchable transparent self‐powered triboelectric tactile sensor with metallized nanofibers for wearable electronics
  publication-title: Adv Mater
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Design and anchorage dependence of shape memory alloy actuators on enhanced voiding of a bladder
  publication-title: Adv Mater Technol
– volume: 21
  issue: 3
  year: 2012
  article-title: Investigation of a MEMS piezoelectric energy harvester system with a frequency‐widened‐bandwidth mechanism introduced by mechanical stoppers
  publication-title: Smart Mater Struct
– volume: 12
  start-page: 4280
  issue: 5
  year: 2018
  end-page: 4285
  article-title: Highly adaptive solid‐liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy
  publication-title: ACS Nano
– volume: 9
  start-page: 12562
  issue: 12
  year: 2015
  end-page: 12572
  article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy
  publication-title: ACS Nano
– volume: 25
  start-page: 845
  issue: 5
  year: 2016
  end-page: 847
  article-title: A hybrid flapping‐blade wind energy harvester based on vortex shedding effect
  publication-title: J Microelectromech Syst
– volume: 30
  start-page: 1
  issue: 28
  year: 2018
  end-page: 12
  article-title: Actively perceiving and responsive soft robots enabled by self‐powered, highly extensible, and highly sensitive triboelectric proximity‐ and pressure‐sensing skins
  publication-title: Adv Mater
– volume: 2000965
  start-page: 1
  year: 2020
  end-page: 8
  article-title: Rationally designed dual‐mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects
  publication-title: Adv Energy Mater
– volume: 2
  start-page: 13219
  issue: 33
  year: 2014
  end-page: 13225
  article-title: Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms
  publication-title: J Mater Chem A
– volume: 60
  start-page: 449
  year: 2019
  end-page: 456
  article-title: Mechano‐neuromodulation of autonomic pelvic nerve for underactive bladder: a triboelectric neurostimulator integrated with flexible neural clip interface
  publication-title: Nano Energy
– volume: 28
  start-page: 4472
  issue: 22
  year: 2016
  end-page: 4479
  article-title: Progress of flexible electronics in neural interfacing ‐ a self‐adaptive non‐invasive neural ribbon electrode for small nerves recording
  publication-title: Adv Mater
– volume: 8
  start-page: 736
  issue: 1
  year: 2016
  end-page: 744
  article-title: Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 1
  issue: 6
  year: 2016
  end-page: 7
  article-title: A water‐proof triboelectric‐electromagnetic hybrid generator for energy harvesting in harsh environments
  publication-title: Adv Energy Mater
– volume: 9
  issue: 26
  year: 2019
  article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting
  publication-title: Adv Energy Mater
– volume: 18
  start-page: 21
  year: 2019
  end-page: 36
  article-title: Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self‐powered electronics
  publication-title: IEEE Trans Nanotechnol
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: Deep learning enabled smart mats as a scalable floor monitoring system
  publication-title: Nat Commun
– volume: 60
  start-page: 404
  year: 2019
  end-page: 412
  article-title: Macroscopic self‐assembly network of encapsulated high‐performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
– volume: 10
  start-page: 1
  issue: 12
  year: 2017
  end-page: 11
  article-title: Hybrid electromagnetic and triboelectric nanogenerators with multi‐impact for wideband frequency energy harvesting
  publication-title: Energies
– volume: 8
  start-page: 3605
  issue: 12
  year: 2015
  end-page: 3613
  article-title: Shape memory polymer‐based self‐healing triboelectric nanogenerator
  publication-title: Energ Environ Sci
– volume: 21
  start-page: 776
  issue: 4
  year: 2012
  end-page: 778
  article-title: Modeling and experimental study of a low‐frequency‐vibration‐based power generator using ZnO nanowire arrays
  publication-title: J Microelectromech Syst
– volume: 67
  start-page: 1
  year: 2020
  end-page: 5
  article-title: A linear‐to‐rotary hybrid nanogenerator for high‐performance wearable biomechanical energy harvesting
  publication-title: Nano Energy
– volume: 8
  start-page: 1
  issue: 7
  year: 2018
  end-page: 14
  article-title: A self‐powered six‐axis tactile sensor by using triboelectric mechanism
  publication-title: Nanomaterials
– volume: 13
  start-page: 1
  issue: 45
  year: 2017
  end-page: 27
  article-title: Recent progress of self‐powered sensing systems for wearable electronics
  publication-title: Small
– volume: 1
  start-page: 92
  issue: July
  year: 2020
  end-page: 124
  article-title: Smart materials for smart healthcare–moving from sensors and actuators to self‐sustained nanoenergy nanosystems
  publication-title: Smart Mater Med
– volume: 6
  start-page: 2429
  issue: 8
  year: 2013
  end-page: 2434
  article-title: A hybrid energy cell for self‐powered water splitting
  publication-title: Energ Environ Sci
– volume: 271
  start-page: 364
  year: 2018
  end-page: 372
  article-title: Electret‐material enhanced triboelectric energy harvesting from air flow for self‐powered wireless temperature sensor network
  publication-title: Sens Actuators A Phys
– volume: 10
  start-page: 44415
  issue: 51
  year: 2018
  end-page: 44420
  article-title: Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films
  publication-title: ACS Appl Mater Interfaces
– volume: 57
  start-page: 574
  year: 2019
  end-page: 580
  article-title: A highly‐sensitive wave sensor based on liquid‐solid interfacing triboelectric nanogenerator for smart marine equipment
  publication-title: Nano Energy
– volume: 27
  start-page: 1
  issue: 1
  year: 2017
  end-page: 9
  article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer
  publication-title: Adv Funct Mater
– volume: 5
  issue: 2
  year: 2018
  article-title: A hybrid piezoelectric and triboelectric nanogenerator with PVDF nanoparticles and leaf‐shaped microstructure PTFE film for scavenging mechanical energy
  publication-title: Adv Mater Interfaces
– volume: 30
  start-page: 1
  issue: 15
  year: 2020
  end-page: 9
  article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent‐free ion‐conducting elastomer electrodes
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 14708
  issue: 17
  year: 2018
  end-page: 14715
  article-title: Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self‐powered systems and active remote sensing
  publication-title: ACS Appl Mater Interfaces
– volume: 8
  start-page: 12729
  issue: 11
  year: 2015
  end-page: 12740
  article-title: Simplified process for manufacturing macroscale patterns to enhance voltage generation by a triboelectric generator
  publication-title: Energies
– volume: 7
  start-page: 1631
  issue: 11
  year: 2014
  end-page: 1639
  article-title: Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies
  publication-title: Nano Res
– volume: 11
  start-page: 7440
  issue: 7
  year: 2017
  end-page: 7446
  article-title: Self‐powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring
  publication-title: ACS Nano
– volume: 29
  start-page: 1
  issue: 5
  year: 2019
  end-page: 10
  article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 1
  issue: 36
  year: 2019
  end-page: 11
  article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems
  publication-title: Adv Energy Mater
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  end-page: 16
  article-title: Recent advances in triboelectric nanogenerator‐based health monitoring
  publication-title: Adv Funct Mater
– volume: 204
  start-page: 37
  year: 2013
  end-page: 43
  article-title: A multi‐frequency vibration‐based MEMS electromagnetic energy harvesting device
  publication-title: Sens Actuators A Phys
– volume: 6
  issue: 1
  year: 2016
  article-title: A flexible triboelectric‐piezoelectric hybrid nanogenerator based on P(VDF‐TrFE) nanofibers and PDMS/MWCNT for wearable devices
  publication-title: Sci Rep
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  end-page: 35
  article-title: A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications
  publication-title: Appl Phys Rev
– volume: 7
  start-page: 92745
  year: 2019
  end-page: 92757
  article-title: Sensors and control interface methods based on triboelectric nanogenerator in IoT applications
  publication-title: IEEE Access
– volume: 7
  start-page: 19076
  issue: 34
  year: 2015
  end-page: 19082
  article-title: Triboelectric nanogenerators as a self‐powered 3D acceleration sensor
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 6519
  issue: 7
  year: 2016
  end-page: 6525
  article-title: Stretchable and waterproof self‐charging power system for harvesting energy from diverse deformation and powering wearable electronics
  publication-title: ACS Nano
– ident: e_1_2_9_197_1
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 9
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_9_31_1
  article-title: Development of a thermoelectric and electromagnetic hybrid energy harvester from water flow in an irrigation system
  publication-title: Micromachines
– ident: e_1_2_9_101_1
  doi: 10.1002/aenm.201601705
– ident: e_1_2_9_265_1
  doi: 10.1002/admt.201900741
– ident: e_1_2_9_155_1
  doi: 10.1016/j.nanoen.2020.104675
– ident: e_1_2_9_164_1
  doi: 10.1016/j.nanoen.2017.11.028
– ident: e_1_2_9_73_1
  doi: 10.1016/j.nanoen.2019.104039
– ident: e_1_2_9_169_1
  doi: 10.1021/acsnano.7b05213
– ident: e_1_2_9_342_1
  doi: 10.1007/s12274-018-2018-8
– ident: e_1_2_9_200_1
  doi: 10.1016/j.nanoen.2018.03.032
– ident: e_1_2_9_238_1
  doi: 10.1016/j.nanoen.2012.11.015
– ident: e_1_2_9_305_1
  doi: 10.1063/1.5134100
– ident: e_1_2_9_310_1
  doi: 10.1021/acsami.8b05636
– volume: 3
  start-page: 1
  issue: 9
  year: 2016
  ident: e_1_2_9_66_1
  article-title: Toward self‐powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery
  publication-title: Adv Sci
  doi: 10.1002/advs.201500441
– ident: e_1_2_9_312_1
  doi: 10.1016/j.nanoen.2019.103933
– ident: e_1_2_9_104_1
  doi: 10.1016/j.nanoen.2019.05.033
– ident: e_1_2_9_167_1
  doi: 10.1016/j.nanoen.2016.11.025
– volume: 30
  start-page: 34
  year: 2019
  ident: e_1_2_9_32_1
  article-title: On the origin of contact‐electrification
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2019.05.016
– ident: e_1_2_9_354_1
  doi: 10.1038/s41467-019-10433-4
– ident: e_1_2_9_231_1
  doi: 10.1038/s41467-018-03781-0
– ident: e_1_2_9_324_1
  doi: 10.1039/C5EE02711J
– ident: e_1_2_9_170_1
  doi: 10.1016/j.nanoen.2018.12.032
– ident: e_1_2_9_371_1
  doi: 10.1016/j.nanoen.2014.01.001
– volume: 5
  start-page: 1
  year: 2015
  ident: e_1_2_9_245_1
  article-title: Interface‐free area‐scalable self‐powered electroluminescent system driven by triboelectric generator
  publication-title: Sci Rep
– ident: e_1_2_9_154_1
  doi: 10.1016/j.nanoen.2018.11.075
– ident: e_1_2_9_46_1
  doi: 10.1039/c3ee41485j
– volume: 32
  start-page: 1
  issue: 5
  year: 2020
  ident: e_1_2_9_117_1
  article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv Mater
  doi: 10.1002/adma.201902549
– ident: e_1_2_9_190_1
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_9_230_1
  article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201800487
– ident: e_1_2_9_381_1
  doi: 10.3390/en81112340
– volume: 3
  start-page: 1
  issue: 7
  year: 2017
  ident: e_1_2_9_225_1
  article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci Adv
– ident: e_1_2_9_223_1
  doi: 10.1016/j.nanoen.2019.03.090
– volume: 2
  start-page: 1
  issue: 6
  year: 2016
  ident: e_1_2_9_333_1
  article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring
  publication-title: Sci Adv
– ident: e_1_2_9_35_1
  doi: 10.1109/JSEN.2015.2411313
– ident: e_1_2_9_103_1
  doi: 10.1021/acs.nanolett.6b01968
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  ident: e_1_2_9_112_1
  article-title: Self‐powered tactile sensor array systems based on the triboelectric effect
  publication-title: Adv Funct Mater
– ident: e_1_2_9_163_1
  doi: 10.1016/j.nanoen.2018.10.044
– volume: 30
  start-page: 1
  issue: 15
  year: 2018
  ident: e_1_2_9_88_1
  article-title: On the electron‐transfer mechanism in the contact‐electrification effect
  publication-title: Adv Mater
– ident: e_1_2_9_299_1
  doi: 10.1007/s12274-016-1331-3
– ident: e_1_2_9_336_1
  doi: 10.1002/adfm.201803684
– volume: 78
  start-page: 105241
  year: 2020
  ident: e_1_2_9_390_1
  article-title: Programmed‐triboelectric nanogenerators—a multi‐switch regulation methodology for energy manipulation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105241
– volume: 30
  start-page: 1
  issue: 47
  year: 2018
  ident: e_1_2_9_120_1
  article-title: Controlling surface charge generated by contact electrification: strategies and applications
  publication-title: Adv Mater
  doi: 10.1002/adma.201802405
– ident: e_1_2_9_252_1
  doi: 10.1016/j.nanoen.2019.104419
– volume: 104
  start-page: 053901
  issue: 5
  year: 2014
  ident: e_1_2_9_17_1
  article-title: Ultra‐wide frequency broadening mechanism for micro‐scale electromagnetic energy harvester
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4863565
– ident: e_1_2_9_224_1
  doi: 10.1016/j.nanoen.2018.06.022
– ident: e_1_2_9_141_1
  doi: 10.1002/smtd.201800078
– volume: 6
  start-page: 1
  issue: 6
  year: 2016
  ident: e_1_2_9_269_1
  article-title: A water‐proof triboelectric‐electromagnetic hybrid generator for energy harvesting in harsh environments
  publication-title: Adv Energy Mater
– volume: 4
  start-page: 1
  issue: 9
  year: 2014
  ident: e_1_2_9_373_1
  article-title: Rotating‐disk‐based direct‐current triboelectric nanogenerator
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201301798
– ident: e_1_2_9_198_1
  doi: 10.1021/acsnano.5b06372
– ident: e_1_2_9_307_1
  doi: 10.1016/j.nanoen.2015.09.012
– ident: e_1_2_9_338_1
  doi: 10.1021/acsnano.7b05317
– ident: e_1_2_9_49_1
  doi: 10.1002/adma.201404071
– ident: e_1_2_9_131_1
  doi: 10.1002/adma.201503407
– ident: e_1_2_9_41_1
  doi: 10.1088/0964-1726/21/3/035005
– ident: e_1_2_9_196_1
  doi: 10.1002/adfm.201807241
– ident: e_1_2_9_87_1
  doi: 10.1002/adma.201302808
– ident: e_1_2_9_263_1
  doi: 10.1016/j.nanoen.2019.103871
– ident: e_1_2_9_181_1
  doi: 10.1126/science.aau0780
– ident: e_1_2_9_194_1
  doi: 10.1016/j.nanoen.2019.04.026
– volume: 7
  start-page: 3
  issue: 4
  year: 2017
  ident: e_1_2_9_367_1
  article-title: Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode
  publication-title: AIP Adv
– volume: 17
  start-page: 723
  issue: 4
  year: 2018
  ident: e_1_2_9_384_1
  article-title: A ball‐impact piezoelectric converter wrapped by copper coils
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2018.2823342
– ident: e_1_2_9_45_1
  doi: 10.1007/s12274-012-0272-8
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_9_64_1
  article-title: Design and anchorage dependence of shape memory alloy actuators on enhanced voiding of a bladder
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201700184
– ident: e_1_2_9_335_1
  doi: 10.1002/adma.201603527
– ident: e_1_2_9_86_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_9_118_1
  doi: 10.1039/C4FD00159A
– ident: e_1_2_9_206_1
  doi: 10.1002/aenm.201900801
– volume: 347
  start-page: 1084
  issue: 6226
  year: 2015
  ident: e_1_2_9_187_1
  article-title: To catch a wave
  publication-title: Science
  doi: 10.1126/science.347.6226.1084
– ident: e_1_2_9_322_1
  doi: 10.1002/adma.201705195
– ident: e_1_2_9_315_1
  doi: 10.1016/j.nanoen.2019.103912
– volume: 13
  start-page: acsnano.8b08329
  year: 2019
  ident: e_1_2_9_128_1
  article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08329
– ident: e_1_2_9_7_1
  doi: 10.1016/j.nantod.2018.08.001
– volume: 29
  start-page: 1
  issue: 41
  year: 2017
  ident: e_1_2_9_122_1
  article-title: Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals
  publication-title: Adv Mater
– ident: e_1_2_9_14_1
  doi: 10.1021/nn403021m
– ident: e_1_2_9_209_1
  doi: 10.1016/j.nanoen.2017.08.018
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  ident: e_1_2_9_233_1
  article-title: Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator
  publication-title: Adv Funct Mater
– ident: e_1_2_9_195_1
  doi: 10.1016/j.nanoen.2018.12.078
– ident: e_1_2_9_92_1
  doi: 10.1016/j.nanoen.2017.08.025
– ident: e_1_2_9_344_1
  doi: 10.1021/acsnano.7b03657
– volume: 7
  start-page: 1
  issue: 14
  year: 2020
  ident: e_1_2_9_227_1
  article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications
  publication-title: Adv Sci
– volume: 7
  start-page: 1
  issue: 2
  year: 2017
  ident: e_1_2_9_301_1
  article-title: Boosting power‐generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201600988
– ident: e_1_2_9_184_1
  doi: 10.1038/s41586-019-1234-z
– ident: e_1_2_9_74_1
  doi: 10.1021/acsnano.6b02693
– ident: e_1_2_9_57_1
  doi: 10.1016/j.nanoen.2015.04.020
– ident: e_1_2_9_281_1
  doi: 10.1016/j.nanoen.2020.104500
– ident: e_1_2_9_115_1
  doi: 10.1039/C5EE01532D
– volume: 30
  start-page: 1
  issue: 28
  year: 2018
  ident: e_1_2_9_127_1
  article-title: Actively perceiving and responsive soft robots enabled by self‐powered, highly extensible, and highly sensitive triboelectric proximity‐ and pressure‐sensing skins
  publication-title: Adv Mater
– ident: e_1_2_9_304_1
  doi: 10.1016/j.compscitech.2019.107963
– ident: e_1_2_9_365_1
  doi: 10.1007/s10854-017-7020-5
– ident: e_1_2_9_277_1
  doi: 10.1002/aenm.201800069
– ident: e_1_2_9_232_1
  doi: 10.1016/j.nanoen.2019.03.082
– ident: e_1_2_9_364_1
  doi: 10.1039/C8TA04443K
– ident: e_1_2_9_298_1
  doi: 10.1021/acssuschemeng.8b00834
– ident: e_1_2_9_241_1
  doi: 10.1021/am406018h
– ident: e_1_2_9_27_1
  doi: 10.1002/aenm.202000137
– ident: e_1_2_9_43_1
  doi: 10.1038/s41598-016-0001-8
– ident: e_1_2_9_202_1
  doi: 10.1021/nn5012732
– ident: e_1_2_9_183_1
  doi: 10.1021/acssensors.9b01509
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cobme.2018.05.004
– volume: 19
  start-page: 035001
  issue: 3
  year: 2009
  ident: e_1_2_9_38_1
  article-title: Electromagnetic energy harvesting from vibrations of multiple frequencies
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/19/3/035001
– ident: e_1_2_9_174_1
  doi: 10.1016/j.nanoen.2017.10.064
– ident: e_1_2_9_83_1
  doi: 10.1021/acsnano.8b05359
– volume: 28
  start-page: 1
  issue: 47
  year: 2018
  ident: e_1_2_9_139_1
  article-title: Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body‐enhanced induction of ambient electromagnetic waves
  publication-title: Adv Funct Mater
– ident: e_1_2_9_47_1
  doi: 10.1021/nn405209u
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_9_228_1
  article-title: Transparent and attachable ionic communicators based on self‐cleanable triboelectric nanogenerators
  publication-title: Nat Commun
– ident: e_1_2_9_168_1
  doi: 10.1016/j.snb.2016.03.063
– ident: e_1_2_9_363_1
  doi: 10.1088/2053-1591/aabd22
– ident: e_1_2_9_255_1
  doi: 10.1002/adma.201404291
– ident: e_1_2_9_71_1
  doi: 10.1016/j.nanoen.2019.01.096
– ident: e_1_2_9_213_1
  doi: 10.1021/acsnano.0c00524
– ident: e_1_2_9_114_1
  doi: 10.1016/j.nanoen.2019.01.002
– volume: 18
  start-page: 497
  issue: 4
  year: 2012
  ident: e_1_2_9_42_1
  article-title: A new S‐shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-012-1424-1
– ident: e_1_2_9_326_1
  doi: 10.1002/adfm.201905426
– ident: e_1_2_9_109_1
  doi: 10.1016/j.nanoen.2019.104266
– ident: e_1_2_9_311_1
  doi: 10.1016/j.nanoen.2019.04.085
– ident: e_1_2_9_290_1
  doi: 10.1088/1361-6528/ab6677
– ident: e_1_2_9_28_1
  doi: 10.1088/0960-1317/22/12/125020
– volume: 3
  start-page: 1
  issue: 7
  year: 2019
  ident: e_1_2_9_237_1
  article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode
  publication-title: Adv Biosyst
  doi: 10.1002/adbi.201800281
– ident: e_1_2_9_189_1
  doi: 10.1038/542159a
– ident: e_1_2_9_93_1
  doi: 10.1016/j.nanoen.2019.06.040
– ident: e_1_2_9_84_1
  doi: 10.1038/s41467-016-0009-6
– volume: 32
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_9_257_1
  article-title: A contact‐sliding‐triboelectrification‐driven dynamic optical transmittance modulator for self‐powered information covering and selective visualization
  publication-title: Adv Mater
  doi: 10.1002/adma.201904988
– ident: e_1_2_9_160_1
  doi: 10.1021/acsnano.7b00396
– volume: 17
  start-page: 1217
  issue: 6
  year: 2018
  ident: e_1_2_9_386_1
  article-title: High output compound triboelectric nanogenerator based on paper for self‐powered height sensing system
  publication-title: IEEE Trans Nanotechnol
  doi: 10.1109/TNANO.2018.2869934
– volume: 108
  start-page: 193902
  issue: 19
  year: 2016
  ident: e_1_2_9_18_1
  article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4948973
– ident: e_1_2_9_96_1
  doi: 10.1016/j.nanoen.2016.10.046
– ident: e_1_2_9_97_1
  doi: 10.1002/advs.201900617
– ident: e_1_2_9_236_1
  doi: 10.1016/j.nanoen.2018.04.004
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_9_20_1
  article-title: A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications
  publication-title: Appl Phys Rev
– ident: e_1_2_9_282_1
  doi: 10.1021/acsami.8b01635
– volume: 29
  start-page: 1
  issue: 5
  year: 2019
  ident: e_1_2_9_130_1
  article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201806388
– ident: e_1_2_9_235_1
  doi: 10.1002/adma.201402064
– ident: e_1_2_9_337_1
  doi: 10.1039/C9NR01271K
– ident: e_1_2_9_5_1
  doi: 10.1007/s12274-014-0523-y
– ident: e_1_2_9_8_1
  doi: 10.1088/0960-1317/20/6/065017
– ident: e_1_2_9_203_1
  doi: 10.1021/nn501983s
– volume: 28
  start-page: 1
  issue: 35
  year: 2018
  ident: e_1_2_9_54_1
  article-title: Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting
  publication-title: Adv Funct Mater
– ident: e_1_2_9_283_1
  doi: 10.1016/j.nanoen.2019.05.063
– ident: e_1_2_9_318_1
  doi: 10.1039/C4TA02747G
– volume: 28
  start-page: 1
  issue: 32
  year: 2018
  ident: e_1_2_9_157_1
  article-title: Novel electronics for flexible and neuromorphic computing
  publication-title: Adv Funct Mater
– ident: e_1_2_9_285_1
  doi: 10.1007/s11431-013-5270-x
– volume: 28
  start-page: 1
  issue: 51
  year: 2018
  ident: e_1_2_9_110_1
  article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits
  publication-title: Adv Funct Mater
– ident: e_1_2_9_70_1
  doi: 10.1016/j.nanoen.2016.12.038
– volume: 27
  start-page: 1
  issue: 6
  year: 2017
  ident: e_1_2_9_144_1
  article-title: Wearable force touch sensor array using a flexible and transparent electrode
  publication-title: Adv Funct Mater
– ident: e_1_2_9_286_1
  doi: 10.1016/j.nanoen.2017.11.039
– volume: 68
  start-page: 104272
  issue: 2019
  year: 2020
  ident: e_1_2_9_36_1
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 2000965
  start-page: 1
  year: 2020
  ident: e_1_2_9_24_1
  article-title: Rationally designed dual‐mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects
  publication-title: Adv Energy Mater
– ident: e_1_2_9_284_1
  doi: 10.1016/j.enconman.2018.08.018
– volume: 4
  start-page: 1
  issue: 11
  year: 2017
  ident: e_1_2_9_61_1
  article-title: Toward bioelectronic medicine—neuromodulation of small peripheral nerves using flexible neural clip
  publication-title: Adv Sci
– ident: e_1_2_9_69_1
  doi: 10.1109/JMEMS.2014.2317718
– ident: e_1_2_9_251_1
  doi: 10.1021/acsnano.5b07407
– volume: 7
  start-page: 1
  issue: 5
  year: 2017
  ident: e_1_2_9_296_1
  article-title: Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601569
– ident: e_1_2_9_331_1
  doi: 10.1039/C9TA02711D
– ident: e_1_2_9_102_1
  doi: 10.1007/s12274-018-1989-9
– volume: 29
  start-page: 1
  issue: 15
  year: 2017
  ident: e_1_2_9_121_1
  article-title: Full dynamic‐range pressure sensor matrix based on optical and electrical dual‐mode sensing
  publication-title: Adv Mater
  doi: 10.1002/adma.201605817
– ident: e_1_2_9_211_1
  doi: 10.1109/TNANO.2020.2976154
– ident: e_1_2_9_369_1
  doi: 10.1063/1.4905553
– ident: e_1_2_9_81_1
  doi: 10.1021/acsnano.8b07935
– ident: e_1_2_9_302_1
  doi: 10.1021/acsami.6b11108
– ident: e_1_2_9_266_1
  doi: 10.1021/acsnano.6b02384
– ident: e_1_2_9_207_1
  doi: 10.1016/j.nanoen.2018.12.041
– volume: 3
  start-page: 1
  issue: 3
  year: 2018
  ident: e_1_2_9_239_1
  article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201700317
– ident: e_1_2_9_133_1
  doi: 10.1021/acsnano.7b03818
– volume: 27
  start-page: 1
  issue: 25
  year: 2017
  ident: e_1_2_9_142_1
  article-title: Auxetic foam‐based contact‐mode triboelectric nanogenerator with highly sensitive self‐powered strain sensing capabilities to monitor human body movement
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201606695
– ident: e_1_2_9_214_1
  doi: 10.1021/acsaelm.0c00022
– ident: e_1_2_9_146_1
  doi: 10.1002/adfm.201302453
– volume: 5
  start-page: 9309
  issue: 1
  year: 2015
  ident: e_1_2_9_293_1
  article-title: High output piezo/triboelectric hybrid generator
  publication-title: Sci Rep
  doi: 10.1038/srep09309
– ident: e_1_2_9_317_1
  doi: 10.1016/j.nanoen.2017.05.039
– volume: 31
  start-page: 1
  issue: 34
  year: 2019
  ident: e_1_2_9_264_1
  article-title: Hybrid energy harvesters: toward sustainable energy harvesting
  publication-title: Adv Mater
– volume: 7
  start-page: 1903636
  year: 2020
  ident: e_1_2_9_244_1
  article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing
  publication-title: Adv Sci
  doi: 10.1002/advs.201903636
– volume: 7
  start-page: 1
  issue: 5
  year: 2018
  ident: e_1_2_9_62_1
  article-title: A highly selective 3D spiked ultraflexible neural (SUN) interface for decoding peripheral nerve sensory information
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201700987
– ident: e_1_2_9_273_1
  doi: 10.1016/j.elstat.2004.05.005
– ident: e_1_2_9_220_1
  doi: 10.1002/adma.201706738
– ident: e_1_2_9_191_1
  doi: 10.1088/1361-6528/ab793e
– ident: e_1_2_9_308_1
  doi: 10.1021/acsami.7b17314
– ident: e_1_2_9_182_1
  doi: 10.1038/s41551-018-0287-x
– ident: e_1_2_9_303_1
  doi: 10.3390/nano5010036
– volume: 1
  start-page: 92
  year: 2020
  ident: e_1_2_9_391_1
  article-title: Smart materials for smart healthcare–moving from sensors and actuators to self‐sustained nanoenergy nanosystems
  publication-title: Smart Mater Med
  doi: 10.1016/j.smaim.2020.07.005
– ident: e_1_2_9_11_1
  doi: 10.1021/acsnano.8b00303
– ident: e_1_2_9_134_1
  doi: 10.1021/acsnano.8b01532
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_2_9_185_1
  article-title: An epidermal sEMG tattoo‐like patch as a new human – machine interface for patients with loss of voice
  publication-title: Microsyst Nanoeng
– ident: e_1_2_9_192_1
  doi: 10.1002/adfm.201908252
– volume: 6
  start-page: 36409
  issue: 1
  year: 2016
  ident: e_1_2_9_297_1
  article-title: A flexible triboelectric‐piezoelectric hybrid nanogenerator based on P(VDF‐TrFE) nanofibers and PDMS/MWCNT for wearable devices
  publication-title: Sci Rep
  doi: 10.1038/srep36409
– ident: e_1_2_9_246_1
  doi: 10.1016/j.nanoen.2019.04.005
– ident: e_1_2_9_138_1
  doi: 10.1021/acsnano.8b02477
– ident: e_1_2_9_353_1
  doi: 10.1038/s41467-019-13166-6
– ident: e_1_2_9_208_1
  doi: 10.1002/aenm.201800705
– volume: 24
  start-page: 513
  issue: 3
  year: 2015
  ident: e_1_2_9_292_1
  article-title: An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2015.2404037
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_9_392_1
  article-title: Deep learning enabled smart mats as a scalable floor monitoring system
  publication-title: Nat Commun
– volume: 2000605
  start-page: 1
  year: 2020
  ident: e_1_2_9_55_1
  article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
  publication-title: Adv Energy Mater
– volume: 40
  start-page: 399
  year: 2017
  ident: e_1_2_9_332_1
  article-title: Fully self‐healing and shape‐tailorable triboelectric nanogenerators based on healable polymer and magnetic‐assisted electrode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.045
– ident: e_1_2_9_33_1
  doi: 10.1016/j.sna.2013.09.015
– ident: e_1_2_9_72_1
  doi: 10.1016/j.nanoen.2019.03.071
– ident: e_1_2_9_21_1
  doi: 10.1088/2057-1976/ab268e
– ident: e_1_2_9_180_1
  doi: 10.1126/scirobotics.aau6914
– ident: e_1_2_9_316_1
  doi: 10.1039/C6NR06319E
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  ident: e_1_2_9_152_1
  article-title: Triboelectric nanogenerator boosts smart green tires
  publication-title: Adv Funct Mater
– ident: e_1_2_9_321_1
  doi: 10.1063/1.4967001
– ident: e_1_2_9_135_1
  doi: 10.1038/s41467-018-05755-8
– volume: 3
  start-page: 1
  issue: 9
  year: 2016
  ident: e_1_2_9_65_1
  article-title: Mapping of small nerve trunks and branches using adaptive flexible electrodes
  publication-title: Adv Sci
  doi: 10.1002/advs.201500386
– ident: e_1_2_9_334_1
  doi: 10.1021/acsnano.6b06621
– ident: e_1_2_9_159_1
  doi: 10.1021/acsnano.8b06747
– ident: e_1_2_9_242_1
  doi: 10.1021/acsami.9b22572
– ident: e_1_2_9_15_1
  doi: 10.1002/aenm.202000886
– volume: 29
  start-page: 1
  issue: 41
  year: 2019
  ident: e_1_2_9_113_1
  article-title: Recent advances in triboelectric nanogenerator‐based health monitoring
  publication-title: Adv Funct Mater
– ident: e_1_2_9_379_1
  doi: 10.1007/s12274-015-0894-8
– ident: e_1_2_9_137_1
  doi: 10.1016/j.nanoen.2017.09.025
– ident: e_1_2_9_250_1
  doi: 10.1021/acsami.8b16023
– ident: e_1_2_9_352_1
  doi: 10.1016/j.nanoen.2016.12.035
– volume: 5
  start-page: 1
  issue: 4
  year: 2019
  ident: e_1_2_9_95_1
  article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown
  publication-title: Sci Adv
– ident: e_1_2_9_300_1
  doi: 10.1016/j.nanoen.2019.103923
– ident: e_1_2_9_210_1
  doi: 10.1039/C9EE03258D
– ident: e_1_2_9_178_1
  doi: 10.1126/scirobotics.aaw6339
– volume: 30
  start-page: 1
  issue: 43
  year: 2018
  ident: e_1_2_9_340_1
  article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv Mater
  doi: 10.1002/adma.201804944
– ident: e_1_2_9_63_1
  doi: 10.1002/adma.201503423
– start-page: 1
  year: 2018
  ident: e_1_2_9_385_1
  article-title: VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS‐MWCNTs nanocomposite film for environmental applications
  publication-title: IEEE Transactions on Nanotechnology
  doi: 10.1109/TNANO.2018.2828302
– ident: e_1_2_9_13_1
  doi: 10.1021/nl300988z
– ident: e_1_2_9_226_1
  doi: 10.1016/j.nanoen.2019.01.091
– ident: e_1_2_9_136_1
  doi: 10.1016/j.nanoen.2018.05.061
– ident: e_1_2_9_179_1
  doi: 10.1126/scirobotics.aax2198
– ident: e_1_2_9_280_1
  doi: 10.1016/j.nanoen.2017.08.024
– ident: e_1_2_9_350_1
  doi: 10.1016/j.nanoen.2019.02.052
– ident: e_1_2_9_370_1
  doi: 10.1016/j.nanoen.2019.06.043
– ident: e_1_2_9_359_1
  doi: 10.1007/s12274-018-1978-z
– volume: 4
  start-page: 1
  issue: 11
  year: 2017
  ident: e_1_2_9_60_1
  article-title: A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators
  publication-title: Adv Sci
  doi: 10.1002/advs.201700143
– ident: e_1_2_9_89_1
  doi: 10.1038/s41467-019-13773-3
– ident: e_1_2_9_278_1
  doi: 10.1002/aenm.201601852
– ident: e_1_2_9_78_1
  doi: 10.1021/nl5005652
– ident: e_1_2_9_153_1
  doi: 10.1126/scirobotics.aat2516
– ident: e_1_2_9_309_1
  doi: 10.1021/acsami.8b15410
– ident: e_1_2_9_29_1
  doi: 10.1088/0960-1317/24/10/104002
– ident: e_1_2_9_295_1
  doi: 10.1039/C6NR07781A
– ident: e_1_2_9_329_1
  doi: 10.1021/acsnano.8b02479
– ident: e_1_2_9_162_1
  doi: 10.1016/j.nanoen.2020.104456
– ident: e_1_2_9_349_1
  doi: 10.1021/acsami.5b09907
– ident: e_1_2_9_4_1
  doi: 10.1016/j.nanoen.2014.10.034
– ident: e_1_2_9_240_1
  doi: 10.1002/adfm.201502450
– volume: 8
  start-page: 1
  issue: 7
  year: 2018
  ident: e_1_2_9_80_1
  article-title: A self‐powered six‐axis tactile sensor by using triboelectric mechanism
  publication-title: Nanomaterials
  doi: 10.3390/nano8070503
– ident: e_1_2_9_148_1
  doi: 10.1016/j.nanoen.2016.11.056
– ident: e_1_2_9_40_1
  doi: 10.1109/JMEMS.2011.2162488
– ident: e_1_2_9_147_1
  doi: 10.1016/j.nanoen.2019.104228
– ident: e_1_2_9_375_1
  doi: 10.1021/acsnano.0c03728
– volume: 6
  start-page: 1901980
  issue: 23
  year: 2019
  ident: e_1_2_9_253_1
  article-title: Low detection limit and high sensitivity wind speed sensor based on triboelectrification‐induced electroluminescence
  publication-title: Adv Sci
  doi: 10.1002/advs.201901980
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mattod.2019.10.025
– ident: e_1_2_9_119_1
  doi: 10.1021/acsnano.5b01478
– volume: 13
  start-page: 1
  issue: 45
  year: 2017
  ident: e_1_2_9_287_1
  article-title: Recent progress of self‐powered sensing systems for wearable electronics
  publication-title: Small
– ident: e_1_2_9_348_1
  doi: 10.1039/C5EE01705J
– ident: e_1_2_9_360_1
  doi: 10.1002/ente.201700779
– volume: 124
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_9_361_1
  article-title: A triboelectric nanogenerator as self‐powered temperature sensor based on PVDF and PTFE
  publication-title: Appl Phys A Mater Sci Process
– ident: e_1_2_9_166_1
  doi: 10.1021/acsnano.5b07074
– ident: e_1_2_9_151_1
  doi: 10.1016/j.nanoen.2017.08.001
– ident: e_1_2_9_58_1
  doi: 10.1021/acsnano.9b00140
– volume: 7
  start-page: 1
  issue: 19
  year: 2017
  ident: e_1_2_9_150_1
  article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer
  publication-title: Adv Energy Mater
– ident: e_1_2_9_374_1
  doi: 10.1021/nn403151t
– ident: e_1_2_9_279_1
  doi: 10.1016/j.nanoen.2018.12.062
– volume: 3
  start-page: 1
  issue: 5
  year: 2017
  ident: e_1_2_9_140_1
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci Adv
– volume: 9
  start-page: 1
  issue: 36
  year: 2019
  ident: e_1_2_9_173_1
  article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems
  publication-title: Adv Energy Mater
– ident: e_1_2_9_30_1
  doi: 10.1049/mnl.2013.0750
– volume: 30
  start-page: 1
  issue: 14
  year: 2018
  ident: e_1_2_9_330_1
  article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv Mater
  doi: 10.1002/adma.201705918
– ident: e_1_2_9_132_1
  doi: 10.1002/adfm.201604378
– ident: e_1_2_9_193_1
  doi: 10.1002/adfm.201901069
– ident: e_1_2_9_387_1
  doi: 10.1109/TNANO.2018.2876824
– ident: e_1_2_9_216_1
  doi: 10.1002/adfm.201404087
– ident: e_1_2_9_357_1
  doi: 10.1016/j.materresbull.2018.02.020
– volume: 30
  start-page: 1
  issue: 5
  year: 2020
  ident: e_1_2_9_215_1
  article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201907893
– volume: 67
  start-page: 1
  year: 2020
  ident: e_1_2_9_258_1
  article-title: A linear‐to‐rotary hybrid nanogenerator for high‐performance wearable biomechanical energy harvesting
  publication-title: Nano Energy
– ident: e_1_2_9_222_1
  doi: 10.1016/j.nanoen.2019.05.039
– ident: e_1_2_9_34_1
  doi: 10.1016/j.sna.2017.12.067
– volume: 6
  start-page: 1
  year: 2016
  ident: e_1_2_9_123_1
  article-title: Large scale triboelectric nanogenerator and self‐powered pressure sensor array using low cost roll‐to‐roll UV embossing
  publication-title: Sci Rep
  doi: 10.1038/srep22253
– ident: e_1_2_9_116_1
  doi: 10.1016/j.joule.2017.09.004
– volume: 10
  start-page: 1
  issue: 12
  year: 2020
  ident: e_1_2_9_271_1
  article-title: Biomechanical energy‐driven hybridized generator as a universal portable power source for smart/wearable electronics
  publication-title: Adv Energy Mater
– volume: 6
  start-page: 1
  issue: 11
  year: 2016
  ident: e_1_2_9_124_1
  article-title: Fully packaged self‐powered triboelectric pressure sensor using hemispheres‐array
  publication-title: Adv Energy Mater
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_9_108_1
  article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10061-y
– volume: 2
  start-page: 1
  issue: 3
  year: 2016
  ident: e_1_2_9_99_1
  article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501478
– ident: e_1_2_9_356_1
  doi: 10.1126/sciadv.aay2840
– ident: e_1_2_9_262_1
  doi: 10.1016/j.nanoen.2019.103997
– ident: e_1_2_9_68_1
  doi: 10.1109/JMEMS.2015.2403256
– volume: 100
  start-page: 1
  issue: 22
  year: 2012
  ident: e_1_2_9_9_1
  article-title: Development of piezoelectric microcantilever flow sensor with wind‐driven energy harvesting capability
  publication-title: Appl Phys Lett
– ident: e_1_2_9_199_1
  doi: 10.1016/j.nanoen.2018.03.062
– ident: e_1_2_9_319_1
  doi: 10.1039/C6TC05193F
– ident: e_1_2_9_249_1
  doi: 10.1021/acsami.9b02313
– volume: 3
  start-page: 1
  issue: 3
  year: 2018
  ident: e_1_2_9_358_1
  article-title: A self‐powered portable power bank based on a hybridized nanogenerator
  publication-title: Adv Mater Technol
– ident: e_1_2_9_188_1
  doi: 10.1039/C9SE01184F
– ident: e_1_2_9_267_1
  doi: 10.1021/acsnano.5b01187
– ident: e_1_2_9_345_1
  doi: 10.1038/s41467-018-06759-0
– ident: e_1_2_9_205_1
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 3
  start-page: 1
  issue: 6
  year: 2015
  ident: e_1_2_9_243_1
  article-title: Tribotronic enhanced photoresponsivity of a MOS2 phototransistor
  publication-title: Adv Sci
– ident: e_1_2_9_268_1
  doi: 10.1021/acsnano.7b03683
– volume: 30
  start-page: 1
  issue: 6
  year: 2020
  ident: e_1_2_9_23_1
  article-title: Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing
  publication-title: Adv Funct Mater
– ident: e_1_2_9_383_1
  doi: 10.1109/TNANO.2017.2789300
– ident: e_1_2_9_372_1
  doi: 10.1002/adma.201402491
– ident: e_1_2_9_85_1
  doi: 10.1016/j.nanoen.2020.104642
– ident: e_1_2_9_2_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_9_201_1
  doi: 10.1021/acsnano.7b08716
– ident: e_1_2_9_76_1
  doi: 10.1021/acsami.6b06866
– ident: e_1_2_9_172_1
  doi: 10.1016/j.nanoen.2018.02.031
– volume: 7
  start-page: 1
  issue: 3
  year: 2019
  ident: e_1_2_9_382_1
  article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks
  publication-title: APL Mater
– volume: 9
  start-page: 1
  issue: 8
  year: 2019
  ident: e_1_2_9_270_1
  article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802892
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_9_158_1
  article-title: Triboelectric‐based transparent secret code
  publication-title: Adv Sci
  doi: 10.1002/advs.201700881
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_9_126_1
  article-title: An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv Energy Mater
– volume: 30
  start-page: 1
  issue: 15
  year: 2020
  ident: e_1_2_9_376_1
  article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent‐free ion‐conducting elastomer electrodes
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201909252
– ident: e_1_2_9_50_1
  doi: 10.1021/am404611h
– volume: 508
  start-page: 302
  issue: 7496
  year: 2014
  ident: e_1_2_9_186_1
  article-title: Power from the oceans: blue energy
  publication-title: Nature
  doi: 10.1038/508302a
– ident: e_1_2_9_56_1
  doi: 10.1039/C9EE03566D
– ident: e_1_2_9_3_1
  doi: 10.1021/nn4050408
– volume: 29
  start-page: 1
  issue: 28
  year: 2019
  ident: e_1_2_9_161_1
  article-title: Treefrog toe pad‐inspired micropatterning for high‐power triboelectric nanogenerator
  publication-title: Adv Funct Mater
– ident: e_1_2_9_19_1
  doi: 10.1063/1.5053945
– volume: 7
  start-page: 1
  issue: 13
  year: 2017
  ident: e_1_2_9_107_1
  article-title: Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators
  publication-title: Adv Energy Mater
– ident: e_1_2_9_346_1
  doi: 10.1016/j.nanoen.2016.08.024
– ident: e_1_2_9_125_1
  doi: 10.1126/sciadv.1700694
– ident: e_1_2_9_393_1
  doi: 10.1063/5.0016485
– volume: 5
  start-page: 1
  issue: 2
  year: 2018
  ident: e_1_2_9_165_1
  article-title: Triboelectrification‐enabled self‐powered data storage
  publication-title: Adv Sci
  doi: 10.1002/advs.201700658
– ident: e_1_2_9_306_1
  doi: 10.1039/C9TA02345C
– ident: e_1_2_9_339_1
  doi: 10.1021/acsnano.8b00147
– volume: 32
  start-page: 1
  issue: 15
  year: 2020
  ident: e_1_2_9_328_1
  article-title: Nanomaterial‐enabled flexible and stretchable sensing systems: processing, integration, and applications
  publication-title: Adv Mater
– volume: 29
  start-page: 1
  issue: 13
  year: 2019
  ident: e_1_2_9_105_1
  article-title: Self‐powered optical switch based on triboelectrification‐triggered liquid crystal alignment for wireless sensing
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201808633
– ident: e_1_2_9_67_1
  doi: 10.1002/advs.201900149
– ident: e_1_2_9_217_1
  doi: 10.1016/j.nanoen.2019.03.005
– ident: e_1_2_9_247_1
  doi: 10.1016/j.nanoen.2015.12.001
– ident: e_1_2_9_314_1
  doi: 10.1016/j.nanoen.2019.04.025
– ident: e_1_2_9_289_1
  doi: 10.1021/acsaem.9b00836
– volume: 8
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_9_26_1
  article-title: Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad
  publication-title: Nanomaterials
  doi: 10.3390/nano8080613
– ident: e_1_2_9_377_1
  doi: 10.1021/acsnano.6b04201
– ident: e_1_2_9_100_1
  doi: 10.1016/j.mattod.2017.10.006
– ident: e_1_2_9_111_1
  doi: 10.1016/j.nanoen.2020.104760
– ident: e_1_2_9_229_1
  doi: 10.1016/j.nanoen.2018.04.059
– ident: e_1_2_9_79_1
  doi: 10.1016/j.nanoen.2020.104462
– ident: e_1_2_9_272_1
  doi: 10.1021/acsnano.9b06272
– ident: e_1_2_9_347_1
  doi: 10.1016/j.nanoen.2017.04.012
– volume: 6
  start-page: 1
  issue: 5
  year: 2016
  ident: e_1_2_9_51_1
  article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501799
– volume: 4
  start-page: 1
  issue: 2
  year: 2019
  ident: e_1_2_9_129_1
  article-title: A triboelectric nanogenerator‐based smart insole for multifunctional gait monitoring
  publication-title: Adv Mater Technol
– ident: e_1_2_9_75_1
  doi: 10.1002/adma.201600604
– ident: e_1_2_9_355_1
  doi: 10.1016/j.nanoen.2019.104167
– ident: e_1_2_9_94_1
  doi: 10.1016/j.nanoen.2018.06.034
– ident: e_1_2_9_48_1
  doi: 10.1002/adfm.201402703
– ident: e_1_2_9_212_1
  doi: 10.1002/adma.201404794
– volume: 9
  start-page: 1
  issue: 44
  year: 2019
  ident: e_1_2_9_260_1
  article-title: Enhancing the output performance of triboelectric nanogenerator via grating‐electrode‐enabled surface plasmon excitation
  publication-title: Adv Energy Mater
– ident: e_1_2_9_221_1
  doi: 10.1016/j.nanoen.2019.103994
– ident: e_1_2_9_156_1
  doi: 10.1109/ACCESS.2019.2927394
– ident: e_1_2_9_91_1
  doi: 10.1002/advs.201901437
– volume: 2
  start-page: 1
  issue: 10
  year: 2015
  ident: e_1_2_9_6_1
  article-title: Recent progress in electronic skin
  publication-title: Adv Sci
  doi: 10.1002/advs.201500169
– ident: e_1_2_9_388_1
  doi: 10.1109/TNANO.2019.2895137
– ident: e_1_2_9_254_1
  doi: 10.1039/C8TC02964D
– volume: 9
  start-page: 1
  issue: 14
  year: 2019
  ident: e_1_2_9_175_1
  article-title: Metal–organic framework: a novel material for triboelectric nanogenerator‐based self‐powered sensors and systems
  publication-title: Adv Energy Mater
– ident: e_1_2_9_234_1
  doi: 10.1016/j.nanoen.2018.06.060
– ident: e_1_2_9_44_1
  doi: 10.1021/nl303539c
– ident: e_1_2_9_53_1
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 8
  start-page: 1
  issue: 27
  year: 2018
  ident: e_1_2_9_378_1
  article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel
  publication-title: Adv Energy Mater
– ident: e_1_2_9_274_1
  doi: 10.1021/nn404614z
– volume: 7
  start-page: 1
  issue: 22
  year: 2017
  ident: e_1_2_9_59_1
  article-title: Self‐powered gyroscope ball using a triboelectric mechanism
  publication-title: Adv Energy Mater
– ident: e_1_2_9_288_1
  doi: 10.1002/adfm.201602529
– ident: e_1_2_9_106_1
  doi: 10.1038/s41467-019-10298-7
– ident: e_1_2_9_325_1
  doi: 10.1021/acsnano.9b02690
– ident: e_1_2_9_82_1
  doi: 10.1021/acsnano.9b07165
– ident: e_1_2_9_37_1
  doi: 10.1021/acsnano.6b05507
– ident: e_1_2_9_275_1
  doi: 10.1109/JMEMS.2016.2588529
– ident: e_1_2_9_149_1
  doi: 10.1038/s41598-017-00418-y
– ident: e_1_2_9_143_1
  doi: 10.1016/j.sna.2012.06.006
– ident: e_1_2_9_351_1
  doi: 10.1016/j.nanoen.2017.11.044
– ident: e_1_2_9_261_1
  doi: 10.1002/adma.201500121
– ident: e_1_2_9_219_1
  doi: 10.1016/j.nanoen.2017.10.004
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_2_9_25_1
  article-title: Haptic‐feedback smart glove as a creative human‐machine interface ( HMI ) for virtual / augmented reality applications
  publication-title: Sci Adv
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_9_90_1
  article-title: Switched‐capacitor‐convertors based on fractal design for output power management of triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 36
  start-page: 1389
  issue: 8
  year: 2011
  ident: e_1_2_9_320_1
  article-title: Voltage‐controlled compression for period tuning of optical surface relief gratings
  publication-title: Opt Lett
  doi: 10.1364/OL.36.001389
– ident: e_1_2_9_380_1
  doi: 10.1016/j.mattod.2016.12.001
– ident: e_1_2_9_327_1
  doi: 10.1002/adma.201702181
– ident: e_1_2_9_176_1
  doi: 10.1002/smll.201501772
– ident: e_1_2_9_98_1
  doi: 10.1016/j.nanoen.2018.04.033
– ident: e_1_2_9_16_1
  doi: 10.1016/j.nanoen.2018.03.044
– ident: e_1_2_9_77_1
  doi: 10.1021/acsnano.5b07157
– volume: 10
  start-page: 1
  issue: 12
  year: 2017
  ident: e_1_2_9_362_1
  article-title: Hybrid electromagnetic and triboelectric nanogenerators with multi‐impact for wideband frequency energy harvesting
  publication-title: Energies
– ident: e_1_2_9_171_1
  doi: 10.1016/j.nanoen.2019.01.042
– ident: e_1_2_9_204_1
  doi: 10.1016/j.nanoen.2019.01.088
– ident: e_1_2_9_52_1
  doi: 10.1021/acsami.7b08526
– volume: 14
  start-page: 1
  issue: 3
  year: 2018
  ident: e_1_2_9_177_1
  article-title: Recent progress of textile‐based wearable electronics: a comprehensive review of materials, devices, and applications
  publication-title: Small
– ident: e_1_2_9_294_1
  doi: 10.1016/j.sna.2017.06.012
– volume: 21
  start-page: 776
  issue: 4
  year: 2012
  ident: e_1_2_9_10_1
  article-title: Modeling and experimental study of a low‐frequency‐vibration‐based power generator using ZnO nanowire arrays
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2012.2190716
– volume: 27
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_9_256_1
  article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201603788
– volume: 17
  start-page: 282
  issue: 2
  year: 2017
  ident: e_1_2_9_218_1
  article-title: Real‐time performance of a self‐powered environmental IoT sensor network system
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s17020282
– ident: e_1_2_9_343_1
  doi: 10.1016/j.nanoen.2019.104121
– ident: e_1_2_9_276_1
  doi: 10.1002/admi.201700750
– ident: e_1_2_9_291_1
  doi: 10.1016/j.nanoen.2018.03.033
– ident: e_1_2_9_366_1
  doi: 10.1088/1361-6528/28/3/035405
– ident: e_1_2_9_145_1
  doi: 10.1021/acsami.5b04516
– volume: 78
  start-page: 105155
  year: 2020
  ident: e_1_2_9_389_1
  article-title: Advances in chemical sensing technology for enabling the next‐generation self‐sustainable integrated wearable system in the IoT era
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105155
– ident: e_1_2_9_313_1
  doi: 10.1002/adma.201505684
– ident: e_1_2_9_341_1
  doi: 10.1021/acsnano.6b03007
– ident: e_1_2_9_323_1
  doi: 10.1016/j.nanoen.2019.04.089
– volume: 74
  start-page: 165
  year: 2009
  ident: e_1_2_9_39_1
  article-title: A wideband electromagnetic energy harvester for random vibration sources
  publication-title: Adv Mat Res
– volume: 3
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_9_259_1
  article-title: Radial‐grating pendulum‐structured triboelectric nanogenerator for energy harvesting and tilting‐angle sensing
  publication-title: Adv Mater Technol
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_9_368_1
  article-title: High performance lithium‐sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators
  publication-title: Sci Rep
– ident: e_1_2_9_248_1
  doi: 10.1002/admi.201701063
SSID ssj0002504241
Score 2.5824754
SecondaryResourceType review_article
Snippet Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms energy harvesting
nanoenergy and nanosystem
self‐powered sensor
triboelectric nanogenerator
wearable sensor
Title Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12058
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMDDnBc9iJ84P0ZALwp1bZqmKXgZsinC5g4bDDyUfE0FTWXWgxfxj_Av9C8xSbtuggheSkteLy95yXuP934B4Nh4yDLhXHoTTk2AMiHE4wJJT2FGQhTLiLkiml6fXI3w9Tga18D5rBem4ENUCTdrGW6_tgbO-EtrDg1V2RM6C5Af0SWwbHtrbUEfwoMqw2LhXMhdXWmOdZuMi8OKT4pa899_nEiLHqo7YrrrYK30DWG7mMwNUFN6E6wuEAO3wO3A1lOZ3Qk-aDjs9C9hXuXGvz4-29CtDfUGbdsIVK6xD96zqYNp6DuYZ1AznZUDTEv3WeCct8Go2xleXHnl_QiesA01Hk0C6ROB_FAkXFluDhUcK4uL8X2OkYntOKOBLwMcIyJwSKTPKGLGyHFASRjugLrOtNoFMEaMKS5VmOAAy3hiJiqIKeYRjpkQhDXAyUxHqSjh4fYOi8e0wB6j1OozdfpsgKNK9rlAZvwqdepU_YdI2rnpIfe29x_hfbCCbFDsak4OQD2fvqpD4znkvOkWSNPF3ebZe-98A6Tzv9g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtaAdgQDxFeVqCBaTQxHGcZKxQS4G2MDSogiHyq4AEDqrCwMaP4BfyS7CdkIKEkNgS5ZThfPY9dPcZgAMdIYuYMeGMWaQTlDEhDuNIOBJT4qNQBNQ20fQHpJvg81EwKntzzCxMwYeoCm5mZ9jz2mxwU5BuTqmhMntCxx5yg2gW1E1Yo4263rpObpKqyGL4XMjeXqk9u6nHhX6FKEXN6Q9-OKXvQar1Mp0lsFiGh7BVrOcymJFqBSx8gwaugtsr01KlDyj4oOCwPTiFeVUe_3h7b0FrHvIVmskRKO1sH7ynE8vTUHcwz6CiKis_UCXsa0F0XgNJpz086TrlFQkONzM1ThR7wiUcuT6PmTTonIgzLA0xxnUZRjq9YzTyXOHhEBGOfSJcGiGq9zn2IuL766CmMiU3AAwRpZIJ6cfYwyIc67XywgizAIeUc0Ib4PBLRykv-eHmGovHtCAfo9ToM7X6bID9Sva5oGb8KnVkVf2HSNq-7CP7tPkf4T0w1x32e2nvbHCxBeaRyZFtC8o2qOWTF7mjA4mc7Zbm8gnM4sLt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEICH2oLoQXxifS7oRSE22Ww2KXgp2lofrR5aKXoI-6oKmpZSD978Ef5Cf4m7mzRWEMFbQoYcZnd2Hux8A7CvI2RZ5Vw6fR7pBKVPqcMFlo4ijPo4lAGzl2habdrskote0CvA8aQXJuVD5AU3Yxn2vDYGPpT9yjc0VA1e8JGH3SCagVKg3ZJbhFLttnvXzWssBs-F7fBK7dhNOS70c0Iprnz_4IdPmo5RrZNpLMJCFh2iWrqcS1BQyTLMTzEDV-D-xtyo0ucTekpQp94-Q-O8Ov75_lFDdneoN2QaR5CyrX3okY0sTiN5QOMBSlgyyD6wRNrXFOi8Ct1GvXPSdLIJCY4wLTVOVPWkSwV2fVHlypBzIsGJMsAY1-UE6-yOs8hzpUdCTAXxqXRZhJk2c-JF1PfXoJgMErUOKMSMKS6VXyUekWFfL5UXRoQHJGRCUFaGg4mOYpHhw80Ui-c4BR_j2Ogztvosw14uO0yhGb9KHVpV_yES169b2D5t_Ed4F2ZvThvx1Xn7chPmsMmQ7QWULSiOR69qW4cRY76T7ZYvtgfCDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+TENG+technology%E2%80%94A+journey+from+energy+harvesting+to+nanoenergy+and+nanosystem&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Zhu%2C+Jianxiong&rft.au=Zhu%2C+Minglu&rft.au=Shi%2C+Qiongfeng&rft.au=Wen%2C+Feng&rft.date=2020-12-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1002%2Feom2.12058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon