Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem
Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energ...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 2; no. 4 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems.
Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, etc. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. |
---|---|
AbstractList | Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems.
image Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, and so on. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. Starting from TENG mechanisms including the ways of charge generation and energy‐boosting, we introduce the applications from energy harvesters to various kinds of self‐powered sensors, that is, physical sensors, chemical/gas sensors. After that, further applications in NENS are discussed, such as blue energy, human‐machine interfaces (HMIs), neural interfaces/implanted devices, and optical interface/wearable photonics. Moving to new research directions beyond TENG, we depict hybrid energy harvesting technologies, dielectric‐elastomer‐enhancement, self‐healing, shape‐adaptive capability, and self‐sustained NENS and/or internet of things (IoT). Finally, the outlooks and conclusions about future development trends of TENG technologies are discussed toward multifunctional and intelligent systems. Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of mechanical, electrical, optical, acoustic, fluidic, etc. This review systematically reports the progress of TENG technology, in terms of energy‐boosting, emerging materials, self‐powered sensors, NENS, and its further integration with other potential technologies. |
Author | Haroun, Ahmed Zhu, Jianxiong Shi, Qiongfeng Wen, Feng Yang, Yanqin Zhu, Minglu Vachon, Philippe Guo, Xinge Liu, Long Dong, Bowei Lee, Chengkuo He, Tianyiyi |
Author_xml | – sequence: 1 givenname: Jianxiong surname: Zhu fullname: Zhu, Jianxiong organization: NUS Suzhou Research Institute (NUSRI) – sequence: 2 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: NUS Suzhou Research Institute (NUSRI) – sequence: 3 givenname: Qiongfeng surname: Shi fullname: Shi, Qiongfeng organization: NUS Suzhou Research Institute (NUSRI) – sequence: 4 givenname: Feng surname: Wen fullname: Wen, Feng organization: NUS Suzhou Research Institute (NUSRI) – sequence: 5 givenname: Long surname: Liu fullname: Liu, Long organization: NUS Suzhou Research Institute (NUSRI) – sequence: 6 givenname: Bowei surname: Dong fullname: Dong, Bowei organization: NUS Suzhou Research Institute (NUSRI) – sequence: 7 givenname: Ahmed surname: Haroun fullname: Haroun, Ahmed organization: NUS Suzhou Research Institute (NUSRI) – sequence: 8 givenname: Yanqin surname: Yang fullname: Yang, Yanqin organization: NUS Suzhou Research Institute (NUSRI) – sequence: 9 givenname: Philippe surname: Vachon fullname: Vachon, Philippe organization: NUS Suzhou Research Institute (NUSRI) – sequence: 10 givenname: Xinge surname: Guo fullname: Guo, Xinge organization: NUS Suzhou Research Institute (NUSRI) – sequence: 11 givenname: Tianyiyi surname: He fullname: He, Tianyiyi organization: NUS Suzhou Research Institute (NUSRI) – sequence: 12 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: National University of Singapore |
BookMark | eNp9kMtOwzAQRS1UJErphi_wGillxs7DWVZVKUiFsigrFpHjuGmqxEZ2AGXHR_CFfAl9LRBCrGZGc-5dnHPSM9ZoQi4RRgjArrVt2AgZROKE9FkUJwHHhPd-7Gdk6P0GtnAEIQuxT54fnS2d9p5Whi6nDzPaarU2trZl9_XxOaYb--qM7ujK2YZqo13Z0bV0b9q3lSlpa6mRxh4f0hT703e-1c0FOV3J2uvhcQ7I0810ObkN5ovZ3WQ8DxRLuAhEigXEigFXaa6RIwqVhxrTKAXIQ8YQcykQCgwTFquQxwVIwWQCPEQRcz4gV4de5az3Tq-yF1c10nUZQrYzk-3MZHszWxh-wapqZVtZ0zpZ1X9H8BB5r2rd_VOeTRf37JD5Bp_Zd8Y |
CitedBy_id | crossref_primary_10_1016_j_nanoso_2023_100980 crossref_primary_10_1039_D4TC05325G crossref_primary_10_1016_j_nanoen_2023_108392 crossref_primary_10_1631_jzus_A2300530 crossref_primary_10_1002_smll_202103430 crossref_primary_10_1016_j_isci_2020_101934 crossref_primary_10_1021_acsanm_4c02292 crossref_primary_10_1016_j_nanoen_2023_108959 crossref_primary_10_1002_advs_202308560 crossref_primary_10_1039_D4TC04321A crossref_primary_10_1016_j_apenergy_2021_118037 crossref_primary_10_1021_acsami_3c17203 crossref_primary_10_1088_1361_6439_ac168e crossref_primary_10_1021_acssensors_2c00097 crossref_primary_10_1016_j_nanoen_2021_106894 crossref_primary_10_1016_j_nanoen_2023_109004 crossref_primary_10_1021_acsnano_3c10033 crossref_primary_10_1038_s41578_024_00728_4 crossref_primary_10_1134_S1063739724700793 crossref_primary_10_1021_acsami_3c03045 crossref_primary_10_1016_j_nanoen_2023_108729 crossref_primary_10_1002_smtd_202200653 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1002_adma_202203073 crossref_primary_10_1016_j_nanoen_2022_107219 crossref_primary_10_1002_adma_202307963 crossref_primary_10_1016_j_sna_2024_115201 crossref_primary_10_1016_j_mseb_2023_116637 crossref_primary_10_1021_acsami_4c22207 crossref_primary_10_1016_j_nanoen_2024_109753 crossref_primary_10_1016_j_sna_2022_113821 crossref_primary_10_1016_j_mtcomm_2024_108184 crossref_primary_10_3390_nano12172960 crossref_primary_10_1002_adhm_202100975 crossref_primary_10_1038_s41378_022_00349_3 crossref_primary_10_1016_j_cej_2022_137263 crossref_primary_10_1109_JSEN_2022_3216872 crossref_primary_10_1016_j_nanoen_2021_106517 crossref_primary_10_1016_j_nanoen_2021_106078 crossref_primary_10_1016_j_cej_2024_149442 crossref_primary_10_1016_j_nanoen_2022_107245 crossref_primary_10_1109_JSEN_2024_3398003 crossref_primary_10_3390_nano12060934 crossref_primary_10_1039_D2TC03058F crossref_primary_10_1002_advs_202100230 crossref_primary_10_1007_s40820_023_01238_8 crossref_primary_10_1016_j_nanoen_2023_108183 crossref_primary_10_1016_j_nanoso_2023_100990 crossref_primary_10_1002_adsu_202400731 crossref_primary_10_1002_aenm_202405398 crossref_primary_10_1007_s11431_022_2085_4 crossref_primary_10_1002_admt_202201245 crossref_primary_10_1002_er_7283 crossref_primary_10_3390_electronics10060661 crossref_primary_10_1016_j_rsurfi_2022_100075 crossref_primary_10_1016_j_sna_2023_114877 crossref_primary_10_1021_acsami_2c08162 crossref_primary_10_1016_j_nanoen_2023_108983 crossref_primary_10_1039_D3MH01529G crossref_primary_10_1016_j_sna_2022_113696 crossref_primary_10_1002_smll_202207600 crossref_primary_10_1007_s40820_022_00903_8 crossref_primary_10_3390_s23146634 crossref_primary_10_1016_j_cej_2021_131698 crossref_primary_10_1016_j_nanoen_2024_110558 crossref_primary_10_1002_admt_202300495 crossref_primary_10_1063_5_0227686 crossref_primary_10_3390_en15207495 crossref_primary_10_1007_s10853_021_06637_z crossref_primary_10_1002_eom2_12357 crossref_primary_10_1016_j_cej_2025_160507 crossref_primary_10_1002_aenm_202101116 crossref_primary_10_3390_nano12071168 crossref_primary_10_1016_j_sna_2024_116046 crossref_primary_10_1016_j_snb_2022_133225 crossref_primary_10_1002_adsr_202400086 crossref_primary_10_3390_mi15091149 crossref_primary_10_1021_acsami_3c17241 crossref_primary_10_1016_j_jallcom_2025_179623 crossref_primary_10_1016_j_mattod_2022_11_005 crossref_primary_10_1002_chem_202301076 crossref_primary_10_1021_acsnano_3c11281 crossref_primary_10_1002_aesr_202200051 crossref_primary_10_1002_aisy_202100228 crossref_primary_10_1016_j_matdes_2022_111005 crossref_primary_10_1021_acsnano_1c07579 crossref_primary_10_1016_j_microc_2022_107833 crossref_primary_10_1021_acsami_2c00384 crossref_primary_10_1016_j_nanoen_2025_110844 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_3390_mi12020218 crossref_primary_10_1016_j_seta_2022_102595 crossref_primary_10_1016_j_jallcom_2021_163381 crossref_primary_10_1080_15599612_2024_2332242 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1021_acsnano_2c04043 crossref_primary_10_3390_molecules29153576 crossref_primary_10_1016_j_nanoen_2023_108365 crossref_primary_10_1021_acsaelm_2c00887 crossref_primary_10_1002_adfm_202408708 crossref_primary_10_3390_mi12080946 crossref_primary_10_1002_aesr_202200087 crossref_primary_10_1002_adfm_202214859 crossref_primary_10_1016_j_sna_2023_114162 crossref_primary_10_1021_acsnano_2c12592 crossref_primary_10_1016_j_nanoen_2024_110096 crossref_primary_10_3390_catal11121435 crossref_primary_10_1016_j_pmatsci_2023_101206 crossref_primary_10_1021_acsaelm_3c01145 crossref_primary_10_1039_D2TA04433A crossref_primary_10_1016_j_nanoen_2024_110092 crossref_primary_10_1016_j_nanoen_2021_106154 crossref_primary_10_1016_j_nanoen_2024_109429 crossref_primary_10_1016_j_cej_2025_161013 crossref_primary_10_1016_j_nanoen_2024_109548 crossref_primary_10_1021_acsmaterialsau_2c00001 crossref_primary_10_1016_j_nanoen_2021_106035 crossref_primary_10_1016_j_nanoen_2024_110640 crossref_primary_10_1016_j_sna_2021_113022 crossref_primary_10_1002_aesr_202400127 crossref_primary_10_1016_j_isci_2024_109479 crossref_primary_10_1109_JFLEX_2022_3225128 crossref_primary_10_3390_textiles4030023 crossref_primary_10_1002_advs_202201056 crossref_primary_10_1016_j_susmat_2024_e01096 crossref_primary_10_1002_cnma_202300614 crossref_primary_10_1016_j_mtcomm_2025_112151 crossref_primary_10_3390_nanoenergyadv3020006 crossref_primary_10_1002_appl_202400124 crossref_primary_10_3390_en15218268 crossref_primary_10_1002_advs_202202815 crossref_primary_10_1016_j_nanoen_2024_109655 crossref_primary_10_1016_j_nanoen_2024_110112 crossref_primary_10_1109_JSEN_2021_3087253 crossref_primary_10_3390_mi14061273 crossref_primary_10_1016_j_nanoen_2023_109080 crossref_primary_10_1007_s12274_021_3540_7 crossref_primary_10_1016_j_mseb_2024_117859 crossref_primary_10_1016_j_nanoen_2025_110763 crossref_primary_10_1088_1361_6439_ac3ab9 crossref_primary_10_3390_nanoenergyadv3030010 crossref_primary_10_3390_nano11102496 crossref_primary_10_1088_1361_665X_ad3bfd crossref_primary_10_3390_ma18010033 crossref_primary_10_3390_polym15010222 crossref_primary_10_1002_eom2_12145 crossref_primary_10_1016_j_matchemphys_2022_126736 crossref_primary_10_1109_JSEN_2023_3342792 crossref_primary_10_1002_er_7585 crossref_primary_10_1016_j_seta_2021_101757 crossref_primary_10_1016_j_nanoen_2021_106826 crossref_primary_10_1039_D4TA05825A crossref_primary_10_3390_nano11112975 crossref_primary_10_1016_j_nanoen_2023_108444 crossref_primary_10_1002_eom2_12493 crossref_primary_10_1038_s41467_021_23020_3 crossref_primary_10_1016_j_mtsust_2024_100781 crossref_primary_10_3390_catal12080804 crossref_primary_10_3390_bios12050323 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1016_j_molliq_2024_124190 crossref_primary_10_3390_polym13132213 crossref_primary_10_1016_j_cej_2023_145088 crossref_primary_10_1016_j_apmt_2024_102503 crossref_primary_10_1021_acsami_2c05610 crossref_primary_10_1021_acsami_1c15268 crossref_primary_10_1021_acsnano_3c12035 crossref_primary_10_1088_1361_665X_ac9e2c crossref_primary_10_1002_adsu_202400575 crossref_primary_10_1016_j_mseb_2025_118084 crossref_primary_10_1002_adfm_202302147 crossref_primary_10_1007_s12274_023_5490_8 crossref_primary_10_1016_j_nanoen_2022_107633 crossref_primary_10_1016_j_cej_2022_141012 crossref_primary_10_1002_open_202400373 crossref_primary_10_1016_j_gerr_2023_100006 crossref_primary_10_1088_2515_7639_ad05e7 crossref_primary_10_1016_j_nanoen_2022_107819 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_3390_s23042021 crossref_primary_10_1039_D4RA07550A crossref_primary_10_1021_acssuschemeng_4c03742 crossref_primary_10_1002_adfm_202107143 crossref_primary_10_1016_j_nanoen_2022_107824 crossref_primary_10_1002_adem_202301897 crossref_primary_10_1016_j_nanoso_2023_100949 crossref_primary_10_1177_0958305X231193873 crossref_primary_10_1016_j_sna_2025_116449 crossref_primary_10_1002_adfm_202202360 crossref_primary_10_1021_acsnano_1c04464 crossref_primary_10_1016_j_nanoen_2024_110383 crossref_primary_10_1002_adfm_202308353 crossref_primary_10_1002_adfm_202409608 crossref_primary_10_1039_D3SE00714F crossref_primary_10_3390_nano13030385 crossref_primary_10_1016_j_matlet_2022_132214 crossref_primary_10_1002_admt_202201902 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1016_j_apsusc_2022_155522 crossref_primary_10_1016_j_compositesb_2020_108602 crossref_primary_10_1109_OJCAS_2021_3123272 crossref_primary_10_1002_adfm_202404744 crossref_primary_10_1002_adfm_202401593 crossref_primary_10_1002_advs_202409914 crossref_primary_10_1016_j_enconman_2022_116098 crossref_primary_10_1002_advs_202400785 crossref_primary_10_1016_j_apenergy_2023_122081 crossref_primary_10_1039_D2TC01014C crossref_primary_10_1021_acssensors_4c00375 crossref_primary_10_1016_j_biomaterials_2023_122421 crossref_primary_10_1016_j_nanoen_2023_108898 crossref_primary_10_1016_j_eswa_2023_120244 crossref_primary_10_1016_j_nanoen_2023_108651 crossref_primary_10_1016_j_nanoen_2022_107030 crossref_primary_10_1016_j_nanoen_2024_110126 crossref_primary_10_3390_polym16020260 crossref_primary_10_1016_j_measurement_2022_112010 crossref_primary_10_1016_j_sna_2023_114311 crossref_primary_10_1016_j_materresbull_2024_113116 crossref_primary_10_1093_iti_liad014 crossref_primary_10_1016_j_jallcom_2022_168157 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_nanoen_2023_108308 crossref_primary_10_1016_j_egyr_2024_09_034 crossref_primary_10_1016_j_biotechadv_2023_108297 crossref_primary_10_3390_polym15224383 crossref_primary_10_1016_j_nanoen_2023_108787 crossref_primary_10_1080_15599612_2022_2137608 crossref_primary_10_1016_j_nanoen_2023_108789 crossref_primary_10_1002_adma_202415099 |
Cites_doi | 10.1016/j.nanoen.2018.12.054 10.1002/aenm.201601705 10.1002/admt.201900741 10.1016/j.nanoen.2020.104675 10.1016/j.nanoen.2017.11.028 10.1016/j.nanoen.2019.104039 10.1021/acsnano.7b05213 10.1007/s12274-018-2018-8 10.1016/j.nanoen.2018.03.032 10.1016/j.nanoen.2012.11.015 10.1063/1.5134100 10.1021/acsami.8b05636 10.1002/advs.201500441 10.1016/j.nanoen.2019.103933 10.1016/j.nanoen.2019.05.033 10.1016/j.nanoen.2016.11.025 10.1016/j.mattod.2019.05.016 10.1038/s41467-019-10433-4 10.1038/s41467-018-03781-0 10.1039/C5EE02711J 10.1016/j.nanoen.2018.12.032 10.1016/j.nanoen.2014.01.001 10.1016/j.nanoen.2018.11.075 10.1039/c3ee41485j 10.1002/adma.201902549 10.1016/j.nanoen.2017.06.035 10.1002/admt.201800487 10.3390/en81112340 10.1016/j.nanoen.2019.03.090 10.1109/JSEN.2015.2411313 10.1021/acs.nanolett.6b01968 10.1016/j.nanoen.2018.10.044 10.1007/s12274-016-1331-3 10.1002/adfm.201803684 10.1016/j.nanoen.2020.105241 10.1002/adma.201802405 10.1016/j.nanoen.2019.104419 10.1063/1.4863565 10.1016/j.nanoen.2018.06.022 10.1002/smtd.201800078 10.1002/aenm.201301798 10.1021/acsnano.5b06372 10.1016/j.nanoen.2015.09.012 10.1021/acsnano.7b05317 10.1002/adma.201404071 10.1002/adma.201503407 10.1088/0964-1726/21/3/035005 10.1002/adfm.201807241 10.1002/adma.201302808 10.1016/j.nanoen.2019.103871 10.1126/science.aau0780 10.1016/j.nanoen.2019.04.026 10.1109/TNANO.2018.2823342 10.1007/s12274-012-0272-8 10.1002/admt.201700184 10.1002/adma.201603527 10.1016/j.nanoen.2014.11.034 10.1039/C4FD00159A 10.1002/aenm.201900801 10.1126/science.347.6226.1084 10.1002/adma.201705195 10.1016/j.nanoen.2019.103912 10.1021/acsnano.8b08329 10.1016/j.nantod.2018.08.001 10.1021/nn403021m 10.1016/j.nanoen.2017.08.018 10.1016/j.nanoen.2018.12.078 10.1016/j.nanoen.2017.08.025 10.1021/acsnano.7b03657 10.1002/aenm.201600988 10.1038/s41586-019-1234-z 10.1021/acsnano.6b02693 10.1016/j.nanoen.2015.04.020 10.1016/j.nanoen.2020.104500 10.1039/C5EE01532D 10.1016/j.compscitech.2019.107963 10.1007/s10854-017-7020-5 10.1002/aenm.201800069 10.1016/j.nanoen.2019.03.082 10.1039/C8TA04443K 10.1021/acssuschemeng.8b00834 10.1021/am406018h 10.1002/aenm.202000137 10.1038/s41598-016-0001-8 10.1021/nn5012732 10.1021/acssensors.9b01509 10.1016/j.cobme.2018.05.004 10.1088/0960-1317/19/3/035001 10.1016/j.nanoen.2017.10.064 10.1021/acsnano.8b05359 10.1021/nn405209u 10.1016/j.snb.2016.03.063 10.1088/2053-1591/aabd22 10.1002/adma.201404291 10.1016/j.nanoen.2019.01.096 10.1021/acsnano.0c00524 10.1016/j.nanoen.2019.01.002 10.1007/s00542-012-1424-1 10.1002/adfm.201905426 10.1016/j.nanoen.2019.104266 10.1016/j.nanoen.2019.04.085 10.1088/1361-6528/ab6677 10.1088/0960-1317/22/12/125020 10.1002/adbi.201800281 10.1038/542159a 10.1016/j.nanoen.2019.06.040 10.1038/s41467-016-0009-6 10.1002/adma.201904988 10.1021/acsnano.7b00396 10.1109/TNANO.2018.2869934 10.1063/1.4948973 10.1016/j.nanoen.2016.10.046 10.1002/advs.201900617 10.1016/j.nanoen.2018.04.004 10.1021/acsami.8b01635 10.1002/adfm.201806388 10.1002/adma.201402064 10.1039/C9NR01271K 10.1007/s12274-014-0523-y 10.1088/0960-1317/20/6/065017 10.1021/nn501983s 10.1016/j.nanoen.2019.05.063 10.1039/C4TA02747G 10.1007/s11431-013-5270-x 10.1016/j.nanoen.2016.12.038 10.1016/j.nanoen.2017.11.039 10.1016/j.nanoen.2019.104272 10.1016/j.enconman.2018.08.018 10.1109/JMEMS.2014.2317718 10.1021/acsnano.5b07407 10.1002/aenm.201601569 10.1039/C9TA02711D 10.1007/s12274-018-1989-9 10.1002/adma.201605817 10.1109/TNANO.2020.2976154 10.1063/1.4905553 10.1021/acsnano.8b07935 10.1021/acsami.6b11108 10.1021/acsnano.6b02384 10.1016/j.nanoen.2018.12.041 10.1002/admt.201700317 10.1021/acsnano.7b03818 10.1002/adfm.201606695 10.1021/acsaelm.0c00022 10.1002/adfm.201302453 10.1038/srep09309 10.1016/j.nanoen.2017.05.039 10.1002/advs.201903636 10.1002/adhm.201700987 10.1016/j.elstat.2004.05.005 10.1002/adma.201706738 10.1088/1361-6528/ab793e 10.1021/acsami.7b17314 10.1038/s41551-018-0287-x 10.3390/nano5010036 10.1016/j.smaim.2020.07.005 10.1021/acsnano.8b00303 10.1021/acsnano.8b01532 10.1002/adfm.201908252 10.1038/srep36409 10.1016/j.nanoen.2019.04.005 10.1021/acsnano.8b02477 10.1038/s41467-019-13166-6 10.1002/aenm.201800705 10.1109/JMEMS.2015.2404037 10.1016/j.nanoen.2017.08.045 10.1016/j.sna.2013.09.015 10.1016/j.nanoen.2019.03.071 10.1088/2057-1976/ab268e 10.1126/scirobotics.aau6914 10.1039/C6NR06319E 10.1063/1.4967001 10.1038/s41467-018-05755-8 10.1002/advs.201500386 10.1021/acsnano.6b06621 10.1021/acsnano.8b06747 10.1021/acsami.9b22572 10.1002/aenm.202000886 10.1007/s12274-015-0894-8 10.1016/j.nanoen.2017.09.025 10.1021/acsami.8b16023 10.1016/j.nanoen.2016.12.035 10.1016/j.nanoen.2019.103923 10.1039/C9EE03258D 10.1126/scirobotics.aaw6339 10.1002/adma.201804944 10.1002/adma.201503423 10.1109/TNANO.2018.2828302 10.1021/nl300988z 10.1016/j.nanoen.2019.01.091 10.1016/j.nanoen.2018.05.061 10.1126/scirobotics.aax2198 10.1016/j.nanoen.2017.08.024 10.1016/j.nanoen.2019.02.052 10.1016/j.nanoen.2019.06.043 10.1007/s12274-018-1978-z 10.1002/advs.201700143 10.1038/s41467-019-13773-3 10.1002/aenm.201601852 10.1021/nl5005652 10.1126/scirobotics.aat2516 10.1021/acsami.8b15410 10.1088/0960-1317/24/10/104002 10.1039/C6NR07781A 10.1021/acsnano.8b02479 10.1016/j.nanoen.2020.104456 10.1021/acsami.5b09907 10.1016/j.nanoen.2014.10.034 10.1002/adfm.201502450 10.3390/nano8070503 10.1016/j.nanoen.2016.11.056 10.1109/JMEMS.2011.2162488 10.1016/j.nanoen.2019.104228 10.1021/acsnano.0c03728 10.1002/advs.201901980 10.1016/j.mattod.2019.10.025 10.1021/acsnano.5b01478 10.1039/C5EE01705J 10.1002/ente.201700779 10.1021/acsnano.5b07074 10.1016/j.nanoen.2017.08.001 10.1021/acsnano.9b00140 10.1021/nn403151t 10.1016/j.nanoen.2018.12.062 10.1049/mnl.2013.0750 10.1002/adma.201705918 10.1002/adfm.201604378 10.1002/adfm.201901069 10.1109/TNANO.2018.2876824 10.1002/adfm.201404087 10.1016/j.materresbull.2018.02.020 10.1002/adfm.201907893 10.1016/j.nanoen.2019.05.039 10.1016/j.sna.2017.12.067 10.1038/srep22253 10.1016/j.joule.2017.09.004 10.1038/s41467-019-10061-y 10.1126/sciadv.1501478 10.1126/sciadv.aay2840 10.1016/j.nanoen.2019.103997 10.1109/JMEMS.2015.2403256 10.1016/j.nanoen.2018.03.062 10.1039/C6TC05193F 10.1021/acsami.9b02313 10.1039/C9SE01184F 10.1021/acsnano.5b01187 10.1038/s41467-018-06759-0 10.1016/j.nanoen.2019.03.054 10.1021/acsnano.7b03683 10.1109/TNANO.2017.2789300 10.1002/adma.201402491 10.1016/j.nanoen.2020.104642 10.1016/j.nanoen.2012.01.004 10.1021/acsnano.7b08716 10.1021/acsami.6b06866 10.1016/j.nanoen.2018.02.031 10.1002/aenm.201802892 10.1002/advs.201700881 10.1002/adfm.201909252 10.1021/am404611h 10.1038/508302a 10.1039/C9EE03566D 10.1021/nn4050408 10.1063/1.5053945 10.1016/j.nanoen.2016.08.024 10.1126/sciadv.1700694 10.1063/5.0016485 10.1002/advs.201700658 10.1039/C9TA02345C 10.1021/acsnano.8b00147 10.1002/adfm.201808633 10.1002/advs.201900149 10.1016/j.nanoen.2019.03.005 10.1016/j.nanoen.2015.12.001 10.1016/j.nanoen.2019.04.025 10.1021/acsaem.9b00836 10.3390/nano8080613 10.1021/acsnano.6b04201 10.1016/j.mattod.2017.10.006 10.1016/j.nanoen.2020.104760 10.1016/j.nanoen.2018.04.059 10.1016/j.nanoen.2020.104462 10.1021/acsnano.9b06272 10.1016/j.nanoen.2017.04.012 10.1002/aenm.201501799 10.1002/adma.201600604 10.1016/j.nanoen.2019.104167 10.1016/j.nanoen.2018.06.034 10.1002/adfm.201402703 10.1002/adma.201404794 10.1016/j.nanoen.2019.103994 10.1109/ACCESS.2019.2927394 10.1002/advs.201901437 10.1002/advs.201500169 10.1109/TNANO.2019.2895137 10.1039/C8TC02964D 10.1016/j.nanoen.2018.06.060 10.1021/nl303539c 10.1016/j.nanoen.2017.04.053 10.1021/nn404614z 10.1002/adfm.201602529 10.1038/s41467-019-10298-7 10.1021/acsnano.9b02690 10.1021/acsnano.9b07165 10.1021/acsnano.6b05507 10.1109/JMEMS.2016.2588529 10.1038/s41598-017-00418-y 10.1016/j.sna.2012.06.006 10.1016/j.nanoen.2017.11.044 10.1002/adma.201500121 10.1016/j.nanoen.2017.10.004 10.1364/OL.36.001389 10.1016/j.mattod.2016.12.001 10.1002/adma.201702181 10.1002/smll.201501772 10.1016/j.nanoen.2018.04.033 10.1016/j.nanoen.2018.03.044 10.1021/acsnano.5b07157 10.1016/j.nanoen.2019.01.042 10.1016/j.nanoen.2019.01.088 10.1021/acsami.7b08526 10.1016/j.sna.2017.06.012 10.1109/JMEMS.2012.2190716 10.1002/adfm.201603788 10.3390/s17020282 10.1016/j.nanoen.2019.104121 10.1002/admi.201700750 10.1016/j.nanoen.2018.03.033 10.1088/1361-6528/28/3/035405 10.1021/acsami.5b04516 10.1016/j.nanoen.2020.105155 10.1002/adma.201505684 10.1021/acsnano.6b03007 10.1016/j.nanoen.2019.04.089 10.1002/admi.201701063 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/eom2.12058 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | 10_1002_eom2_12058 EOM212058 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: A*STAR‐NCBR funderid: R‐263‐000‐C91‐305 – fundername: HIFES Seed Funding funderid: R‐263‐501‐012‐133 – fundername: RIE Advanced Manufacturing and Engineering (AME) programmatic grant funderid: A18A4b0055 – fundername: National Key Research and Development Program of China funderid: 2019YFB2004800; R‐2020‐S‐002 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT |
ID | FETCH-LOGICAL-c2738-891d06c203c9be13118cb4e195900b42211ba810d14726c436d0a82a703418633 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 16:31:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2738-891d06c203c9be13118cb4e195900b42211ba810d14726c436d0a82a703418633 |
Notes | Funding information A*STAR‐NCBR, Grant/Award Number: R‐263‐000‐C91‐305; HIFES Seed Funding, Grant/Award Number: R‐263‐501‐012‐133; National Key Research and Development Program of China, Grant/Award Numbers: 2019YFB2004800, R‐2020‐S‐002; RIE Advanced Manufacturing and Engineering (AME) programmatic grant, Grant/Award Number: A18A4b0055 Jianxiong Zhu, Minglu Zhu, and Qiongfeng Shi contributed equally to this work. |
ORCID | 0000-0002-8886-3649 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12058 |
PageCount | 45 |
ParticipantIDs | crossref_primary_10_1002_eom2_12058 crossref_citationtrail_10_1002_eom2_12058 wiley_primary_10_1002_eom2_12058_EOM212058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2020; 2000605 2020; 2000965 2013; 2 2019; 11 2019; 10 2019; 13 2014; 26 2016; 30 2014; 24 2020; 14 2019; 18 2012; 18 2020; 13 2020; 12 2020; 11 2020; 10 2019; 569 2013; 7 2018; 44 2012; 12 2018; 43 2013; 6 2018; 49 2018; 48 2018; 47 2020; 19 2018; 7 2018; 6 2018; 174 2018; 9 2010; 20 2018; 8 2018; 3 2018; 2 2018; 5 2013; 56 2014; 14 2019; 29 2018; 30 2009; 19 2012; 22 2012; 21 2012; 183 2019; 7 2018; 28 2019; 9 2019; 4 2012; 100 2019; 3 2019; 6 2019; 5 2016; 19 2019; 31 2019; 30 2019; 2 2018; 102 2016; 10 2020; 32 2018; 22 2018; 21 2016; 16 2016; 6 2018; 17 2009; 74 2016; 2 2016; 3 2020; 31 2020; 30 2018; 113 2016; 20 2017; 263 2018; 12 2016; 28 2018; 11 2017; 542 2018; 10 2016; 26 2016; 8 2016; 25 2018; 14 2017; 40 2017; 5 2017; 7 2017; 42 2017; 8 2017; 41 2017; 1 2013; 25 2004; 62 2017; 3 2017; 4 2015; 347 2016; 109 2016; 108 2020; 2000886 2013; 204 2019; 57 2018; 124 2019; 56 2019; 59 2019; 58 2015; 106 2014; 176 2017; 9 2019; 363 2020; 7 2020; 6 2017; 31 2019; 60 2020; 4 2014; 5 2014; 4 2019; 62 2020; 2 2019; 61 2014; 2 2020; 1 2019; 64 2019; 63 2013; 13 2017; 39 2019; 66 2017; 38 2019; 65 2017; 33 2017; 32 2017; 35 2011; 20 2016; 231 2014; 9 2014; 8 2014; 7 2014; 6 2015; 2 2015; 15 2017; 20 2015; 5 2015; 3 2015; 18 2017; 28 2017; 27 2015; 11 2020; 188 2017; 29 2020; 78 2011; 36 2015; 9 2015; 8 2015; 7 2015; 24 2015; 25 2015; 27 2014; 508 2012; 1 2018; 271 2020; 73 2017; 17 2020; 72 2020; 71 2017; 11 2020; 70 2017; 10 2017; 13 2020; 116 2018 2020; 69 2020; 68 2018; 51 2020; 67 2018; 50 2018; 54 2012; 5 2014; 104 e_1_2_9_79_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_216_1 Luo J (e_1_2_9_378_1) 2018; 8 Zhang C (e_1_2_9_257_1) 2020; 32 e_1_2_9_337_1 e_1_2_9_314_1 e_1_2_9_183_1 Wang ZL (e_1_2_9_36_1) 2020; 68 e_1_2_9_160_1 Xia K (e_1_2_9_361_1) 2018; 124 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_204_1 Xu W (e_1_2_9_332_1) 2017; 40 e_1_2_9_119_1 e_1_2_9_280_1 e_1_2_9_325_1 e_1_2_9_348_1 e_1_2_9_195_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_217_1 Xu C (e_1_2_9_88_1) 2018; 30 Lee JW (e_1_2_9_173_1) 2019; 9 e_1_2_9_106_1 e_1_2_9_338_1 e_1_2_9_315_1 e_1_2_9_182_1 Wang X (e_1_2_9_121_1) 2017; 29 Xiao TX (e_1_2_9_54_1) 2018; 28 e_1_2_9_46_1 e_1_2_9_205_1 Chen T (e_1_2_9_80_1) 2018; 8 e_1_2_9_5_1 Liu L (e_1_2_9_358_1) 2018; 3 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_326_1 e_1_2_9_349_1 e_1_2_9_303_1 e_1_2_9_69_1 Song JK (e_1_2_9_144_1) 2017; 27 e_1_2_9_171_1 e_1_2_9_194_1 Bai Y (e_1_2_9_55_1) 2020; 2000605 e_1_2_9_77_1 e_1_2_9_339_1 e_1_2_9_294_1 e_1_2_9_109_1 Zheng Q (e_1_2_9_99_1) 2016; 2 Guo H (e_1_2_9_269_1) 2016; 6 Ren Z (e_1_2_9_139_1) 2018; 28 e_1_2_9_316_1 e_1_2_9_162_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_282_1 Liu D (e_1_2_9_95_1) 2019; 5 e_1_2_9_327_1 e_1_2_9_380_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 He C (e_1_2_9_259_1) 2018; 3 Parida K (e_1_2_9_108_1) 2019; 10 Lee KY (e_1_2_9_124_1) 2016; 6 Wen F (e_1_2_9_389_1) 2020; 78 e_1_2_9_219_1 e_1_2_9_370_1 e_1_2_9_184_1 Wang ZL (e_1_2_9_32_1) 2019; 30 e_1_2_9_393_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_283_1 e_1_2_9_7_1 Liu M (e_1_2_9_122_1) 2017; 29 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_381_1 e_1_2_9_196_1 Meng K (e_1_2_9_130_1) 2019; 29 Wu F (e_1_2_9_218_1) 2017; 17 e_1_2_9_318_1 e_1_2_9_273_1 Qin H (e_1_2_9_110_1) 2018; 28 e_1_2_9_250_1 Wang H (e_1_2_9_66_1) 2016; 3 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_371_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_329_1 e_1_2_9_261_1 e_1_2_9_199_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_176_1 e_1_2_9_153_1 Lou Z (e_1_2_9_287_1) 2017; 13 e_1_2_9_319_1 Tollefson J (e_1_2_9_186_1) 2014; 508 Seung W (e_1_2_9_301_1) 2017; 7 e_1_2_9_91_1 e_1_2_9_274_1 Wang X (e_1_2_9_297_1) 2016; 6 e_1_2_9_251_1 Wang J (e_1_2_9_270_1) 2019; 9 Zhang C (e_1_2_9_105_1) 2019; 29 Chen SW (e_1_2_9_126_1) 2017; 7 e_1_2_9_15_1 e_1_2_9_163_1 Zhu J (e_1_2_9_362_1) 2017; 10 e_1_2_9_372_1 e_1_2_9_307_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_360_1 e_1_2_9_383_1 e_1_2_9_35_1 e_1_2_9_298_1 e_1_2_9_12_1 e_1_2_9_275_1 e_1_2_9_252_1 Wei XY (e_1_2_9_245_1) 2015; 5 Yang B (e_1_2_9_38_1) 2009; 19 e_1_2_9_166_1 e_1_2_9_189_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_350_1 e_1_2_9_308_1 Hassani FA (e_1_2_9_391_1) 2020; 1 Ryu H (e_1_2_9_264_1) 2019; 31 e_1_2_9_286_1 e_1_2_9_263_1 e_1_2_9_240_1 e_1_2_9_155_1 e_1_2_9_178_1 Ding W (e_1_2_9_230_1) 2019; 4 e_1_2_9_47_1 e_1_2_9_132_1 Heo JS (e_1_2_9_177_1) 2018; 14 Liu H (e_1_2_9_185_1) 2020; 6 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_188_1 e_1_2_9_374_1 e_1_2_9_351_1 Khandelwal G (e_1_2_9_175_1) 2019; 9 e_1_2_9_309_1 Liu H (e_1_2_9_20_1) 2018; 5 e_1_2_9_241_1 Zhang P (e_1_2_9_376_1) 2020; 30 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 Dong K (e_1_2_9_117_1) 2020; 32 Hassani FA (e_1_2_9_64_1) 2018; 3 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_277_1 e_1_2_9_71_1 e_1_2_9_231_1 Wang H (e_1_2_9_390_1) 2020; 78 e_1_2_9_375_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_352_1 Li S (e_1_2_9_107_1) 2017; 7 e_1_2_9_265_1 e_1_2_9_83_1 e_1_2_9_288_1 e_1_2_9_242_1 Yan C (e_1_2_9_258_1) 2020; 67 e_1_2_9_111_1 Liu H (e_1_2_9_42_1) 2012; 18 e_1_2_9_134_1 Zhu Y (e_1_2_9_292_1) 2015; 24 Zhao C (e_1_2_9_233_1) 2019; 29 e_1_2_9_363_1 Rahman MT (e_1_2_9_271_1) 2020; 10 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 Wang X (e_1_2_9_6_1) 2015; 2 Chen T (e_1_2_9_26_1) 2018; 8 e_1_2_9_278_1 Lee S (e_1_2_9_61_1) 2017; 4 e_1_2_9_353_1 e_1_2_9_167_1 Chen S (e_1_2_9_296_1) 2017; 7 e_1_2_9_19_1 Hassani FA (e_1_2_9_60_1) 2017; 4 e_1_2_9_84_1 e_1_2_9_266_1 e_1_2_9_289_1 e_1_2_9_220_1 Quan Z (e_1_2_9_51_1) 2016; 6 Bui VT (e_1_2_9_161_1) 2019; 29 e_1_2_9_364_1 e_1_2_9_387_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_341_1 Lin Z (e_1_2_9_129_1) 2019; 4 e_1_2_9_210_1 Yao S (e_1_2_9_328_1) 2020; 32 e_1_2_9_279_1 e_1_2_9_92_1 e_1_2_9_331_1 e_1_2_9_354_1 e_1_2_9_377_1 e_1_2_9_101_1 Lai YC (e_1_2_9_127_1) 2018; 30 e_1_2_9_147_1 e_1_2_9_16_1 e_1_2_9_221_1 Zhu M (e_1_2_9_25_1) 2020; 6 e_1_2_9_267_1 Shi Q (e_1_2_9_392_1) 2020; 11 Bian Y (e_1_2_9_239_1) 2018; 3 e_1_2_9_81_1 e_1_2_9_159_1 e_1_2_9_342_1 e_1_2_9_388_1 e_1_2_9_365_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_211_1 e_1_2_9_234_1 Yao G (e_1_2_9_23_1) 2020; 30 Dong B (e_1_2_9_244_1) 2020; 7 e_1_2_9_93_1 e_1_2_9_70_1 Pu X (e_1_2_9_225_1) 2017; 3 Kollosche M (e_1_2_9_320_1) 2011; 36 Wu W (e_1_2_9_152_1) 2019; 29 e_1_2_9_100_1 e_1_2_9_355_1 e_1_2_9_169_1 Jung W‐S (e_1_2_9_293_1) 2015; 5 e_1_2_9_146_1 Lee S (e_1_2_9_382_1) 2019; 7 e_1_2_9_222_1 Yi F (e_1_2_9_113_1) 2019; 29 e_1_2_9_268_1 e_1_2_9_82_1 e_1_2_9_343_1 e_1_2_9_366_1 e_1_2_9_135_1 Su L (e_1_2_9_253_1) 2019; 6 Liu H (e_1_2_9_9_1) 2012; 100 e_1_2_9_29_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 Liu W (e_1_2_9_90_1) 2020; 11 e_1_2_9_103_1 e_1_2_9_149_1 e_1_2_9_356_1 e_1_2_9_379_1 Liu H (e_1_2_9_17_1) 2014; 104 Yang B (e_1_2_9_39_1) 2009; 74 e_1_2_9_310_1 Song W (e_1_2_9_368_1) 2017; 7 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 Dong K (e_1_2_9_340_1) 2018; 30 e_1_2_9_2_1 Wang J (e_1_2_9_237_1) 2019; 3 e_1_2_9_138_1 e_1_2_9_321_1 Zhang SL (e_1_2_9_142_1) 2017; 27 e_1_2_9_344_1 e_1_2_9_115_1 Chen L (e_1_2_9_120_1) 2018; 30 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 Shi Q (e_1_2_9_59_1) 2017; 7 e_1_2_9_213_1 Lee Y (e_1_2_9_228_1) 2018; 9 e_1_2_9_236_1 e_1_2_9_76_1 Lee HE (e_1_2_9_157_1) 2018; 28 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_334_1 e_1_2_9_357_1 e_1_2_9_125_1 e_1_2_9_311_1 Tao J (e_1_2_9_112_1) 2019; 29 Yi F (e_1_2_9_333_1) 2016; 2 Cho A (e_1_2_9_187_1) 2015; 347 e_1_2_9_224_1 e_1_2_9_201_1 Wang J (e_1_2_9_62_1) 2018; 7 e_1_2_9_247_1 Xia K (e_1_2_9_386_1) 2018; 17 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_345_1 Shi Q (e_1_2_9_18_1) 2016; 108 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_290_1 Zhang C (e_1_2_9_373_1) 2014; 4 e_1_2_9_335_1 e_1_2_9_312_1 e_1_2_9_181_1 Tang Y (e_1_2_9_215_1) 2020; 30 Wen F (e_1_2_9_227_1) 2020; 7 Chen X (e_1_2_9_256_1) 2017; 27 e_1_2_9_202_1 Zhou L (e_1_2_9_24_1) 2020; 2000965 e_1_2_9_85_1 Pu X (e_1_2_9_140_1) 2017; 3 e_1_2_9_248_1 Zhu M (e_1_2_9_128_1) 2019; 13 Deng J (e_1_2_9_330_1) 2018; 30 e_1_2_9_4_1 e_1_2_9_323_1 e_1_2_9_346_1 e_1_2_9_369_1 Xiang Z (e_1_2_9_65_1) 2016; 3 e_1_2_9_193_1 e_1_2_9_300_1 Dhakar L (e_1_2_9_123_1) 2016; 6 e_1_2_9_170_1 e_1_2_9_74_1 Liu H (e_1_2_9_31_1) 2018; 9 e_1_2_9_238_1 Wang DF (e_1_2_9_384_1) 2018; 17 e_1_2_9_97_1 Gao L (e_1_2_9_260_1) 2019; 9 e_1_2_9_291_1 e_1_2_9_336_1 e_1_2_9_104_1 e_1_2_9_359_1 Bahoumina P (e_1_2_9_385_1) 2018 Pang Y (e_1_2_9_243_1) 2015; 3 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 Yu H (e_1_2_9_150_1) 2017; 7 e_1_2_9_3_1 Yang B (e_1_2_9_10_1) 2012; 21 Yuan Z (e_1_2_9_158_1) 2018; 5 e_1_2_9_324_1 e_1_2_9_347_1 e_1_2_9_116_1 Kuang SY (e_1_2_9_165_1) 2018; 5 e_1_2_9_192_1 Zhu J (e_1_2_9_367_1) 2017; 7 |
References_xml | – volume: 29 start-page: 1 issue: 41 year: 2019 end-page: 9 article-title: Triboelectric nanogenerator boosts smart green tires publication-title: Adv Funct Mater – volume: 29 start-page: 1 issue: 41 year: 2019 end-page: 23 article-title: Self‐powered tactile sensor array systems based on the triboelectric effect publication-title: Adv Funct Mater – volume: 58 start-page: 499 year: 2019 end-page: 507 article-title: Torus structured triboelectric nanogenerator array for water wave energy harvesting publication-title: Nano Energy – volume: 29 issue: 41 year: 2019 article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Adv Funct Mater – volume: 10 start-page: 1 issue: 12 year: 2020 end-page: 14 article-title: Biomechanical energy‐driven hybridized generator as a universal portable power source for smart/wearable electronics publication-title: Adv Energy Mater – volume: 51 start-page: 333 year: 2018 end-page: 339 article-title: Near‐infrared irradiation induced remote and efficient self‐healable triboelectric nanogenerator for potential implantable electronics publication-title: Nano Energy – volume: 31 start-page: 302 year: 2017 end-page: 310 article-title: An inductor‐free auto‐power‐management design built‐in triboelectric nanogenerators publication-title: Nano Energy – volume: 11 start-page: 13796 issue: 14 year: 2019 end-page: 13802 article-title: Enhanced high‐resolution triboelectrification‐induced electroluminescence for self‐powered visualized interactive sensing publication-title: ACS Appl Mater Interfaces – volume: 6 issue: 23 year: 2019 article-title: Low detection limit and high sensitivity wind speed sensor based on triboelectrification‐induced electroluminescence publication-title: Adv Sci – volume: 7 start-page: 1 issue: 5 year: 2018 end-page: 8 article-title: A highly selective 3D spiked ultraflexible neural (SUN) interface for decoding peripheral nerve sensory information publication-title: Adv Healthc Mater – volume: 61 start-page: 327 year: 2019 end-page: 336 article-title: Lithium doped zinc oxide based flexible piezoelectric‐triboelectric hybrid nanogenerator publication-title: Nano Energy – volume: 8 start-page: 1 issue: 8 year: 2018 end-page: 15 article-title: Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad publication-title: Nanomaterials – volume: 66 year: 2019 article-title: Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications publication-title: Nano Energy – volume: 58 start-page: 612 year: 2019 end-page: 623 article-title: Self‐powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors publication-title: Nano Energy – volume: 7 issue: 6 year: 2017 article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies publication-title: Adv Energy Mater – volume: 116 issue: 2 year: 2020 article-title: Remarkably enhanced hybrid piezo/triboelectric nanogenerator via rational modulation of piezoelectric and dielectric properties for self‐powered electronics publication-title: Appl Phys Lett – volume: 18 start-page: 484 year: 2019 end-page: 490 article-title: The flexible urea biosensor using magnetic nanoparticles publication-title: IEEE Trans Nanotechnol – volume: 22 start-page: 10 year: 2018 end-page: 13 article-title: Piezoelectric and triboelectric nanogenerators: trends and impacts publication-title: Nano Today – volume: 124 start-page: 1 issue: 8 year: 2018 end-page: 7 article-title: A triboelectric nanogenerator as self‐powered temperature sensor based on PVDF and PTFE publication-title: Appl Phys A Mater Sci Process – volume: 10 start-page: 10580 issue: 11 year: 2016 end-page: 10588 article-title: All‐in‐one shape‐adaptive self‐charging power package for wearable electronics publication-title: ACS Nano – volume: 5 issue: 5 year: 2019 article-title: Versatile microfluidic platform embedded with sidewall three‐dimensional electrodes for cell manipulation publication-title: Biomed Phys Eng Express – volume: 8 start-page: 2250 issue: 8 year: 2015 end-page: 2282 article-title: Progress in triboelectric nanogenerators as a new energy technology and self‐powered sensors publication-title: Energ Environ Sci – volume: 67 year: 2020 article-title: A self‐powered and high sensitivity acceleration sensor with V‐Q‐a model based on triboelectric nanogenerators (TENGs) publication-title: Nano Energy – volume: 5 start-page: 824 year: 2017 end-page: 834 article-title: Dielectric elastomers with dual piezo‐electrostatic response optimized through chemical design for electromechanical transducers publication-title: J Mater Chem C – volume: 7 start-page: 11263 issue: 12 year: 2013 end-page: 11271 article-title: Motion charged battery as sustainable flexible‐power‐unit publication-title: ACS Nano – volume: 10 start-page: 32281 issue: 38 year: 2018 end-page: 32288 article-title: Poly(dimethylsiloxane)/ZnO nanoflakes/three‐dimensional graphene heterostructures for high‐performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation publication-title: ACS Appl Mater Interfaces – volume: 27 start-page: 1 issue: 4 year: 2017 end-page: 8 article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv Funct Mater – volume: 3 start-page: 1 issue: 6 year: 2015 end-page: 7 article-title: Tribotronic enhanced photoresponsivity of a MOS phototransistor publication-title: Adv Sci – volume: 2 start-page: 1 issue: 6 year: 2016 end-page: 11 article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring publication-title: Sci Adv – volume: 61 start-page: 78 year: 2019 end-page: 85 article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self‐powered sensing publication-title: Nano Energy – volume: 6 start-page: 1 year: 2020 end-page: 15 article-title: Haptic‐feedback smart glove as a creative human‐machine interface ( HMI ) for virtual / augmented reality applications publication-title: Sci Adv – volume: 10 start-page: 6510 issue: 7 year: 2016 end-page: 6518 article-title: In vivo self‐powered wireless cardiac monitoring via implantable triboelectric nanogenerator publication-title: ACS Nano – volume: 24 start-page: 1401 issue: 10 year: 2014 end-page: 1407 article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor publication-title: Adv Funct Mater – volume: 6 start-page: 1901437 issue: 24 year: 2019 article-title: Self‐sustainable wearable textile nano‐energy nano‐system (NENS) for next‐generation healthcare applications publication-title: Adv Sci – volume: 24 start-page: 513 issue: 3 year: 2015 end-page: 515 article-title: An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF publication-title: J Microelectromech Syst – volume: 42 start-page: 129 year: 2017 end-page: 137 article-title: Digitalized self‐powered strain gauge for static and dynamic measurement publication-title: Nano Energy – volume: 8 start-page: 3006 issue: 10 year: 2015 end-page: 3012 article-title: Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments publication-title: Energ Environ Sci – volume: 29 start-page: 1 issue: 28 year: 2019 end-page: 10 article-title: Treefrog toe pad‐inspired micropatterning for high‐power triboelectric nanogenerator publication-title: Adv Funct Mater – volume: 8 start-page: 6031 issue: 6 year: 2014 end-page: 6037 article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin‐film surface publication-title: ACS Nano – volume: 6 start-page: 1 issue: 5 year: 2016 end-page: 11 article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy publication-title: Adv Energy Mater – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 10 article-title: Switched‐capacitor‐convertors based on fractal design for output power management of triboelectric nanogenerator publication-title: Nat Commun – volume: 31 start-page: 469 year: 2017 end-page: 477 article-title: A self‐powered acceleration sensor with flexible materials based on triboelectric effect publication-title: Nano Energy – volume: 7 issue: 7 year: 2017 article-title: Self‐powered wireless sensor node enabled by a duck‐shaped triboelectric nanogenerator for harvesting water wave energy publication-title: Adv Energy Mater – volume: 40 start-page: 203 year: 2017 end-page: 213 article-title: Self‐powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm publication-title: Nano Energy – volume: 8 start-page: 34335 issue: 50 year: 2016 end-page: 34341 article-title: Piezoelectric and triboelectric dual effects in mechanical‐energy harvesting using BaTiO3/polydimethylsiloxane composite film publication-title: ACS Appl Mater Interfaces – volume: 231 start-page: 601 year: 2016 end-page: 608 article-title: A self‐powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect publication-title: Sens Actuators B – volume: 6 start-page: 1 year: 2020 end-page: 13 article-title: An epidermal sEMG tattoo‐like patch as a new human – machine interface for patients with loss of voice publication-title: Microsyst Nanoeng – volume: 51 start-page: 162 year: 2018 end-page: 172 article-title: Novel augmented reality interface using a self‐powered triboelectric based virtual reality 3D‐control sensor publication-title: Nano Energy – volume: 8 start-page: 26697 issue: 40 year: 2016 end-page: 26703 article-title: Robust multilayered encapsulation for high‐performance triboelectric nanogenerator in harsh environment publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 1780 issue: 2 year: 2016 end-page: 1787 article-title: Freestanding flag‐type triboelectric nanogenerator for harvesting high‐altitude wind energy from arbitrary directions publication-title: ACS Nano – volume: 70 year: 2020 article-title: Self‐powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications publication-title: Nano Energy – volume: 347 start-page: 1084 issue: 6226 year: 2015 end-page: 1088 article-title: To catch a wave publication-title: Science – volume: 3 start-page: 1 issue: 9 year: 2016 end-page: 8 article-title: Mapping of small nerve trunks and branches using adaptive flexible electrodes publication-title: Adv Sci – volume: 7 start-page: 1 issue: 5 year: 2017 end-page: 9 article-title: Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units publication-title: Adv Energy Mater – volume: 6 issue: 14 year: 2019 article-title: Investigation of low‐current direct stimulation for rehabilitation treatment related to muscle function loss using self‐powered TENG system publication-title: Adv Sci – volume: 25 start-page: 1798 issue: 12 year: 2015 end-page: 1803 article-title: Stretchable self‐powered fiber‐based strain sensor publication-title: Adv Funct Mater – volume: 30 start-page: 1 issue: 15 year: 2018 end-page: 9 article-title: On the electron‐transfer mechanism in the contact‐electrification effect publication-title: Adv Mater – volume: 3 issue: 7 year: 2017 article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelecric nanogenerator publication-title: Sci Adv – volume: 14 start-page: 3208 issue: 6 year: 2014 end-page: 3213 article-title: Self‐powered, ultrasensitive, flexible tactile sensors based on contact electrification publication-title: Nano Lett – volume: 14 start-page: 1 issue: 3 year: 2018 end-page: 16 article-title: Recent progress of textile‐based wearable electronics: a comprehensive review of materials, devices, and applications publication-title: Small – volume: 2 start-page: 687 issue: 9 year: 2018 end-page: 695 article-title: Monitoring of the central blood pressure waveform via a conformal ultrasonic device publication-title: Nat Biomed Eng – volume: 30 start-page: 1 issue: 14 year: 2018 end-page: 10 article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv Mater – volume: 27 start-page: 272 issue: 2 year: 2015 end-page: 276 article-title: Self‐powered water splitting using flowing kinetic energy publication-title: Adv Mater – volume: 3 start-page: 1 issue: 9 year: 2016 end-page: 10 article-title: Toward self‐powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery publication-title: Adv Sci – volume: 29 issue: 51 year: 2019 article-title: Self‐healing and stretchable 3D‐printed organic thermoelectrics publication-title: Adv Funct Mater – volume: 30 start-page: 1 issue: 43 year: 2018 end-page: 12 article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv Mater – volume: 63 year: 2019 article-title: Direct muscle stimulation using diode‐amplified triboelectric nanogenerators (TENGs) publication-title: Nano Energy – volume: 30 start-page: 1 issue: 5 year: 2020 end-page: 9 article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing publication-title: Adv Funct Mater – volume: 3 start-page: 1 issue: 3 year: 2018 end-page: 7 article-title: A self‐powered portable power bank based on a hybridized nanogenerator publication-title: Adv Mater Technol – volume: 12 start-page: 5190 year: 2018 end-page: 5196 article-title: Screen‐printed washable electronic textiles as self‐powered touch/gesture tribo‐sensors for intelligent human‐machine interaction publication-title: ACS Nano – volume: 7 year: 2020 article-title: Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems publication-title: Appl Phys Rev – volume: 10 start-page: 4083 issue: 4 year: 2016 end-page: 4091 article-title: Self‐powered analogue smart skin publication-title: ACS Nano – volume: 40 start-page: 399 issue: June year: 2017 end-page: 407 article-title: Fully self‐healing and shape‐tailorable triboelectric nanogenerators based on healable polymer and magnetic‐assisted electrode publication-title: Nano Energy – volume: 4 start-page: 1 issue: 1 year: 2019 end-page: 16 article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics publication-title: Adv Mater Technol – volume: 9 start-page: 1263 issue: 3 year: 2017 end-page: 1270 article-title: A wave‐shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF‐TrFE) nanofibers publication-title: Nanoscale – volume: 13 start-page: 277 issue: 1 year: 2020 end-page: 285 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energ Environ Sci – volume: 4 start-page: 150 year: 2014 end-page: 156 article-title: Applicability of triboelectric generator over a wide range of temperature publication-title: Nano Energy – volume: 30 start-page: 450 year: 2016 end-page: 459 article-title: Self‐powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications publication-title: Nano Energy – volume: 2 start-page: 1 issue: 3 year: 2016 end-page: 10 article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source publication-title: Sci Adv – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 10 article-title: Effective weight control via an implanted self‐powered vagus nerve stimulation device publication-title: Nat Commun – volume: 69 year: 2020 article-title: A universal and arbitrary tactile interactive system based on self‐powered optical communication publication-title: Nano Energy – volume: 10 start-page: 785 issue: 3 year: 2017 end-page: 793 article-title: Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity publication-title: Nano Res – volume: 19 start-page: 532 year: 2016 end-page: 540 article-title: An intelligent skin based self‐powered finger motion sensor integrated with triboelectric nanogenerator publication-title: Nano Energy – volume: 5 start-page: 1 issue: 2 year: 2018 end-page: 8 article-title: Triboelectrification‐enabled self‐powered data storage publication-title: Adv Sci – volume: 12 start-page: 2027 issue: 2 year: 2018 end-page: 2034 article-title: Liquid‐metal‐based super‐stretchable and structure‐designable triboelectric nanogenerator for wearable electronics publication-title: ACS Nano – volume: 32 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: A contact‐sliding‐triboelectrification‐driven dynamic optical transmittance modulator for self‐powered information covering and selective visualization publication-title: Adv Mater – volume: 4 start-page: 1 issue: 9 year: 2014 end-page: 7 article-title: Rotating‐disk‐based direct‐current triboelectric nanogenerator publication-title: Adv Energy Mater – volume: 31 start-page: 1 issue: 34 year: 2019 end-page: 19 article-title: Hybrid energy harvesters: toward sustainable energy harvesting publication-title: Adv Mater – volume: 31 issue: 15 year: 2020 article-title: Hybrid nano‐textured nanogenerator and self‐powered sensor for on‐skin triggered biomechanical motions publication-title: Nanotechnology – volume: 40 start-page: 65 year: 2017 end-page: 72 article-title: Fingertip‐inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection publication-title: Nano Energy – volume: 8 start-page: 1 issue: 27 year: 2018 end-page: 8 article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel publication-title: Adv Energy Mater – volume: 27 start-page: 1 issue: 6 year: 2017 end-page: 9 article-title: Wearable force touch sensor array using a flexible and transparent electrode publication-title: Adv Funct Mater – volume: 4 start-page: 1 issue: 11 year: 2017 end-page: 10 article-title: Toward bioelectronic medicine—neuromodulation of small peripheral nerves using flexible neural clip publication-title: Adv Sci – volume: 63 year: 2019 article-title: A rotational pendulum based electromagnetic/triboelectric hybrid‐generator for ultra‐low‐frequency vibrations aiming at human motion and blue energy applications publication-title: Nano Energy – volume: 18 start-page: 497 issue: 4 year: 2012 end-page: 506 article-title: A new S‐shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz publication-title: Microsyst Technol – volume: 569 start-page: 698 issue: 7758 year: 2019 end-page: 702 article-title: Learning the signatures of the human grasp using a scalable tactile glove publication-title: Nature – volume: 29 start-page: 1 issue: 41 year: 2017 end-page: 9 article-title: Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals publication-title: Adv Mater – volume: 9 start-page: 26126 issue: 31 year: 2017 end-page: 26133 article-title: Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor publication-title: ACS Appl Mater Interfaces – volume: 7 year: 2020 article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing publication-title: Adv Sci – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nat Commun – volume: 31 start-page: 242001 issue: 24 year: 2020 article-title: Environmental energy harvesting based on triboelectric nanogenerator publication-title: Nanotechnology – volume: 2 start-page: 1 issue: 10 year: 2015 end-page: 21 article-title: Recent progress in electronic skin publication-title: Adv Sci – volume: 7 start-page: 7383 issue: 8 year: 2013 end-page: 7391 article-title: Pulsed nanogenerator with huge instantaneous output power density publication-title: ACS Nano – volume: 57 start-page: 338 year: 2019 end-page: 352 article-title: Beyond energy harvesting ‐ multi‐functional triboelectric nanosensors on a textile publication-title: Nano Energy – volume: 59 start-page: 268 year: 2019 end-page: 276 article-title: All‐electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets publication-title: Nano Energy – volume: 12 start-page: 3109 issue: 6 year: 2012 end-page: 3114 article-title: Transparent triboelectric nanogenerators and self‐powered pressure sensors based on micropatterned plastic films publication-title: Nano Lett – volume: 1 start-page: 328 issue: 2 year: 2012 end-page: 334 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 5 start-page: 888 issue: 12 year: 2012 end-page: 895 article-title: Nanowire‐composite based flexible thermoelectric nanogenerators and self‐powered temperature sensors publication-title: Nano Res – volume: 5 issue: 1 year: 2015 article-title: High output piezo/triboelectric hybrid generator publication-title: Sci Rep – volume: 263 start-page: 317 year: 2017 end-page: 325 article-title: The d‐arched piezoelectric‐triboelectric hybrid nanogenerator as a self‐powered vibration sensor publication-title: Sens Actuators A Phys – volume: 21 start-page: 88 year: 2018 end-page: 97 article-title: Water wave energy harvesting and self‐powered liquid‐surface fluctuation sensing based on bionic‐jellyfish triboelectric nanogenerator publication-title: Mater Today – volume: 43 start-page: 326 year: 2018 end-page: 339 article-title: Triboelectric‐piezoelectric‐electromagnetic hybrid nanogenerator for high‐efficient vibration energy harvesting and self‐powered wireless monitoring system publication-title: Nano Energy – volume: 60 start-page: 440 year: 2019 end-page: 448 article-title: Intuitive‐augmented human‐machine multidimensional nano‐manipulation terminal using triboelectric stretchable strip sensors based on minimalist design publication-title: Nano Energy – volume: 57 start-page: 432 year: 2019 end-page: 439 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 9 article-title: An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv Energy Mater – volume: 542 start-page: 159 issue: 7640 year: 2017 end-page: 160 article-title: Catch wave power in floating nets publication-title: Nature – volume: 2000605 start-page: 1 year: 2020 end-page: 9 article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators publication-title: Adv Energy Mater – volume: 108 issue: 19 year: 2016 article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting publication-title: Appl Phys Lett – volume: 9 start-page: 3421 issue: 4 year: 2015 end-page: 3427 article-title: Triboelectric generators and sensors for self‐powered wearable electronics publication-title: ACS Nano – volume: 7 start-page: 10424 issue: 11 year: 2013 end-page: 10432 article-title: Triboelectric nanogenerator built on suspended 3d spiral structure as vibration and positioning sensor and wave energy harvester publication-title: ACS Nano – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 8 article-title: Transparent and attachable ionic communicators based on self‐cleanable triboelectric nanogenerators publication-title: Nat Commun – volume: 56 start-page: 1835 issue: 8 year: 2013 end-page: 1841 article-title: Low‐frequency wide‐band hybrid energy harvester based on piezoelectric and triboelectric mechanism publication-title: Sci China Technol Sci – volume: 8 start-page: 3934 issue: 12 year: 2015 end-page: 3943 article-title: Integration of micro‐supercapacitors with triboelectric nanogenerators for a flexible self‐charging power unit publication-title: Nano Res – volume: 7 start-page: 13347 issue: 21 year: 2019 end-page: 13355 article-title: Flexible composite‐nanofiber based piezo‐triboelectric nanogenerators for wearable electronics publication-title: J Mater Chem A – volume: 4 start-page: 1 issue: 11 year: 2017 end-page: 10 article-title: A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators publication-title: Adv Sci – volume: 12 start-page: 10262 issue: 10 year: 2018 end-page: 10271 article-title: Giant voltage enhancement via triboelectric charge supplement channel for self‐powered electroadhesion publication-title: ACS Nano – volume: 11 start-page: 8370 issue: 8 year: 2017 end-page: 8378 article-title: Rotating‐sleeve triboelectric‐electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy publication-title: ACS Nano – volume: 8 start-page: 18489 issue: 43 year: 2016 end-page: 18494 article-title: High performance triboelectric nanogenerators with aligned carbon nanotubes publication-title: Nanoscale – volume: 11 start-page: 5409 issue: 40 year: 2015 end-page: 5415 article-title: Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing publication-title: Small – volume: 5 issue: 4 year: 2018 article-title: High‐intensity triboelectrification‐induced electroluminescence by microsized contacts for self‐powered display and illumination publication-title: Adv Mater Interfaces – volume: 7 start-page: 7342 issue: 8 year: 2013 end-page: 7351 article-title: Single‐electrode‐based sliding triboelectric nanogenerator for self‐powered displacement vector sensor system publication-title: ACS Nano – volume: 4 start-page: 1 issue: 2 year: 2019 end-page: 7 article-title: A triboelectric nanogenerator‐based smart insole for multifunctional gait monitoring publication-title: Adv Mater Technol – volume: 38 start-page: 101 year: 2017 end-page: 108 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy – volume: 3 start-page: 1 issue: 5 year: 2017 end-page: 11 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci Adv – volume: 106 issue: 1 year: 2015 article-title: Low temperature dependence of triboelectric effect for energy harvesting and self‐powered active sensing publication-title: Appl Phys Lett – volume: 19 issue: 3 year: 2009 article-title: Electromagnetic energy harvesting from vibrations of multiple frequencies publication-title: J Micromech Microeng – volume: 25 start-page: 6184 issue: 43 year: 2013 end-page: 6193 article-title: Theory of sliding‐mode triboelectric nanogenerators publication-title: Adv Mater – volume: 17 start-page: 723 issue: 4 year: 2018 end-page: 726 article-title: A ball‐impact piezoelectric converter wrapped by copper coils publication-title: IEEE Trans Nanotechnol – volume: 6 start-page: 1 issue: 11 year: 2016 end-page: 5 article-title: Fully packaged self‐powered triboelectric pressure sensor using hemispheres‐array publication-title: Adv Energy Mater – volume: 65 year: 2019 article-title: Development of neural interfaces and energy harvesters towards self‐powered implantable systems for healthcare monitoring and rehabilitation purposes publication-title: Nano Energy – volume: 20 start-page: 74 issue: 2 year: 2017 end-page: 82 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater Today – volume: 13 start-page: 698 issue: 1 year: 2019 end-page: 705 article-title: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact‐separation mode publication-title: ACS Nano – volume: 9 start-page: 286 issue: 4 year: 2014 end-page: 289 article-title: Flow sensing and energy harvesting characteristics of a wind‐driven piezoelectric Pb(Zr0.52, Ti0.48)O microcantilever publication-title: Micro Nano Lett – volume: 183 start-page: 140 year: 2012 end-page: 147 article-title: Static and dynamic measurement of low‐level strains with carbon fibers publication-title: Sens Actuators A Phys – volume: 12 start-page: 11561 issue: 11 year: 2018 end-page: 11571 article-title: Triboelectric self‐powered wearable flexible patch as 3D motion control interface for robotic manipulator publication-title: ACS Nano – volume: 4 start-page: 1063 issue: 3 year: 2020 end-page: 1077 article-title: Triboelectric nanogenerators for a macro‐scale blue energy harvesting and self‐powered marine environmental monitoring system publication-title: Sustain Energy Fuels – volume: 29 issue: 41 year: 2019 article-title: Recent progress in power generation from water/liquid droplet interaction with solid surfaces publication-title: Adv Funct Mater – volume: 64 year: 2019 article-title: Piezoelectric‐enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting publication-title: Nano Energy – volume: 10 start-page: 1 issue: 17 year: 2020 end-page: 6 article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution publication-title: Adv Energy Mater – volume: 3 issue: 24 year: 2018 article-title: A hierarchically patterned, bioinspired e‐skin able to detect the direction of applied pressure for robotics publication-title: Sci Robot – volume: 12 start-page: 3954 issue: 4 year: 2018 end-page: 3963 article-title: Self‐powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator publication-title: ACS Nano – volume: 28 issue: 3 year: 2017 article-title: Inductively‐coupled‐plasma‐induced electret enhancement for triboelectric nanogenerators publication-title: Nanotechnology – volume: 11 start-page: 8356 issue: 8 year: 2017 end-page: 8363 article-title: Enhanced triboelectric nanogenerators based on MoS monolayer nanocomposites acting as electron‐acceptor layers publication-title: ACS Nano – volume: 29 issue: 37 year: 2017 article-title: Highly transparent, stretchable, and self‐healing ionic‐skin triboelectric nanogenerators for energy harvesting and touch applications publication-title: Adv Mater – volume: 40 start-page: 289 year: 2017 end-page: 299 article-title: Full paper flexible transparent high‐voltage diodes for energy management in wearable electronics publication-title: Nano Energy – volume: 5 start-page: 1 issue: 4 year: 2019 end-page: 7 article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown publication-title: Sci Adv – volume: 51 start-page: 173 year: 2018 end-page: 184 article-title: A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator publication-title: Nano Energy – volume: 28 start-page: 6656 issue: 31 year: 2016 end-page: 6664 article-title: Dynamic Triboelectrification‐induced electroluminescence and its use in visualized sensing publication-title: Adv Mater – volume: 100 start-page: 1 issue: 22 year: 2012 end-page: 4 article-title: Development of piezoelectric microcantilever flow sensor with wind‐driven energy harvesting capability publication-title: Appl Phys Lett – volume: 5 start-page: 1 issue: 4 year: 2018 end-page: 7 article-title: Triboelectric‐based transparent secret code publication-title: Adv Sci – volume: 22 issue: 12 year: 2012 article-title: Feasibility study of a 3D vibration‐driven electromagnetic MEMS energy harvester with multiple vibration modes publication-title: J Micromech Microeng – volume: 27 start-page: 2340 issue: 14 year: 2015 end-page: 2347 article-title: Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing publication-title: Adv Mater – volume: 7 start-page: 3 issue: 4 year: 2017 end-page: 7 article-title: Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode publication-title: AIP Adv – volume: 61 start-page: 1 year: 2019 end-page: 9 article-title: Self‐powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission publication-title: Nano Energy – volume: 74 start-page: 165 year: 2009 end-page: 168 article-title: A wideband electromagnetic energy harvester for random vibration sources publication-title: Adv Mat Res – volume: 62 start-page: 355 year: 2019 end-page: 366 article-title: Minimalist and multi‐functional human machine interface (HMI) using a flexible wearable triboelectric patch publication-title: Nano Energy – volume: 14 start-page: 161 year: 2014 end-page: 192 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 11 start-page: 7513 issue: 15 year: 2019 end-page: 7519 article-title: A liquid PEDOT:PSS electrode‐based stretchable triboelectric nanogenerator for a portable self‐charging power source publication-title: Nanoscale – volume: 18 start-page: 28 year: 2015 end-page: 36 article-title: Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead‐free ZnSnO nanocubes publication-title: Nano Energy – volume: 5 start-page: 1 year: 2015 end-page: 7 article-title: Interface‐free area‐scalable self‐powered electroluminescent system driven by triboelectric generator publication-title: Sci Rep – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 7 article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting publication-title: Nat Commun – volume: 11 start-page: 9490 issue: 9 year: 2017 end-page: 9499 article-title: A highly stretchable and washable all‐yarn‐based self‐charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano – volume: 30 start-page: 1 issue: 6 year: 2020 end-page: 9 article-title: Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing publication-title: Adv Funct Mater – volume: 66 year: 2019 article-title: A multifunctional and highly flexible triboelectric nanogenerator based on MXene‐enabled porous film integrated with laser‐induced graphene electrode publication-title: Nano Energy – volume: 5 issue: 4 year: 2018 article-title: Suspended polytetrafluoroethylene nanostructure electret film in dual variable cavities for self‐powered micro‐shock sensing publication-title: Mater Res Express – volume: 27 start-page: 719 issue: 4 year: 2015 end-page: 726 article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator publication-title: Adv Mater – volume: 7 start-page: 1 issue: 3 year: 2019 end-page: 13 article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks publication-title: APL Mater – volume: 8 issue: 21 year: 2018 article-title: Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low‐frequency blue energy publication-title: Adv Energy Mater – volume: 176 start-page: 447 year: 2014 end-page: 458 article-title: Triboelectric nanogenerators as new energy technology and self‐powered sensors—principles, problems and perspectives publication-title: Faraday Discuss – volume: 28 start-page: 2896 issue: 15 year: 2016 end-page: 2903 article-title: Self‐powered high‐resolution and pressure‐sensitive triboelectric sensor matrix for real‐time tactile mapping publication-title: Adv Mater – volume: 13 year: 2019 article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring publication-title: ACS Nano – volume: 65 year: 2019 article-title: A highly elastic self‐charging power system for simultaneously harvesting solar and mechanical energy publication-title: Nano Energy – volume: 11 start-page: 5200 issue: 5 year: 2019 end-page: 5207 article-title: Self‐powered motion‐driven triboelectric electroluminescence textile system publication-title: ACS Appl Mater Interfaces – volume: 104 issue: 5 year: 2014 article-title: Ultra‐wide frequency broadening mechanism for micro‐scale electromagnetic energy harvester publication-title: Appl Phys Lett – volume: 25 start-page: 5625 issue: 35 year: 2015 end-page: 5632 article-title: Organic tribotronic transistor for contact‐electrification‐gated light‐emitting diode publication-title: Adv Funct Mater – volume: 10 start-page: 3944 issue: 4 year: 2016 end-page: 3950 article-title: Triboelectric nanogenerator as a self‐powered communication unit for processing and transmitting information publication-title: ACS Nano – volume: 4 start-page: 2809 issue: 10 year: 2019 end-page: 2818 article-title: Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO e‐textile gas sensor publication-title: ACS Sensors – volume: 56 start-page: 651 year: 2019 end-page: 661 article-title: A self‐powered 3D activity inertial sensor using hybrid sensing mechanisms publication-title: Nano Energy – start-page: 1 year: 2018 end-page: 1 article-title: VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS‐MWCNTs nanocomposite film for environmental applications publication-title: IEEE Transactions on Nanotechnology – volume: 9 start-page: 1 issue: 8 year: 2018 end-page: 10 article-title: Development of a thermoelectric and electromagnetic hybrid energy harvester from water flow in an irrigation system publication-title: Micromachines – volume: 20 start-page: 1131 issue: 5 year: 2011 end-page: 1142 article-title: Piezoelectric MEMS energy harvester for low‐frequency vibrations with wideband operation range and steadily increased output power publication-title: J Microelectromech Syst – volume: 61 start-page: 158 year: 2019 end-page: 164 article-title: Fully‐integrated motion‐driven electroluminescence enabled by triboelectrification for customized flexible display publication-title: Nano Energy – volume: 13 start-page: 91 issue: 1 year: 2013 end-page: 94 article-title: Flexible fiber nanogenerator with 209 V output voltage directly powers a light‐emitting diode publication-title: Nano Lett – volume: 6 issue: 15 year: 2019 article-title: Self‐powered bio‐inspired spider‐net‐coding interface using single‐electrode triboelectric nanogenerator publication-title: Adv Sci – volume: 17 start-page: 1217 issue: 6 year: 2018 end-page: 1223 article-title: High output compound triboelectric nanogenerator based on paper for self‐powered height sensing system publication-title: IEEE Trans Nanotechnol – volume: 64 year: 2019 article-title: Highly skin‐conformal wearable tactile sensor based on piezoelectric‐enhanced triboelectric nanogenerator publication-title: Nano Energy – volume: 7 start-page: 1 year: 2017 end-page: 13 article-title: Broadband energy harvester using non‐linear polymer spring and electromagnetic/triboelectric hybrid mechanism publication-title: Sci Rep – volume: 68 issue: October 2019 year: 2020 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy – volume: 24 start-page: 1338 issue: 5 year: 2015 end-page: 1345 article-title: A triboelectric energy harvester using low‐cost, flexible, and biocompatible ethylene vinyl acetate (EVA) publication-title: J Microelectromech Syst – volume: 10 year: 2019 article-title: Triboelectric micromotors actuated by ultralow frequency mechanical stimuli publication-title: Nat Commun – volume: 41 start-page: 387 year: 2017 end-page: 393 article-title: Triboelectrification‐enabled touch sensing for self‐powered position mapping and dynamic tracking by a flexible and area‐scalable sensor array publication-title: Nano Energy – volume: 13 start-page: 13257 issue: 11 year: 2019 end-page: 13263 article-title: On the maximal output energy density of nanogenerators publication-title: ACS Nano – volume: 4 issue: 12 year: 2019 article-title: An easily assembled electromagnetic‐triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self‐powered flow monitoring in a smart home/city publication-title: Adv Mater Technol – volume: 6 start-page: 3680 issue: 5 year: 2014 end-page: 3688 article-title: Electret film‐enhanced triboelectric nanogenerator matrix for self‐powered instantaneous tactile imaging publication-title: ACS Appl Mater Interfaces – volume: 20 start-page: 48 year: 2016 end-page: 56 article-title: Self‐powered flat panel displays enabled by motion‐driven alternating current electroluminescence publication-title: Nano Energy – volume: 8 start-page: 6440 issue: 6 year: 2014 end-page: 6448 article-title: Dual‐mode triboelectric nanogenerator for harvesting water energy and as a self‐powered ethanol nanosensor publication-title: ACS Nano – volume: 3 start-page: 1 issue: 7 year: 2017 end-page: 8 article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci Adv – volume: 62 start-page: 660 year: 2019 end-page: 666 article-title: Power‐generating footwear based on a triboelectric‐electromagnetic‐piezoelectric hybrid nanogenerator publication-title: Nano Energy – volume: 17 start-page: 220 issue: 2 year: 2018 end-page: 230 article-title: Biocompatible, flexible, and compliant energy harvesters based on piezoelectric thin films publication-title: IEEE Trans Nanotechnol – volume: 61 start-page: 584 year: 2019 end-page: 593 article-title: Self‐restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self‐powered water temperature sensor publication-title: Nano Energy – volume: 71 year: 2020 article-title: Self‐driven power management system for triboelectric nanogenerators publication-title: Nano Energy – volume: 7 start-page: 1 issue: 14 year: 2020 end-page: 15 article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv Sci – volume: 10 start-page: 10912 issue: 12 year: 2016 end-page: 10920 article-title: Tribotronic transistor array as an active tactile sensing system publication-title: ACS Nano – volume: 1 start-page: 480 issue: 3 year: 2017 end-page: 521 article-title: Reviving vibration energy harvesting and self‐powered sensing by a triboelectric nanogenerator publication-title: Joule – volume: 6 start-page: 1112 issue: 6 year: 2018 end-page: 1118 article-title: Single‐electrode, nylon‐fiber‐enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting publication-title: Energ Technol – volume: 40 start-page: 300 year: 2017 end-page: 307 article-title: A low‐frequency piezoelectric‐electromagnetic‐triboelectric hybrid broadband vibration energy harvester publication-title: Nano Energy – volume: 11 start-page: 436 year: 2015 end-page: 462 article-title: Triboelectric nanogenerators as self‐powered active sensors publication-title: Nano Energy – volume: 188 year: 2020 article-title: Piezo/triboelectric hybrid nanogenerators based on Ca‐doped barium zirconate titanate embedded composite polymers for wearable electronics publication-title: Compos Sci Technol – volume: 30 start-page: 1 issue: 8 year: 2018 end-page: 8 article-title: Shape memory polymers for body motion energy harvesting and self‐powered mechanosensing publication-title: Adv Mater – volume: 11 start-page: 3950 issue: 4 year: 2017 end-page: 3956 article-title: From dual‐mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design publication-title: ACS Nano – volume: 9 start-page: 4553 issue: 4 year: 2015 end-page: 4562 article-title: Hybridized electromagnetic‐triboelectric nanogenerator for scavenging air‐flow energy to sustainably power temperature sensors publication-title: ACS Nano – volume: 12 start-page: 6147 issue: 6 year: 2018 end-page: 6155 article-title: Self‐healable, stretchable, transparent triboelectric nanogenerators as soft power sources publication-title: ACS Nano – volume: 78 issue: July year: 2020 article-title: Programmed‐triboelectric nanogenerators—a multi‐switch regulation methodology for energy manipulation publication-title: Nano Energy – volume: 43 start-page: 253 year: 2018 end-page: 258 article-title: A self‐powered 2D barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification publication-title: Nano Energy – volume: 24 start-page: 91 issue: 1 year: 2015 end-page: 99 article-title: Development of a broadband triboelectric energy harvester with SU‐8 micropillars publication-title: J Microelectromech Syst – volume: 48 start-page: 152 year: 2018 end-page: 160 article-title: All‐fiber hybrid piezoelectric‐enhanced triboelectric nanogenerator for wearable gesture monitoring publication-title: Nano Energy – volume: 62 start-page: 277 issue: 4 year: 2004 end-page: 290 article-title: A semi‐quantitative tribo‐electric series for polymeric materials: the influence of chemical structure and properties publication-title: J Electrostat – volume: 32 start-page: 1 issue: 5 year: 2020 end-page: 43 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv Mater – volume: 30 start-page: 1 issue: 47 year: 2018 end-page: 15 article-title: Controlling surface charge generated by contact electrification: strategies and applications publication-title: Adv Mater – volume: 27 start-page: 1 issue: 25 year: 2017 end-page: 7 article-title: Auxetic foam‐based contact‐mode triboelectric nanogenerator with highly sensitive self‐powered strain sensing capabilities to monitor human body movement publication-title: Adv Funct Mater – volume: 10 start-page: 6241 issue: 6 year: 2016 end-page: 6247 article-title: Rotating‐disk‐based hybridized electromagnetic‐triboelectric nanogenerator for sustainably powering wireless traffic volume sensors publication-title: ACS Nano – volume: 63 year: 2019 article-title: Ionogel‐based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range publication-title: Nano Energy – volume: 6 issue: 11 year: 2020 article-title: Machine‐knitted washable sensor array textile for precise epidermal physiological signal monitoring publication-title: Sci Adv – volume: 6 start-page: 130 year: 2018 end-page: 137 article-title: Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications publication-title: Curr Opin Biomed Eng – volume: 47 start-page: 316 year: 2018 end-page: 324 article-title: Self‐powered room temperature NO detection driven by triboelectric nanogenerator under UV illumination publication-title: Nano Energy – volume: 13 start-page: 8936 issue: 8 year: 2019 end-page: 8945 article-title: Shape‐adaptive, self‐healable triboelectric nanogenerator with enhanced performances by soft solid‐solid contact electrification publication-title: ACS Nano – volume: 67 year: 2020 article-title: Battery‐free short‐range self‐powered wireless sensor network (SS‐WSN) using TENG based direct sensory transmission (TDST) mechanism publication-title: Nano Energy – volume: 73 year: 2020 article-title: Continuous direct current by charge transportation for next‐generation IoT and real‐time virtual reality applications publication-title: Nano Energy – volume: 70 year: 2020 article-title: Impact induced compound method for triboelectric‐piezoelectric hybrid nanogenerators to achieve watt level average power in low frequency rotations publication-title: Nano Energy – volume: 32 start-page: 84 year: 2020 end-page: 93 article-title: 3D double‐faced interlock fabric triboelectric nanogenerator for bio‐motion energy harvesting and as self‐powered stretching and 3D tactile sensors publication-title: Mater Today – volume: 26 start-page: 6720 issue: 39 year: 2014 end-page: 6728 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding publication-title: Adv Mater – volume: 38 start-page: 91 year: 2017 end-page: 100 article-title: Self‐powered modulation of elastomeric optical grating by using triboelectric nanogenerator publication-title: Nano Energy – volume: 36 start-page: 1389 issue: 8 year: 2011 article-title: Voltage‐controlled compression for period tuning of optical surface relief gratings publication-title: Opt Lett – volume: 62 start-page: 259 year: 2019 end-page: 267 article-title: Nano energy graphene‐based stretchable/wearable self‐powered touch sensor publication-title: Nano Energy – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Skin‐touch‐actuated textile‐based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting publication-title: Nat Commun – volume: 28 start-page: 1 issue: 47 year: 2018 end-page: 9 article-title: Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body‐enhanced induction of ambient electromagnetic waves publication-title: Adv Funct Mater – volume: 28 start-page: 172 year: 2016 end-page: 178 article-title: A size‐unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator publication-title: Nano Energy – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 9 article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator publication-title: Nat Commun – volume: 10 start-page: 6433 issue: 7 year: 2018 end-page: 6440 article-title: Piezoelectric‐induced triboelectric hybrid nanogenerators based on the ZnO nanowire layer decorated on the au/polydimethylsiloxane‐Al structure for enhanced triboelectric performance publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 1 issue: 44 year: 2019 end-page: 11 article-title: Enhancing the output performance of triboelectric nanogenerator via grating‐electrode‐enabled surface plasmon excitation publication-title: Adv Energy Mater – volume: 7 start-page: 13948 issue: 23 year: 2019 end-page: 13955 article-title: Highly efficient self‐healable and dual responsive hydrogel‐based deformable triboelectric nanogenerators for wearable electronics publication-title: J Mater Chem A – volume: 3 issue: 20 year: 2018 article-title: A highly sensitive, self‐powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci Robot – volume: 47 start-page: 566 year: 2018 end-page: 572 article-title: Self‐powered wireless optical transmission of mechanical agitation signals publication-title: Nano Energy – volume: 28 start-page: 1 issue: 32 year: 2018 end-page: 18 article-title: Novel electronics for flexible and neuromorphic computing publication-title: Adv Funct Mater – volume: 10 issue: 1 year: 2019 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat Commun – volume: 13 start-page: 1300 year: 2020 end-page: 1308 article-title: Blue energy fuels: converting ocean wave energy to carbon‐based liquid fuels via CO reduction publication-title: Energ Environ Sci – volume: 2 start-page: 863 issue: 4 year: 2020 end-page: 878 article-title: Research progress and prospect of triboelectric nanogenerators as self‐powered human body sensors publication-title: ACS Appl Electron Mater – volume: 7 start-page: 1 issue: 19 year: 2017 end-page: 8 article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer publication-title: Adv Energy Mater – volume: 28 start-page: 2881 issue: 15 year: 2016 end-page: 2887 article-title: A one‐structure‐based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric‐piezoelectric‐pyroelectric effects publication-title: Adv Mater – volume: 11 start-page: 4313 issue: 8 year: 2018 end-page: 4322 article-title: Flexible self‐charging power units for portable electronics based on folded carbon paper publication-title: Nano Res – volume: 6 start-page: 16548 issue: 34 year: 2018 end-page: 16555 article-title: A flexible comb electrode triboelectric‐electret nanogenerator with separated microfibers for a self‐powered position, motion direction and acceleration tracking sensor publication-title: J Mater Chem A – volume: 6 start-page: 1 year: 2016 end-page: 10 article-title: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self‐powered implantable biomedical devices publication-title: Sci Rep – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 7 article-title: High performance lithium‐sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators publication-title: Sci Rep – volume: 8 issue: 23 year: 2018 article-title: Hybrid piezo/triboelectric‐driven self‐charging electrochromic supercapacitor power package publication-title: Adv Energy Mater – volume: 26 start-page: 8194 issue: 45 year: 2016 end-page: 8201 article-title: Triboelectric and piezoelectric effects in a combined tribo‐piezoelectric nanogenerator based on an interfacial ZnO nanostructure publication-title: Adv Funct Mater – volume: 11 start-page: 10337 issue: 10 year: 2017 end-page: 10346 article-title: Self‐powered dual‐mode amenity sensor based on the water‐air triboelectric nanogenerator publication-title: ACS Nano – volume: 12 start-page: 3487 issue: 4 year: 2018 end-page: 3501 article-title: Toward self‐control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro‐actuator publication-title: ACS Nano – volume: 19 start-page: 230 year: 2020 end-page: 235 article-title: Self‐powered active spherical triboelectric sensor for fluid velocity detection publication-title: IEEE Trans Nanotechnol – volume: 57 start-page: 851 year: 2019 end-page: 871 article-title: More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro‐/nano‐systems publication-title: Nano Energy – volume: 30 year: 2020 article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy publication-title: Adv Funct Mater – volume: 78 issue: July year: 2020 article-title: Advances in chemical sensing technology for enabling the next‐generation self‐sustainable integrated wearable system in the IoT era publication-title: Nano Energy – volume: 102 start-page: 130 year: 2018 end-page: 136 article-title: A flexible multi‐layer electret nanogenerator for bending deformation energy harvesting and strain sensing publication-title: Mater Res Bull – volume: 48 start-page: 421 year: 2018 end-page: 429 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nano Energy – volume: 363 issue: 6430 year: 2019 article-title: Binodal, wireless epidermal electronic systems with in‐sensor analytics for neonatal intensive care publication-title: Science – volume: 32 start-page: 1 issue: 15 year: 2020 end-page: 31 article-title: Nanomaterial‐enabled flexible and stretchable sensing systems: processing, integration, and applications publication-title: Adv Mater – volume: 28 start-page: 1 issue: 35 year: 2018 end-page: 8 article-title: Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting publication-title: Adv Funct Mater – volume: 3 start-page: 1 issue: 7 year: 2019 end-page: 11 article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode publication-title: Adv Biosyst – volume: 29 start-page: 1 issue: 41 year: 2019 end-page: 11 article-title: Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator publication-title: Adv Funct Mater – volume: 113 issue: 20 year: 2018 article-title: A non‐resonant rotational electromagnetic energy harvester for low‐frequency and irregular human motion publication-title: Appl Phys Lett – volume: 35 start-page: 415 year: 2017 end-page: 423 article-title: Performance‐enhanced triboelectric nanogenerator enabled by wafer‐scale nanogrates of multistep pattern downscaling publication-title: Nano Energy – volume: 109 issue: 19 year: 2016 article-title: Soft tunable diffractive optics with multifunctional transparent electrodes enabling integrated actuation publication-title: Appl Phys Lett – volume: 7 start-page: 1 issue: 13 year: 2017 end-page: 9 article-title: Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators publication-title: Adv Energy Mater – volume: 2 issue: 7 year: 2018 article-title: Self‐powered cursor using a triboelectric mechanism publication-title: Small Methods – volume: 508 start-page: 302 issue: 7496 year: 2014 end-page: 304 article-title: Power from the oceans: blue energy publication-title: Nature – volume: 13 start-page: 3589 issue: 3 year: 2019 end-page: 3599 article-title: Self‐powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple‐channel intramuscular electrode publication-title: ACS Nano – volume: 60 start-page: 545 year: 2019 end-page: 556 article-title: Triboelectric single‐electrode‐output control interface using patterned grid electrode publication-title: Nano Energy – volume: 6 start-page: 553 issue: 1 year: 2014 end-page: 559 article-title: Fully enclosed cylindrical single‐electrode‐based triboelectric nanogenerator publication-title: ACS Appl Mater Interfaces – volume: 48 start-page: 128 year: 2018 end-page: 133 article-title: Generators to harvest ocean wave energy through electrokinetic principle publication-title: Nano Energy – volume: 2 start-page: 491 issue: 4 year: 2013 end-page: 497 article-title: Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs publication-title: Nano Energy – volume: 58 start-page: 641 year: 2019 end-page: 651 article-title: Self‐powered glove‐based intuitive interface for diversified control applications in real/cyber space publication-title: Nano Energy – volume: 10 start-page: 8078 issue: 8 year: 2016 end-page: 8086 article-title: Transparent and flexible self‐charging power film and its application in a sliding unlock system in touchpad technology publication-title: ACS Nano – volume: 3 start-page: 1 issue: 4 year: 2018 end-page: 7 article-title: Radial‐grating pendulum‐structured triboelectric nanogenerator for energy harvesting and tilting‐angle sensing publication-title: Adv Mater Technol – volume: 6 start-page: 8525 issue: 7 year: 2018 end-page: 8535 article-title: High‐performance flexible piezoelectric‐assisted triboelectric hybrid nanogenerator via polydimethylsiloxane‐encapsulated nanoflower‐like ZnO composite films for scavenging energy from daily human activities publication-title: ACS Sustain Chem Eng – volume: 6 start-page: 11893 issue: 44 year: 2018 end-page: 11902 article-title: Toward self‐powered photodetection enabled by triboelectric nanogenerators publication-title: J Mater Chem C – volume: 54 start-page: 453 year: 2018 end-page: 460 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nano Energy – volume: 50 start-page: 148 year: 2018 end-page: 158 article-title: Battery‐free neuromodulator for peripheral nerve direct stimulation publication-title: Nano Energy – volume: 59 start-page: 689 year: 2019 end-page: 696 article-title: Triboelectric vibration sensor for a human‐machine interface built on ubiquitous surfaces publication-title: Nano Energy – volume: 44 start-page: 103 year: 2018 end-page: 110 article-title: Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators publication-title: Nano Energy – volume: 28 start-page: 12080 issue: 16 year: 2017 end-page: 12085 article-title: Electrospinning poly(l‐lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting publication-title: J Mater Sci Mater Electron – volume: 14 start-page: 8915 issue: 7 year: 2020 end-page: 8930 article-title: Wearable triboelectric‐human‐machine‐interface (THMI) using robust nanophotonic readout publication-title: ACS Nano – volume: 10 issue: 1 year: 2019 article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics publication-title: Nat Commun – volume: 4 issue: 31 year: 2019 article-title: A myoelectric prosthetic hand with muscle synergy‐based motion determination and impedance model‐based biomimetic control publication-title: Sci Robot – volume: 20 issue: 6 year: 2010 article-title: A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations publication-title: J Micromech Microeng – volume: 14 start-page: 4716 issue: 4 year: 2020 end-page: 4726 – volume: 27 start-page: 1316 issue: 8 year: 2015 end-page: 1326 article-title: Eardrum‐inspired active sensors for self‐powered cardiovascular system characterization and throat‐attached anti‐interference voice recognition publication-title: Adv Mater – volume: 32 start-page: 542 year: 2017 end-page: 550 article-title: Reduced graphene‐oxide acting as electron‐trapping sites in the friction layer for giant triboelectric enhancement publication-title: Nano Energy – volume: 50 start-page: 497 year: 2018 end-page: 503 article-title: Triboelectrification‐enabled thin‐film tactile matrix for self‐powered high‐resolution imaging publication-title: Nano Energy – volume: 14 start-page: 1390 issue: 2 year: 2020 end-page: 1398 article-title: Self‐powered tactile sensor with learning and memory publication-title: ACS Nano – volume: 3 start-page: 1 issue: 3 year: 2018 end-page: 7 article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel publication-title: Adv Mater Technol – volume: 58 start-page: 312 year: 2019 end-page: 321 article-title: A facile respiration‐driven triboelectric nanogenerator for multifunctional respiratory monitoring publication-title: Nano Energy – volume: 42 start-page: 241 year: 2017 end-page: 248 article-title: Utilization of self‐powered electrochemical systems: metallic nanoparticle synthesis and lactate detection publication-title: Nano Energy – volume: 65 year: 2019 article-title: Self‐powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators publication-title: Nano Energy – volume: 33 start-page: 1 year: 2017 end-page: 11 article-title: Development of battery‐free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs) publication-title: Nano Energy – volume: 7 start-page: 9533 issue: 11 year: 2013 end-page: 9557 article-title: Triboelectric nanogenerators as new energy technology for self‐powered systems and as active mechanical and chemical sensors publication-title: ACS Nano – volume: 7 start-page: 1 issue: 2 year: 2017 end-page: 8 article-title: Boosting power‐generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties publication-title: Adv Energy Mater – volume: 69 year: 2020 article-title: Switchable textile‐triboelectric nanogenerators (S‐TENGs) for continuous profile sensing application without environmental interferences publication-title: Nano Energy – volume: 6 start-page: 1 year: 2016 end-page: 10 article-title: Large scale triboelectric nanogenerator and self‐powered pressure sensor array using low cost roll‐to‐roll UV embossing publication-title: Sci Rep – volume: 28 start-page: 10024 issue: 45 year: 2016 end-page: 10032 article-title: Electric eel‐skin‐inspired mechanically durable and super‐stretchable nanogenerator for deformable power source and fully autonomous conformable electronic‐skin applications publication-title: Adv Mater – volume: 17 start-page: 282 issue: 2 year: 2017 article-title: Real‐time performance of a self‐powered environmental IoT sensor network system publication-title: Sensors (Switzerland) – volume: 49 start-page: 31 year: 2018 end-page: 39 article-title: Self‐powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator publication-title: Nano Energy – volume: 72 year: 2020 article-title: Self‐powered eye motion sensor based on triboelectric interaction and near‐field electrostatic induction for wearable assistive technologies publication-title: Nano Energy – volume: 9 start-page: 1 issue: 14 year: 2019 end-page: 8 article-title: Metal–organic framework: a novel material for triboelectric nanogenerator‐based self‐powered sensors and systems publication-title: Adv Energy Mater – volume: 2000886 start-page: 1 year: 2020 end-page: 8 – volume: 39 start-page: 9 year: 2017 end-page: 23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy – volume: 15 start-page: 4782 issue: 9 year: 2015 end-page: 4790 article-title: An intermittent self‐powered energy harvesting system from low‐frequency hand shaking publication-title: IEEE Sens J – volume: 4 issue: 32 year: 2019 article-title: A neuro‐inspired artificial peripheral nervous system for scalable electronic skins publication-title: Sci Robot – volume: 11 start-page: 3972 issue: 8 year: 2018 end-page: 3978 article-title: Self‐powered versatile shoes based on hybrid nanogenerators publication-title: Nano Res – volume: 24 issue: 10 year: 2014 article-title: Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures publication-title: J Micromech Microeng – volume: 49 start-page: 274 year: 2018 end-page: 282 article-title: Triboelectric electronic‐skin based on graphene quantum dots for application in self‐powered, smart, artificial fingers publication-title: Nano Energy – volume: 5 start-page: 36 issue: 1 year: 2014 end-page: 46 article-title: A novel arch‐shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting publication-title: Nanomaterials – volume: 174 start-page: 188 year: 2018 end-page: 197 article-title: A hybrid piezoelectric‐triboelectric generator for low‐frequency and broad‐bandwidth energy harvesting publication-title: Energ Conver Manage – volume: 28 start-page: 1 issue: 37 year: 2018 end-page: 8 article-title: A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors publication-title: Adv Funct Mater – volume: 24 start-page: 7488 issue: 47 year: 2014 end-page: 7494 article-title: Self‐powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor publication-title: Adv Funct Mater – volume: 12 start-page: 19384 issue: 17 year: 2020 end-page: 19392 article-title: Flexible self‐powered real‐time ultraviolet photodetector by coupling triboelectric and photoelectric effects publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 4062 issue: 8 year: 2018 end-page: 4073 article-title: Liquid‐FEP‐based U‐tube triboelectric nanogenerator for harvesting water‐wave energy publication-title: Nano Res – volume: 57 start-page: 440 year: 2019 end-page: 449 article-title: Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting publication-title: Nano Energy – volume: 64 year: 2019 article-title: Liquid‐metal‐elastomer foam for moldable multi‐functional triboelectric energy harvesting and force sensing publication-title: Nano Energy – volume: 30 start-page: 34 issue: November year: 2019 end-page: 51 article-title: On the origin of contact‐electrification publication-title: Mater Today – volume: 16 start-page: 6042 issue: 10 year: 2016 end-page: 6051 article-title: Self‐powered, one‐stop, and multifunctional implantable triboelectric active sensor for real‐time biomedical monitoring publication-title: Nano Lett – volume: 57 start-page: 616 year: 2019 end-page: 624 article-title: A fully‐packaged ship‐shaped hybrid nanogenerator for blue energy harvesting toward seawater self‐desalination and self‐powered positioning publication-title: Nano Energy – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 9 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat Commun – volume: 26 start-page: 5851 issue: 33 year: 2014 end-page: 5856 article-title: In vivo powering of pacemaker by breathing‐driven implanted triboelectric nanogenerator publication-title: Adv Mater – volume: 28 start-page: 1 issue: 51 year: 2018 end-page: 10 article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits publication-title: Adv Funct Mater – volume: 7 start-page: 1 issue: 22 year: 2017 end-page: 11 article-title: Self‐powered gyroscope ball using a triboelectric mechanism publication-title: Adv Energy Mater – volume: 29 start-page: 1 issue: 13 year: 2019 end-page: 8 article-title: Self‐powered optical switch based on triboelectrification‐triggered liquid crystal alignment for wireless sensing publication-title: Adv Funct Mater – volume: 29 start-page: 1 issue: 15 year: 2017 end-page: 7 article-title: Full dynamic‐range pressure sensor matrix based on optical and electrical dual‐mode sensing publication-title: Adv Mater – volume: 9 start-page: 1 issue: 8 year: 2019 end-page: 12 article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting publication-title: Adv Energy Mater – volume: 2 start-page: 4027 issue: 6 year: 2019 end-page: 4032 article-title: Hybrid tribo‐piezo‐electric nanogenerator with unprecedented performance based on ferroelectric composite contacting layers publication-title: ACS Appl Energy Mater – volume: 30 issue: 12 year: 2018 article-title: A highly stretchable transparent self‐powered triboelectric tactile sensor with metallized nanofibers for wearable electronics publication-title: Adv Mater – volume: 3 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Design and anchorage dependence of shape memory alloy actuators on enhanced voiding of a bladder publication-title: Adv Mater Technol – volume: 21 issue: 3 year: 2012 article-title: Investigation of a MEMS piezoelectric energy harvester system with a frequency‐widened‐bandwidth mechanism introduced by mechanical stoppers publication-title: Smart Mater Struct – volume: 12 start-page: 4280 issue: 5 year: 2018 end-page: 4285 article-title: Highly adaptive solid‐liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy publication-title: ACS Nano – volume: 9 start-page: 12562 issue: 12 year: 2015 end-page: 12572 article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy publication-title: ACS Nano – volume: 25 start-page: 845 issue: 5 year: 2016 end-page: 847 article-title: A hybrid flapping‐blade wind energy harvester based on vortex shedding effect publication-title: J Microelectromech Syst – volume: 30 start-page: 1 issue: 28 year: 2018 end-page: 12 article-title: Actively perceiving and responsive soft robots enabled by self‐powered, highly extensible, and highly sensitive triboelectric proximity‐ and pressure‐sensing skins publication-title: Adv Mater – volume: 2000965 start-page: 1 year: 2020 end-page: 8 article-title: Rationally designed dual‐mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects publication-title: Adv Energy Mater – volume: 2 start-page: 13219 issue: 33 year: 2014 end-page: 13225 article-title: Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms publication-title: J Mater Chem A – volume: 60 start-page: 449 year: 2019 end-page: 456 article-title: Mechano‐neuromodulation of autonomic pelvic nerve for underactive bladder: a triboelectric neurostimulator integrated with flexible neural clip interface publication-title: Nano Energy – volume: 28 start-page: 4472 issue: 22 year: 2016 end-page: 4479 article-title: Progress of flexible electronics in neural interfacing ‐ a self‐adaptive non‐invasive neural ribbon electrode for small nerves recording publication-title: Adv Mater – volume: 8 start-page: 736 issue: 1 year: 2016 end-page: 744 article-title: Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 1 issue: 6 year: 2016 end-page: 7 article-title: A water‐proof triboelectric‐electromagnetic hybrid generator for energy harvesting in harsh environments publication-title: Adv Energy Mater – volume: 9 issue: 26 year: 2019 article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting publication-title: Adv Energy Mater – volume: 18 start-page: 21 year: 2019 end-page: 36 article-title: Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self‐powered electronics publication-title: IEEE Trans Nanotechnol – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 11 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat Commun – volume: 60 start-page: 404 year: 2019 end-page: 412 article-title: Macroscopic self‐assembly network of encapsulated high‐performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy – volume: 10 start-page: 1 issue: 12 year: 2017 end-page: 11 article-title: Hybrid electromagnetic and triboelectric nanogenerators with multi‐impact for wideband frequency energy harvesting publication-title: Energies – volume: 8 start-page: 3605 issue: 12 year: 2015 end-page: 3613 article-title: Shape memory polymer‐based self‐healing triboelectric nanogenerator publication-title: Energ Environ Sci – volume: 21 start-page: 776 issue: 4 year: 2012 end-page: 778 article-title: Modeling and experimental study of a low‐frequency‐vibration‐based power generator using ZnO nanowire arrays publication-title: J Microelectromech Syst – volume: 67 start-page: 1 year: 2020 end-page: 5 article-title: A linear‐to‐rotary hybrid nanogenerator for high‐performance wearable biomechanical energy harvesting publication-title: Nano Energy – volume: 8 start-page: 1 issue: 7 year: 2018 end-page: 14 article-title: A self‐powered six‐axis tactile sensor by using triboelectric mechanism publication-title: Nanomaterials – volume: 13 start-page: 1 issue: 45 year: 2017 end-page: 27 article-title: Recent progress of self‐powered sensing systems for wearable electronics publication-title: Small – volume: 1 start-page: 92 issue: July year: 2020 end-page: 124 article-title: Smart materials for smart healthcare–moving from sensors and actuators to self‐sustained nanoenergy nanosystems publication-title: Smart Mater Med – volume: 6 start-page: 2429 issue: 8 year: 2013 end-page: 2434 article-title: A hybrid energy cell for self‐powered water splitting publication-title: Energ Environ Sci – volume: 271 start-page: 364 year: 2018 end-page: 372 article-title: Electret‐material enhanced triboelectric energy harvesting from air flow for self‐powered wireless temperature sensor network publication-title: Sens Actuators A Phys – volume: 10 start-page: 44415 issue: 51 year: 2018 end-page: 44420 article-title: Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films publication-title: ACS Appl Mater Interfaces – volume: 57 start-page: 574 year: 2019 end-page: 580 article-title: A highly‐sensitive wave sensor based on liquid‐solid interfacing triboelectric nanogenerator for smart marine equipment publication-title: Nano Energy – volume: 27 start-page: 1 issue: 1 year: 2017 end-page: 9 article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer publication-title: Adv Funct Mater – volume: 5 issue: 2 year: 2018 article-title: A hybrid piezoelectric and triboelectric nanogenerator with PVDF nanoparticles and leaf‐shaped microstructure PTFE film for scavenging mechanical energy publication-title: Adv Mater Interfaces – volume: 30 start-page: 1 issue: 15 year: 2020 end-page: 9 article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent‐free ion‐conducting elastomer electrodes publication-title: Adv Funct Mater – volume: 10 start-page: 14708 issue: 17 year: 2018 end-page: 14715 article-title: Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self‐powered systems and active remote sensing publication-title: ACS Appl Mater Interfaces – volume: 8 start-page: 12729 issue: 11 year: 2015 end-page: 12740 article-title: Simplified process for manufacturing macroscale patterns to enhance voltage generation by a triboelectric generator publication-title: Energies – volume: 7 start-page: 1631 issue: 11 year: 2014 end-page: 1639 article-title: Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies publication-title: Nano Res – volume: 11 start-page: 7440 issue: 7 year: 2017 end-page: 7446 article-title: Self‐powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring publication-title: ACS Nano – volume: 29 start-page: 1 issue: 5 year: 2019 end-page: 10 article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure publication-title: Adv Funct Mater – volume: 9 start-page: 1 issue: 36 year: 2019 end-page: 11 article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems publication-title: Adv Energy Mater – volume: 29 start-page: 1 issue: 41 year: 2019 end-page: 16 article-title: Recent advances in triboelectric nanogenerator‐based health monitoring publication-title: Adv Funct Mater – volume: 204 start-page: 37 year: 2013 end-page: 43 article-title: A multi‐frequency vibration‐based MEMS electromagnetic energy harvesting device publication-title: Sens Actuators A Phys – volume: 6 issue: 1 year: 2016 article-title: A flexible triboelectric‐piezoelectric hybrid nanogenerator based on P(VDF‐TrFE) nanofibers and PDMS/MWCNT for wearable devices publication-title: Sci Rep – volume: 5 start-page: 1 issue: 4 year: 2018 end-page: 35 article-title: A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications publication-title: Appl Phys Rev – volume: 7 start-page: 92745 year: 2019 end-page: 92757 article-title: Sensors and control interface methods based on triboelectric nanogenerator in IoT applications publication-title: IEEE Access – volume: 7 start-page: 19076 issue: 34 year: 2015 end-page: 19082 article-title: Triboelectric nanogenerators as a self‐powered 3D acceleration sensor publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 6519 issue: 7 year: 2016 end-page: 6525 article-title: Stretchable and waterproof self‐charging power system for harvesting energy from diverse deformation and powering wearable electronics publication-title: ACS Nano – ident: e_1_2_9_197_1 doi: 10.1016/j.nanoen.2018.12.054 – volume: 9 start-page: 1 issue: 8 year: 2018 ident: e_1_2_9_31_1 article-title: Development of a thermoelectric and electromagnetic hybrid energy harvester from water flow in an irrigation system publication-title: Micromachines – ident: e_1_2_9_101_1 doi: 10.1002/aenm.201601705 – ident: e_1_2_9_265_1 doi: 10.1002/admt.201900741 – ident: e_1_2_9_155_1 doi: 10.1016/j.nanoen.2020.104675 – ident: e_1_2_9_164_1 doi: 10.1016/j.nanoen.2017.11.028 – ident: e_1_2_9_73_1 doi: 10.1016/j.nanoen.2019.104039 – ident: e_1_2_9_169_1 doi: 10.1021/acsnano.7b05213 – ident: e_1_2_9_342_1 doi: 10.1007/s12274-018-2018-8 – ident: e_1_2_9_200_1 doi: 10.1016/j.nanoen.2018.03.032 – ident: e_1_2_9_238_1 doi: 10.1016/j.nanoen.2012.11.015 – ident: e_1_2_9_305_1 doi: 10.1063/1.5134100 – ident: e_1_2_9_310_1 doi: 10.1021/acsami.8b05636 – volume: 3 start-page: 1 issue: 9 year: 2016 ident: e_1_2_9_66_1 article-title: Toward self‐powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery publication-title: Adv Sci doi: 10.1002/advs.201500441 – ident: e_1_2_9_312_1 doi: 10.1016/j.nanoen.2019.103933 – ident: e_1_2_9_104_1 doi: 10.1016/j.nanoen.2019.05.033 – ident: e_1_2_9_167_1 doi: 10.1016/j.nanoen.2016.11.025 – volume: 30 start-page: 34 year: 2019 ident: e_1_2_9_32_1 article-title: On the origin of contact‐electrification publication-title: Mater Today doi: 10.1016/j.mattod.2019.05.016 – ident: e_1_2_9_354_1 doi: 10.1038/s41467-019-10433-4 – ident: e_1_2_9_231_1 doi: 10.1038/s41467-018-03781-0 – ident: e_1_2_9_324_1 doi: 10.1039/C5EE02711J – ident: e_1_2_9_170_1 doi: 10.1016/j.nanoen.2018.12.032 – ident: e_1_2_9_371_1 doi: 10.1016/j.nanoen.2014.01.001 – volume: 5 start-page: 1 year: 2015 ident: e_1_2_9_245_1 article-title: Interface‐free area‐scalable self‐powered electroluminescent system driven by triboelectric generator publication-title: Sci Rep – ident: e_1_2_9_154_1 doi: 10.1016/j.nanoen.2018.11.075 – ident: e_1_2_9_46_1 doi: 10.1039/c3ee41485j – volume: 32 start-page: 1 issue: 5 year: 2020 ident: e_1_2_9_117_1 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv Mater doi: 10.1002/adma.201902549 – ident: e_1_2_9_190_1 doi: 10.1016/j.nanoen.2017.06.035 – volume: 4 start-page: 1 issue: 1 year: 2019 ident: e_1_2_9_230_1 article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics publication-title: Adv Mater Technol doi: 10.1002/admt.201800487 – ident: e_1_2_9_381_1 doi: 10.3390/en81112340 – volume: 3 start-page: 1 issue: 7 year: 2017 ident: e_1_2_9_225_1 article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci Adv – ident: e_1_2_9_223_1 doi: 10.1016/j.nanoen.2019.03.090 – volume: 2 start-page: 1 issue: 6 year: 2016 ident: e_1_2_9_333_1 article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring publication-title: Sci Adv – ident: e_1_2_9_35_1 doi: 10.1109/JSEN.2015.2411313 – ident: e_1_2_9_103_1 doi: 10.1021/acs.nanolett.6b01968 – volume: 29 start-page: 1 issue: 41 year: 2019 ident: e_1_2_9_112_1 article-title: Self‐powered tactile sensor array systems based on the triboelectric effect publication-title: Adv Funct Mater – ident: e_1_2_9_163_1 doi: 10.1016/j.nanoen.2018.10.044 – volume: 30 start-page: 1 issue: 15 year: 2018 ident: e_1_2_9_88_1 article-title: On the electron‐transfer mechanism in the contact‐electrification effect publication-title: Adv Mater – ident: e_1_2_9_299_1 doi: 10.1007/s12274-016-1331-3 – ident: e_1_2_9_336_1 doi: 10.1002/adfm.201803684 – volume: 78 start-page: 105241 year: 2020 ident: e_1_2_9_390_1 article-title: Programmed‐triboelectric nanogenerators—a multi‐switch regulation methodology for energy manipulation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105241 – volume: 30 start-page: 1 issue: 47 year: 2018 ident: e_1_2_9_120_1 article-title: Controlling surface charge generated by contact electrification: strategies and applications publication-title: Adv Mater doi: 10.1002/adma.201802405 – ident: e_1_2_9_252_1 doi: 10.1016/j.nanoen.2019.104419 – volume: 104 start-page: 053901 issue: 5 year: 2014 ident: e_1_2_9_17_1 article-title: Ultra‐wide frequency broadening mechanism for micro‐scale electromagnetic energy harvester publication-title: Appl Phys Lett doi: 10.1063/1.4863565 – ident: e_1_2_9_224_1 doi: 10.1016/j.nanoen.2018.06.022 – ident: e_1_2_9_141_1 doi: 10.1002/smtd.201800078 – volume: 6 start-page: 1 issue: 6 year: 2016 ident: e_1_2_9_269_1 article-title: A water‐proof triboelectric‐electromagnetic hybrid generator for energy harvesting in harsh environments publication-title: Adv Energy Mater – volume: 4 start-page: 1 issue: 9 year: 2014 ident: e_1_2_9_373_1 article-title: Rotating‐disk‐based direct‐current triboelectric nanogenerator publication-title: Adv Energy Mater doi: 10.1002/aenm.201301798 – ident: e_1_2_9_198_1 doi: 10.1021/acsnano.5b06372 – ident: e_1_2_9_307_1 doi: 10.1016/j.nanoen.2015.09.012 – ident: e_1_2_9_338_1 doi: 10.1021/acsnano.7b05317 – ident: e_1_2_9_49_1 doi: 10.1002/adma.201404071 – ident: e_1_2_9_131_1 doi: 10.1002/adma.201503407 – ident: e_1_2_9_41_1 doi: 10.1088/0964-1726/21/3/035005 – ident: e_1_2_9_196_1 doi: 10.1002/adfm.201807241 – ident: e_1_2_9_87_1 doi: 10.1002/adma.201302808 – ident: e_1_2_9_263_1 doi: 10.1016/j.nanoen.2019.103871 – ident: e_1_2_9_181_1 doi: 10.1126/science.aau0780 – ident: e_1_2_9_194_1 doi: 10.1016/j.nanoen.2019.04.026 – volume: 7 start-page: 3 issue: 4 year: 2017 ident: e_1_2_9_367_1 article-title: Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode publication-title: AIP Adv – volume: 17 start-page: 723 issue: 4 year: 2018 ident: e_1_2_9_384_1 article-title: A ball‐impact piezoelectric converter wrapped by copper coils publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2018.2823342 – ident: e_1_2_9_45_1 doi: 10.1007/s12274-012-0272-8 – volume: 3 start-page: 1 issue: 1 year: 2018 ident: e_1_2_9_64_1 article-title: Design and anchorage dependence of shape memory alloy actuators on enhanced voiding of a bladder publication-title: Adv Mater Technol doi: 10.1002/admt.201700184 – ident: e_1_2_9_335_1 doi: 10.1002/adma.201603527 – ident: e_1_2_9_86_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_9_118_1 doi: 10.1039/C4FD00159A – ident: e_1_2_9_206_1 doi: 10.1002/aenm.201900801 – volume: 347 start-page: 1084 issue: 6226 year: 2015 ident: e_1_2_9_187_1 article-title: To catch a wave publication-title: Science doi: 10.1126/science.347.6226.1084 – ident: e_1_2_9_322_1 doi: 10.1002/adma.201705195 – ident: e_1_2_9_315_1 doi: 10.1016/j.nanoen.2019.103912 – volume: 13 start-page: acsnano.8b08329 year: 2019 ident: e_1_2_9_128_1 article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring publication-title: ACS Nano doi: 10.1021/acsnano.8b08329 – ident: e_1_2_9_7_1 doi: 10.1016/j.nantod.2018.08.001 – volume: 29 start-page: 1 issue: 41 year: 2017 ident: e_1_2_9_122_1 article-title: Large‐area all‐textile pressure sensors for monitoring human motion and physiological signals publication-title: Adv Mater – ident: e_1_2_9_14_1 doi: 10.1021/nn403021m – ident: e_1_2_9_209_1 doi: 10.1016/j.nanoen.2017.08.018 – volume: 29 start-page: 1 issue: 41 year: 2019 ident: e_1_2_9_233_1 article-title: Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator publication-title: Adv Funct Mater – ident: e_1_2_9_195_1 doi: 10.1016/j.nanoen.2018.12.078 – ident: e_1_2_9_92_1 doi: 10.1016/j.nanoen.2017.08.025 – ident: e_1_2_9_344_1 doi: 10.1021/acsnano.7b03657 – volume: 7 start-page: 1 issue: 14 year: 2020 ident: e_1_2_9_227_1 article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv Sci – volume: 7 start-page: 1 issue: 2 year: 2017 ident: e_1_2_9_301_1 article-title: Boosting power‐generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties publication-title: Adv Energy Mater doi: 10.1002/aenm.201600988 – ident: e_1_2_9_184_1 doi: 10.1038/s41586-019-1234-z – ident: e_1_2_9_74_1 doi: 10.1021/acsnano.6b02693 – ident: e_1_2_9_57_1 doi: 10.1016/j.nanoen.2015.04.020 – ident: e_1_2_9_281_1 doi: 10.1016/j.nanoen.2020.104500 – ident: e_1_2_9_115_1 doi: 10.1039/C5EE01532D – volume: 30 start-page: 1 issue: 28 year: 2018 ident: e_1_2_9_127_1 article-title: Actively perceiving and responsive soft robots enabled by self‐powered, highly extensible, and highly sensitive triboelectric proximity‐ and pressure‐sensing skins publication-title: Adv Mater – ident: e_1_2_9_304_1 doi: 10.1016/j.compscitech.2019.107963 – ident: e_1_2_9_365_1 doi: 10.1007/s10854-017-7020-5 – ident: e_1_2_9_277_1 doi: 10.1002/aenm.201800069 – ident: e_1_2_9_232_1 doi: 10.1016/j.nanoen.2019.03.082 – ident: e_1_2_9_364_1 doi: 10.1039/C8TA04443K – ident: e_1_2_9_298_1 doi: 10.1021/acssuschemeng.8b00834 – ident: e_1_2_9_241_1 doi: 10.1021/am406018h – ident: e_1_2_9_27_1 doi: 10.1002/aenm.202000137 – ident: e_1_2_9_43_1 doi: 10.1038/s41598-016-0001-8 – ident: e_1_2_9_202_1 doi: 10.1021/nn5012732 – ident: e_1_2_9_183_1 doi: 10.1021/acssensors.9b01509 – ident: e_1_2_9_22_1 doi: 10.1016/j.cobme.2018.05.004 – volume: 19 start-page: 035001 issue: 3 year: 2009 ident: e_1_2_9_38_1 article-title: Electromagnetic energy harvesting from vibrations of multiple frequencies publication-title: J Micromech Microeng doi: 10.1088/0960-1317/19/3/035001 – ident: e_1_2_9_174_1 doi: 10.1016/j.nanoen.2017.10.064 – ident: e_1_2_9_83_1 doi: 10.1021/acsnano.8b05359 – volume: 28 start-page: 1 issue: 47 year: 2018 ident: e_1_2_9_139_1 article-title: Directly visualizing tactile perception and ultrasensitive tactile sensors by utilizing body‐enhanced induction of ambient electromagnetic waves publication-title: Adv Funct Mater – ident: e_1_2_9_47_1 doi: 10.1021/nn405209u – volume: 9 start-page: 1 issue: 1 year: 2018 ident: e_1_2_9_228_1 article-title: Transparent and attachable ionic communicators based on self‐cleanable triboelectric nanogenerators publication-title: Nat Commun – ident: e_1_2_9_168_1 doi: 10.1016/j.snb.2016.03.063 – ident: e_1_2_9_363_1 doi: 10.1088/2053-1591/aabd22 – ident: e_1_2_9_255_1 doi: 10.1002/adma.201404291 – ident: e_1_2_9_71_1 doi: 10.1016/j.nanoen.2019.01.096 – ident: e_1_2_9_213_1 doi: 10.1021/acsnano.0c00524 – ident: e_1_2_9_114_1 doi: 10.1016/j.nanoen.2019.01.002 – volume: 18 start-page: 497 issue: 4 year: 2012 ident: e_1_2_9_42_1 article-title: A new S‐shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz publication-title: Microsyst Technol doi: 10.1007/s00542-012-1424-1 – ident: e_1_2_9_326_1 doi: 10.1002/adfm.201905426 – ident: e_1_2_9_109_1 doi: 10.1016/j.nanoen.2019.104266 – ident: e_1_2_9_311_1 doi: 10.1016/j.nanoen.2019.04.085 – ident: e_1_2_9_290_1 doi: 10.1088/1361-6528/ab6677 – ident: e_1_2_9_28_1 doi: 10.1088/0960-1317/22/12/125020 – volume: 3 start-page: 1 issue: 7 year: 2019 ident: e_1_2_9_237_1 article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode publication-title: Adv Biosyst doi: 10.1002/adbi.201800281 – ident: e_1_2_9_189_1 doi: 10.1038/542159a – ident: e_1_2_9_93_1 doi: 10.1016/j.nanoen.2019.06.040 – ident: e_1_2_9_84_1 doi: 10.1038/s41467-016-0009-6 – volume: 32 start-page: 1 issue: 1 year: 2020 ident: e_1_2_9_257_1 article-title: A contact‐sliding‐triboelectrification‐driven dynamic optical transmittance modulator for self‐powered information covering and selective visualization publication-title: Adv Mater doi: 10.1002/adma.201904988 – ident: e_1_2_9_160_1 doi: 10.1021/acsnano.7b00396 – volume: 17 start-page: 1217 issue: 6 year: 2018 ident: e_1_2_9_386_1 article-title: High output compound triboelectric nanogenerator based on paper for self‐powered height sensing system publication-title: IEEE Trans Nanotechnol doi: 10.1109/TNANO.2018.2869934 – volume: 108 start-page: 193902 issue: 19 year: 2016 ident: e_1_2_9_18_1 article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting publication-title: Appl Phys Lett doi: 10.1063/1.4948973 – ident: e_1_2_9_96_1 doi: 10.1016/j.nanoen.2016.10.046 – ident: e_1_2_9_97_1 doi: 10.1002/advs.201900617 – ident: e_1_2_9_236_1 doi: 10.1016/j.nanoen.2018.04.004 – volume: 5 start-page: 1 issue: 4 year: 2018 ident: e_1_2_9_20_1 article-title: A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications publication-title: Appl Phys Rev – ident: e_1_2_9_282_1 doi: 10.1021/acsami.8b01635 – volume: 29 start-page: 1 issue: 5 year: 2019 ident: e_1_2_9_130_1 article-title: Flexible weaving constructed self‐powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure publication-title: Adv Funct Mater doi: 10.1002/adfm.201806388 – ident: e_1_2_9_235_1 doi: 10.1002/adma.201402064 – ident: e_1_2_9_337_1 doi: 10.1039/C9NR01271K – ident: e_1_2_9_5_1 doi: 10.1007/s12274-014-0523-y – ident: e_1_2_9_8_1 doi: 10.1088/0960-1317/20/6/065017 – ident: e_1_2_9_203_1 doi: 10.1021/nn501983s – volume: 28 start-page: 1 issue: 35 year: 2018 ident: e_1_2_9_54_1 article-title: Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting publication-title: Adv Funct Mater – ident: e_1_2_9_283_1 doi: 10.1016/j.nanoen.2019.05.063 – ident: e_1_2_9_318_1 doi: 10.1039/C4TA02747G – volume: 28 start-page: 1 issue: 32 year: 2018 ident: e_1_2_9_157_1 article-title: Novel electronics for flexible and neuromorphic computing publication-title: Adv Funct Mater – ident: e_1_2_9_285_1 doi: 10.1007/s11431-013-5270-x – volume: 28 start-page: 1 issue: 51 year: 2018 ident: e_1_2_9_110_1 article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits publication-title: Adv Funct Mater – ident: e_1_2_9_70_1 doi: 10.1016/j.nanoen.2016.12.038 – volume: 27 start-page: 1 issue: 6 year: 2017 ident: e_1_2_9_144_1 article-title: Wearable force touch sensor array using a flexible and transparent electrode publication-title: Adv Funct Mater – ident: e_1_2_9_286_1 doi: 10.1016/j.nanoen.2017.11.039 – volume: 68 start-page: 104272 issue: 2019 year: 2020 ident: e_1_2_9_36_1 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 2000965 start-page: 1 year: 2020 ident: e_1_2_9_24_1 article-title: Rationally designed dual‐mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects publication-title: Adv Energy Mater – ident: e_1_2_9_284_1 doi: 10.1016/j.enconman.2018.08.018 – volume: 4 start-page: 1 issue: 11 year: 2017 ident: e_1_2_9_61_1 article-title: Toward bioelectronic medicine—neuromodulation of small peripheral nerves using flexible neural clip publication-title: Adv Sci – ident: e_1_2_9_69_1 doi: 10.1109/JMEMS.2014.2317718 – ident: e_1_2_9_251_1 doi: 10.1021/acsnano.5b07407 – volume: 7 start-page: 1 issue: 5 year: 2017 ident: e_1_2_9_296_1 article-title: Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units publication-title: Adv Energy Mater doi: 10.1002/aenm.201601569 – ident: e_1_2_9_331_1 doi: 10.1039/C9TA02711D – ident: e_1_2_9_102_1 doi: 10.1007/s12274-018-1989-9 – volume: 29 start-page: 1 issue: 15 year: 2017 ident: e_1_2_9_121_1 article-title: Full dynamic‐range pressure sensor matrix based on optical and electrical dual‐mode sensing publication-title: Adv Mater doi: 10.1002/adma.201605817 – ident: e_1_2_9_211_1 doi: 10.1109/TNANO.2020.2976154 – ident: e_1_2_9_369_1 doi: 10.1063/1.4905553 – ident: e_1_2_9_81_1 doi: 10.1021/acsnano.8b07935 – ident: e_1_2_9_302_1 doi: 10.1021/acsami.6b11108 – ident: e_1_2_9_266_1 doi: 10.1021/acsnano.6b02384 – ident: e_1_2_9_207_1 doi: 10.1016/j.nanoen.2018.12.041 – volume: 3 start-page: 1 issue: 3 year: 2018 ident: e_1_2_9_239_1 article-title: Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel publication-title: Adv Mater Technol doi: 10.1002/admt.201700317 – ident: e_1_2_9_133_1 doi: 10.1021/acsnano.7b03818 – volume: 27 start-page: 1 issue: 25 year: 2017 ident: e_1_2_9_142_1 article-title: Auxetic foam‐based contact‐mode triboelectric nanogenerator with highly sensitive self‐powered strain sensing capabilities to monitor human body movement publication-title: Adv Funct Mater doi: 10.1002/adfm.201606695 – ident: e_1_2_9_214_1 doi: 10.1021/acsaelm.0c00022 – ident: e_1_2_9_146_1 doi: 10.1002/adfm.201302453 – volume: 5 start-page: 9309 issue: 1 year: 2015 ident: e_1_2_9_293_1 article-title: High output piezo/triboelectric hybrid generator publication-title: Sci Rep doi: 10.1038/srep09309 – ident: e_1_2_9_317_1 doi: 10.1016/j.nanoen.2017.05.039 – volume: 31 start-page: 1 issue: 34 year: 2019 ident: e_1_2_9_264_1 article-title: Hybrid energy harvesters: toward sustainable energy harvesting publication-title: Adv Mater – volume: 7 start-page: 1903636 year: 2020 ident: e_1_2_9_244_1 article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing publication-title: Adv Sci doi: 10.1002/advs.201903636 – volume: 7 start-page: 1 issue: 5 year: 2018 ident: e_1_2_9_62_1 article-title: A highly selective 3D spiked ultraflexible neural (SUN) interface for decoding peripheral nerve sensory information publication-title: Adv Healthc Mater doi: 10.1002/adhm.201700987 – ident: e_1_2_9_273_1 doi: 10.1016/j.elstat.2004.05.005 – ident: e_1_2_9_220_1 doi: 10.1002/adma.201706738 – ident: e_1_2_9_191_1 doi: 10.1088/1361-6528/ab793e – ident: e_1_2_9_308_1 doi: 10.1021/acsami.7b17314 – ident: e_1_2_9_182_1 doi: 10.1038/s41551-018-0287-x – ident: e_1_2_9_303_1 doi: 10.3390/nano5010036 – volume: 1 start-page: 92 year: 2020 ident: e_1_2_9_391_1 article-title: Smart materials for smart healthcare–moving from sensors and actuators to self‐sustained nanoenergy nanosystems publication-title: Smart Mater Med doi: 10.1016/j.smaim.2020.07.005 – ident: e_1_2_9_11_1 doi: 10.1021/acsnano.8b00303 – ident: e_1_2_9_134_1 doi: 10.1021/acsnano.8b01532 – volume: 6 start-page: 1 year: 2020 ident: e_1_2_9_185_1 article-title: An epidermal sEMG tattoo‐like patch as a new human – machine interface for patients with loss of voice publication-title: Microsyst Nanoeng – ident: e_1_2_9_192_1 doi: 10.1002/adfm.201908252 – volume: 6 start-page: 36409 issue: 1 year: 2016 ident: e_1_2_9_297_1 article-title: A flexible triboelectric‐piezoelectric hybrid nanogenerator based on P(VDF‐TrFE) nanofibers and PDMS/MWCNT for wearable devices publication-title: Sci Rep doi: 10.1038/srep36409 – ident: e_1_2_9_246_1 doi: 10.1016/j.nanoen.2019.04.005 – ident: e_1_2_9_138_1 doi: 10.1021/acsnano.8b02477 – ident: e_1_2_9_353_1 doi: 10.1038/s41467-019-13166-6 – ident: e_1_2_9_208_1 doi: 10.1002/aenm.201800705 – volume: 24 start-page: 513 issue: 3 year: 2015 ident: e_1_2_9_292_1 article-title: An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2015.2404037 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: e_1_2_9_392_1 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat Commun – volume: 2000605 start-page: 1 year: 2020 ident: e_1_2_9_55_1 article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators publication-title: Adv Energy Mater – volume: 40 start-page: 399 year: 2017 ident: e_1_2_9_332_1 article-title: Fully self‐healing and shape‐tailorable triboelectric nanogenerators based on healable polymer and magnetic‐assisted electrode publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.045 – ident: e_1_2_9_33_1 doi: 10.1016/j.sna.2013.09.015 – ident: e_1_2_9_72_1 doi: 10.1016/j.nanoen.2019.03.071 – ident: e_1_2_9_21_1 doi: 10.1088/2057-1976/ab268e – ident: e_1_2_9_180_1 doi: 10.1126/scirobotics.aau6914 – ident: e_1_2_9_316_1 doi: 10.1039/C6NR06319E – volume: 29 start-page: 1 issue: 41 year: 2019 ident: e_1_2_9_152_1 article-title: Triboelectric nanogenerator boosts smart green tires publication-title: Adv Funct Mater – ident: e_1_2_9_321_1 doi: 10.1063/1.4967001 – ident: e_1_2_9_135_1 doi: 10.1038/s41467-018-05755-8 – volume: 3 start-page: 1 issue: 9 year: 2016 ident: e_1_2_9_65_1 article-title: Mapping of small nerve trunks and branches using adaptive flexible electrodes publication-title: Adv Sci doi: 10.1002/advs.201500386 – ident: e_1_2_9_334_1 doi: 10.1021/acsnano.6b06621 – ident: e_1_2_9_159_1 doi: 10.1021/acsnano.8b06747 – ident: e_1_2_9_242_1 doi: 10.1021/acsami.9b22572 – ident: e_1_2_9_15_1 doi: 10.1002/aenm.202000886 – volume: 29 start-page: 1 issue: 41 year: 2019 ident: e_1_2_9_113_1 article-title: Recent advances in triboelectric nanogenerator‐based health monitoring publication-title: Adv Funct Mater – ident: e_1_2_9_379_1 doi: 10.1007/s12274-015-0894-8 – ident: e_1_2_9_137_1 doi: 10.1016/j.nanoen.2017.09.025 – ident: e_1_2_9_250_1 doi: 10.1021/acsami.8b16023 – ident: e_1_2_9_352_1 doi: 10.1016/j.nanoen.2016.12.035 – volume: 5 start-page: 1 issue: 4 year: 2019 ident: e_1_2_9_95_1 article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown publication-title: Sci Adv – ident: e_1_2_9_300_1 doi: 10.1016/j.nanoen.2019.103923 – ident: e_1_2_9_210_1 doi: 10.1039/C9EE03258D – ident: e_1_2_9_178_1 doi: 10.1126/scirobotics.aaw6339 – volume: 30 start-page: 1 issue: 43 year: 2018 ident: e_1_2_9_340_1 article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv Mater doi: 10.1002/adma.201804944 – ident: e_1_2_9_63_1 doi: 10.1002/adma.201503423 – start-page: 1 year: 2018 ident: e_1_2_9_385_1 article-title: VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS‐MWCNTs nanocomposite film for environmental applications publication-title: IEEE Transactions on Nanotechnology doi: 10.1109/TNANO.2018.2828302 – ident: e_1_2_9_13_1 doi: 10.1021/nl300988z – ident: e_1_2_9_226_1 doi: 10.1016/j.nanoen.2019.01.091 – ident: e_1_2_9_136_1 doi: 10.1016/j.nanoen.2018.05.061 – ident: e_1_2_9_179_1 doi: 10.1126/scirobotics.aax2198 – ident: e_1_2_9_280_1 doi: 10.1016/j.nanoen.2017.08.024 – ident: e_1_2_9_350_1 doi: 10.1016/j.nanoen.2019.02.052 – ident: e_1_2_9_370_1 doi: 10.1016/j.nanoen.2019.06.043 – ident: e_1_2_9_359_1 doi: 10.1007/s12274-018-1978-z – volume: 4 start-page: 1 issue: 11 year: 2017 ident: e_1_2_9_60_1 article-title: A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators publication-title: Adv Sci doi: 10.1002/advs.201700143 – ident: e_1_2_9_89_1 doi: 10.1038/s41467-019-13773-3 – ident: e_1_2_9_278_1 doi: 10.1002/aenm.201601852 – ident: e_1_2_9_78_1 doi: 10.1021/nl5005652 – ident: e_1_2_9_153_1 doi: 10.1126/scirobotics.aat2516 – ident: e_1_2_9_309_1 doi: 10.1021/acsami.8b15410 – ident: e_1_2_9_29_1 doi: 10.1088/0960-1317/24/10/104002 – ident: e_1_2_9_295_1 doi: 10.1039/C6NR07781A – ident: e_1_2_9_329_1 doi: 10.1021/acsnano.8b02479 – ident: e_1_2_9_162_1 doi: 10.1016/j.nanoen.2020.104456 – ident: e_1_2_9_349_1 doi: 10.1021/acsami.5b09907 – ident: e_1_2_9_4_1 doi: 10.1016/j.nanoen.2014.10.034 – ident: e_1_2_9_240_1 doi: 10.1002/adfm.201502450 – volume: 8 start-page: 1 issue: 7 year: 2018 ident: e_1_2_9_80_1 article-title: A self‐powered six‐axis tactile sensor by using triboelectric mechanism publication-title: Nanomaterials doi: 10.3390/nano8070503 – ident: e_1_2_9_148_1 doi: 10.1016/j.nanoen.2016.11.056 – ident: e_1_2_9_40_1 doi: 10.1109/JMEMS.2011.2162488 – ident: e_1_2_9_147_1 doi: 10.1016/j.nanoen.2019.104228 – ident: e_1_2_9_375_1 doi: 10.1021/acsnano.0c03728 – volume: 6 start-page: 1901980 issue: 23 year: 2019 ident: e_1_2_9_253_1 article-title: Low detection limit and high sensitivity wind speed sensor based on triboelectrification‐induced electroluminescence publication-title: Adv Sci doi: 10.1002/advs.201901980 – ident: e_1_2_9_12_1 doi: 10.1016/j.mattod.2019.10.025 – ident: e_1_2_9_119_1 doi: 10.1021/acsnano.5b01478 – volume: 13 start-page: 1 issue: 45 year: 2017 ident: e_1_2_9_287_1 article-title: Recent progress of self‐powered sensing systems for wearable electronics publication-title: Small – ident: e_1_2_9_348_1 doi: 10.1039/C5EE01705J – ident: e_1_2_9_360_1 doi: 10.1002/ente.201700779 – volume: 124 start-page: 1 issue: 8 year: 2018 ident: e_1_2_9_361_1 article-title: A triboelectric nanogenerator as self‐powered temperature sensor based on PVDF and PTFE publication-title: Appl Phys A Mater Sci Process – ident: e_1_2_9_166_1 doi: 10.1021/acsnano.5b07074 – ident: e_1_2_9_151_1 doi: 10.1016/j.nanoen.2017.08.001 – ident: e_1_2_9_58_1 doi: 10.1021/acsnano.9b00140 – volume: 7 start-page: 1 issue: 19 year: 2017 ident: e_1_2_9_150_1 article-title: A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer publication-title: Adv Energy Mater – ident: e_1_2_9_374_1 doi: 10.1021/nn403151t – ident: e_1_2_9_279_1 doi: 10.1016/j.nanoen.2018.12.062 – volume: 3 start-page: 1 issue: 5 year: 2017 ident: e_1_2_9_140_1 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci Adv – volume: 9 start-page: 1 issue: 36 year: 2019 ident: e_1_2_9_173_1 article-title: High‐output triboelectric nanogenerator based on dual inductive and resonance effects‐controlled highly transparent polyimide for self‐powered sensor network systems publication-title: Adv Energy Mater – ident: e_1_2_9_30_1 doi: 10.1049/mnl.2013.0750 – volume: 30 start-page: 1 issue: 14 year: 2018 ident: e_1_2_9_330_1 article-title: Vitrimer elastomer‐based jigsaw puzzle‐like healable triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv Mater doi: 10.1002/adma.201705918 – ident: e_1_2_9_132_1 doi: 10.1002/adfm.201604378 – ident: e_1_2_9_193_1 doi: 10.1002/adfm.201901069 – ident: e_1_2_9_387_1 doi: 10.1109/TNANO.2018.2876824 – ident: e_1_2_9_216_1 doi: 10.1002/adfm.201404087 – ident: e_1_2_9_357_1 doi: 10.1016/j.materresbull.2018.02.020 – volume: 30 start-page: 1 issue: 5 year: 2020 ident: e_1_2_9_215_1 article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing publication-title: Adv Funct Mater doi: 10.1002/adfm.201907893 – volume: 67 start-page: 1 year: 2020 ident: e_1_2_9_258_1 article-title: A linear‐to‐rotary hybrid nanogenerator for high‐performance wearable biomechanical energy harvesting publication-title: Nano Energy – ident: e_1_2_9_222_1 doi: 10.1016/j.nanoen.2019.05.039 – ident: e_1_2_9_34_1 doi: 10.1016/j.sna.2017.12.067 – volume: 6 start-page: 1 year: 2016 ident: e_1_2_9_123_1 article-title: Large scale triboelectric nanogenerator and self‐powered pressure sensor array using low cost roll‐to‐roll UV embossing publication-title: Sci Rep doi: 10.1038/srep22253 – ident: e_1_2_9_116_1 doi: 10.1016/j.joule.2017.09.004 – volume: 10 start-page: 1 issue: 12 year: 2020 ident: e_1_2_9_271_1 article-title: Biomechanical energy‐driven hybridized generator as a universal portable power source for smart/wearable electronics publication-title: Adv Energy Mater – volume: 6 start-page: 1 issue: 11 year: 2016 ident: e_1_2_9_124_1 article-title: Fully packaged self‐powered triboelectric pressure sensor using hemispheres‐array publication-title: Adv Energy Mater – volume: 10 start-page: 1 issue: 1 year: 2019 ident: e_1_2_9_108_1 article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator publication-title: Nat Commun doi: 10.1038/s41467-019-10061-y – volume: 2 start-page: 1 issue: 3 year: 2016 ident: e_1_2_9_99_1 article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source publication-title: Sci Adv doi: 10.1126/sciadv.1501478 – ident: e_1_2_9_356_1 doi: 10.1126/sciadv.aay2840 – ident: e_1_2_9_262_1 doi: 10.1016/j.nanoen.2019.103997 – ident: e_1_2_9_68_1 doi: 10.1109/JMEMS.2015.2403256 – volume: 100 start-page: 1 issue: 22 year: 2012 ident: e_1_2_9_9_1 article-title: Development of piezoelectric microcantilever flow sensor with wind‐driven energy harvesting capability publication-title: Appl Phys Lett – ident: e_1_2_9_199_1 doi: 10.1016/j.nanoen.2018.03.062 – ident: e_1_2_9_319_1 doi: 10.1039/C6TC05193F – ident: e_1_2_9_249_1 doi: 10.1021/acsami.9b02313 – volume: 3 start-page: 1 issue: 3 year: 2018 ident: e_1_2_9_358_1 article-title: A self‐powered portable power bank based on a hybridized nanogenerator publication-title: Adv Mater Technol – ident: e_1_2_9_188_1 doi: 10.1039/C9SE01184F – ident: e_1_2_9_267_1 doi: 10.1021/acsnano.5b01187 – ident: e_1_2_9_345_1 doi: 10.1038/s41467-018-06759-0 – ident: e_1_2_9_205_1 doi: 10.1016/j.nanoen.2019.03.054 – volume: 3 start-page: 1 issue: 6 year: 2015 ident: e_1_2_9_243_1 article-title: Tribotronic enhanced photoresponsivity of a MOS2 phototransistor publication-title: Adv Sci – ident: e_1_2_9_268_1 doi: 10.1021/acsnano.7b03683 – volume: 30 start-page: 1 issue: 6 year: 2020 ident: e_1_2_9_23_1 article-title: Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing publication-title: Adv Funct Mater – ident: e_1_2_9_383_1 doi: 10.1109/TNANO.2017.2789300 – ident: e_1_2_9_372_1 doi: 10.1002/adma.201402491 – ident: e_1_2_9_85_1 doi: 10.1016/j.nanoen.2020.104642 – ident: e_1_2_9_2_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_9_201_1 doi: 10.1021/acsnano.7b08716 – ident: e_1_2_9_76_1 doi: 10.1021/acsami.6b06866 – ident: e_1_2_9_172_1 doi: 10.1016/j.nanoen.2018.02.031 – volume: 7 start-page: 1 issue: 3 year: 2019 ident: e_1_2_9_382_1 article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks publication-title: APL Mater – volume: 9 start-page: 1 issue: 8 year: 2019 ident: e_1_2_9_270_1 article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting publication-title: Adv Energy Mater doi: 10.1002/aenm.201802892 – volume: 5 start-page: 1 issue: 4 year: 2018 ident: e_1_2_9_158_1 article-title: Triboelectric‐based transparent secret code publication-title: Adv Sci doi: 10.1002/advs.201700881 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: e_1_2_9_126_1 article-title: An ultrathin flexible single‐electrode triboelectric‐nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv Energy Mater – volume: 30 start-page: 1 issue: 15 year: 2020 ident: e_1_2_9_376_1 article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent‐free ion‐conducting elastomer electrodes publication-title: Adv Funct Mater doi: 10.1002/adfm.201909252 – ident: e_1_2_9_50_1 doi: 10.1021/am404611h – volume: 508 start-page: 302 issue: 7496 year: 2014 ident: e_1_2_9_186_1 article-title: Power from the oceans: blue energy publication-title: Nature doi: 10.1038/508302a – ident: e_1_2_9_56_1 doi: 10.1039/C9EE03566D – ident: e_1_2_9_3_1 doi: 10.1021/nn4050408 – volume: 29 start-page: 1 issue: 28 year: 2019 ident: e_1_2_9_161_1 article-title: Treefrog toe pad‐inspired micropatterning for high‐power triboelectric nanogenerator publication-title: Adv Funct Mater – ident: e_1_2_9_19_1 doi: 10.1063/1.5053945 – volume: 7 start-page: 1 issue: 13 year: 2017 ident: e_1_2_9_107_1 article-title: Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators publication-title: Adv Energy Mater – ident: e_1_2_9_346_1 doi: 10.1016/j.nanoen.2016.08.024 – ident: e_1_2_9_125_1 doi: 10.1126/sciadv.1700694 – ident: e_1_2_9_393_1 doi: 10.1063/5.0016485 – volume: 5 start-page: 1 issue: 2 year: 2018 ident: e_1_2_9_165_1 article-title: Triboelectrification‐enabled self‐powered data storage publication-title: Adv Sci doi: 10.1002/advs.201700658 – ident: e_1_2_9_306_1 doi: 10.1039/C9TA02345C – ident: e_1_2_9_339_1 doi: 10.1021/acsnano.8b00147 – volume: 32 start-page: 1 issue: 15 year: 2020 ident: e_1_2_9_328_1 article-title: Nanomaterial‐enabled flexible and stretchable sensing systems: processing, integration, and applications publication-title: Adv Mater – volume: 29 start-page: 1 issue: 13 year: 2019 ident: e_1_2_9_105_1 article-title: Self‐powered optical switch based on triboelectrification‐triggered liquid crystal alignment for wireless sensing publication-title: Adv Funct Mater doi: 10.1002/adfm.201808633 – ident: e_1_2_9_67_1 doi: 10.1002/advs.201900149 – ident: e_1_2_9_217_1 doi: 10.1016/j.nanoen.2019.03.005 – ident: e_1_2_9_247_1 doi: 10.1016/j.nanoen.2015.12.001 – ident: e_1_2_9_314_1 doi: 10.1016/j.nanoen.2019.04.025 – ident: e_1_2_9_289_1 doi: 10.1021/acsaem.9b00836 – volume: 8 start-page: 1 issue: 8 year: 2018 ident: e_1_2_9_26_1 article-title: Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad publication-title: Nanomaterials doi: 10.3390/nano8080613 – ident: e_1_2_9_377_1 doi: 10.1021/acsnano.6b04201 – ident: e_1_2_9_100_1 doi: 10.1016/j.mattod.2017.10.006 – ident: e_1_2_9_111_1 doi: 10.1016/j.nanoen.2020.104760 – ident: e_1_2_9_229_1 doi: 10.1016/j.nanoen.2018.04.059 – ident: e_1_2_9_79_1 doi: 10.1016/j.nanoen.2020.104462 – ident: e_1_2_9_272_1 doi: 10.1021/acsnano.9b06272 – ident: e_1_2_9_347_1 doi: 10.1016/j.nanoen.2017.04.012 – volume: 6 start-page: 1 issue: 5 year: 2016 ident: e_1_2_9_51_1 article-title: Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy publication-title: Adv Energy Mater doi: 10.1002/aenm.201501799 – volume: 4 start-page: 1 issue: 2 year: 2019 ident: e_1_2_9_129_1 article-title: A triboelectric nanogenerator‐based smart insole for multifunctional gait monitoring publication-title: Adv Mater Technol – ident: e_1_2_9_75_1 doi: 10.1002/adma.201600604 – ident: e_1_2_9_355_1 doi: 10.1016/j.nanoen.2019.104167 – ident: e_1_2_9_94_1 doi: 10.1016/j.nanoen.2018.06.034 – ident: e_1_2_9_48_1 doi: 10.1002/adfm.201402703 – ident: e_1_2_9_212_1 doi: 10.1002/adma.201404794 – volume: 9 start-page: 1 issue: 44 year: 2019 ident: e_1_2_9_260_1 article-title: Enhancing the output performance of triboelectric nanogenerator via grating‐electrode‐enabled surface plasmon excitation publication-title: Adv Energy Mater – ident: e_1_2_9_221_1 doi: 10.1016/j.nanoen.2019.103994 – ident: e_1_2_9_156_1 doi: 10.1109/ACCESS.2019.2927394 – ident: e_1_2_9_91_1 doi: 10.1002/advs.201901437 – volume: 2 start-page: 1 issue: 10 year: 2015 ident: e_1_2_9_6_1 article-title: Recent progress in electronic skin publication-title: Adv Sci doi: 10.1002/advs.201500169 – ident: e_1_2_9_388_1 doi: 10.1109/TNANO.2019.2895137 – ident: e_1_2_9_254_1 doi: 10.1039/C8TC02964D – volume: 9 start-page: 1 issue: 14 year: 2019 ident: e_1_2_9_175_1 article-title: Metal–organic framework: a novel material for triboelectric nanogenerator‐based self‐powered sensors and systems publication-title: Adv Energy Mater – ident: e_1_2_9_234_1 doi: 10.1016/j.nanoen.2018.06.060 – ident: e_1_2_9_44_1 doi: 10.1021/nl303539c – ident: e_1_2_9_53_1 doi: 10.1016/j.nanoen.2017.04.053 – volume: 8 start-page: 1 issue: 27 year: 2018 ident: e_1_2_9_378_1 article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel publication-title: Adv Energy Mater – ident: e_1_2_9_274_1 doi: 10.1021/nn404614z – volume: 7 start-page: 1 issue: 22 year: 2017 ident: e_1_2_9_59_1 article-title: Self‐powered gyroscope ball using a triboelectric mechanism publication-title: Adv Energy Mater – ident: e_1_2_9_288_1 doi: 10.1002/adfm.201602529 – ident: e_1_2_9_106_1 doi: 10.1038/s41467-019-10298-7 – ident: e_1_2_9_325_1 doi: 10.1021/acsnano.9b02690 – ident: e_1_2_9_82_1 doi: 10.1021/acsnano.9b07165 – ident: e_1_2_9_37_1 doi: 10.1021/acsnano.6b05507 – ident: e_1_2_9_275_1 doi: 10.1109/JMEMS.2016.2588529 – ident: e_1_2_9_149_1 doi: 10.1038/s41598-017-00418-y – ident: e_1_2_9_143_1 doi: 10.1016/j.sna.2012.06.006 – ident: e_1_2_9_351_1 doi: 10.1016/j.nanoen.2017.11.044 – ident: e_1_2_9_261_1 doi: 10.1002/adma.201500121 – ident: e_1_2_9_219_1 doi: 10.1016/j.nanoen.2017.10.004 – volume: 6 start-page: 1 year: 2020 ident: e_1_2_9_25_1 article-title: Haptic‐feedback smart glove as a creative human‐machine interface ( HMI ) for virtual / augmented reality applications publication-title: Sci Adv – volume: 11 start-page: 1 issue: 1 year: 2020 ident: e_1_2_9_90_1 article-title: Switched‐capacitor‐convertors based on fractal design for output power management of triboelectric nanogenerator publication-title: Nat Commun – volume: 36 start-page: 1389 issue: 8 year: 2011 ident: e_1_2_9_320_1 article-title: Voltage‐controlled compression for period tuning of optical surface relief gratings publication-title: Opt Lett doi: 10.1364/OL.36.001389 – ident: e_1_2_9_380_1 doi: 10.1016/j.mattod.2016.12.001 – ident: e_1_2_9_327_1 doi: 10.1002/adma.201702181 – ident: e_1_2_9_176_1 doi: 10.1002/smll.201501772 – ident: e_1_2_9_98_1 doi: 10.1016/j.nanoen.2018.04.033 – ident: e_1_2_9_16_1 doi: 10.1016/j.nanoen.2018.03.044 – ident: e_1_2_9_77_1 doi: 10.1021/acsnano.5b07157 – volume: 10 start-page: 1 issue: 12 year: 2017 ident: e_1_2_9_362_1 article-title: Hybrid electromagnetic and triboelectric nanogenerators with multi‐impact for wideband frequency energy harvesting publication-title: Energies – ident: e_1_2_9_171_1 doi: 10.1016/j.nanoen.2019.01.042 – ident: e_1_2_9_204_1 doi: 10.1016/j.nanoen.2019.01.088 – ident: e_1_2_9_52_1 doi: 10.1021/acsami.7b08526 – volume: 14 start-page: 1 issue: 3 year: 2018 ident: e_1_2_9_177_1 article-title: Recent progress of textile‐based wearable electronics: a comprehensive review of materials, devices, and applications publication-title: Small – ident: e_1_2_9_294_1 doi: 10.1016/j.sna.2017.06.012 – volume: 21 start-page: 776 issue: 4 year: 2012 ident: e_1_2_9_10_1 article-title: Modeling and experimental study of a low‐frequency‐vibration‐based power generator using ZnO nanowire arrays publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2012.2190716 – volume: 27 start-page: 1 issue: 1 year: 2017 ident: e_1_2_9_256_1 article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer publication-title: Adv Funct Mater doi: 10.1002/adfm.201603788 – volume: 17 start-page: 282 issue: 2 year: 2017 ident: e_1_2_9_218_1 article-title: Real‐time performance of a self‐powered environmental IoT sensor network system publication-title: Sensors (Switzerland) doi: 10.3390/s17020282 – ident: e_1_2_9_343_1 doi: 10.1016/j.nanoen.2019.104121 – ident: e_1_2_9_276_1 doi: 10.1002/admi.201700750 – ident: e_1_2_9_291_1 doi: 10.1016/j.nanoen.2018.03.033 – ident: e_1_2_9_366_1 doi: 10.1088/1361-6528/28/3/035405 – ident: e_1_2_9_145_1 doi: 10.1021/acsami.5b04516 – volume: 78 start-page: 105155 year: 2020 ident: e_1_2_9_389_1 article-title: Advances in chemical sensing technology for enabling the next‐generation self‐sustainable integrated wearable system in the IoT era publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105155 – ident: e_1_2_9_313_1 doi: 10.1002/adma.201505684 – ident: e_1_2_9_341_1 doi: 10.1021/acsnano.6b03007 – ident: e_1_2_9_323_1 doi: 10.1016/j.nanoen.2019.04.089 – volume: 74 start-page: 165 year: 2009 ident: e_1_2_9_39_1 article-title: A wideband electromagnetic energy harvester for random vibration sources publication-title: Adv Mat Res – volume: 3 start-page: 1 issue: 4 year: 2018 ident: e_1_2_9_259_1 article-title: Radial‐grating pendulum‐structured triboelectric nanogenerator for energy harvesting and tilting‐angle sensing publication-title: Adv Mater Technol – volume: 7 start-page: 1 issue: 1 year: 2017 ident: e_1_2_9_368_1 article-title: High performance lithium‐sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators publication-title: Sci Rep – ident: e_1_2_9_248_1 doi: 10.1002/admi.201701063 |
SSID | ssj0002504241 |
Score | 2.5824754 |
SecondaryResourceType | review_article |
Snippet | Triboelectric nanogenerator (TENG) technology is a promising research field for energy harvesting and nanoenergy and nanosystem (NENS) in the aspect of... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | energy harvesting nanoenergy and nanosystem self‐powered sensor triboelectric nanogenerator wearable sensor |
Title | Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12058 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMDDnBc9iJ84P0ZALwp1bZqmKXgZsinC5g4bDDyUfE0FTWXWgxfxj_Av9C8xSbtuggheSkteLy95yXuP934B4Nh4yDLhXHoTTk2AMiHE4wJJT2FGQhTLiLkiml6fXI3w9Tga18D5rBem4ENUCTdrGW6_tgbO-EtrDg1V2RM6C5Af0SWwbHtrbUEfwoMqw2LhXMhdXWmOdZuMi8OKT4pa899_nEiLHqo7YrrrYK30DWG7mMwNUFN6E6wuEAO3wO3A1lOZ3Qk-aDjs9C9hXuXGvz4-29CtDfUGbdsIVK6xD96zqYNp6DuYZ1AznZUDTEv3WeCct8Go2xleXHnl_QiesA01Hk0C6ROB_FAkXFluDhUcK4uL8X2OkYntOKOBLwMcIyJwSKTPKGLGyHFASRjugLrOtNoFMEaMKS5VmOAAy3hiJiqIKeYRjpkQhDXAyUxHqSjh4fYOi8e0wB6j1OozdfpsgKNK9rlAZvwqdepU_YdI2rnpIfe29x_hfbCCbFDsak4OQD2fvqpD4znkvOkWSNPF3ebZe-98A6Tzv9g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtaAdgQDxFeVqCBaTQxHGcZKxQS4G2MDSogiHyq4AEDqrCwMaP4BfyS7CdkIKEkNgS5ZThfPY9dPcZgAMdIYuYMeGMWaQTlDEhDuNIOBJT4qNQBNQ20fQHpJvg81EwKntzzCxMwYeoCm5mZ9jz2mxwU5BuTqmhMntCxx5yg2gW1E1Yo4263rpObpKqyGL4XMjeXqk9u6nHhX6FKEXN6Q9-OKXvQar1Mp0lsFiGh7BVrOcymJFqBSx8gwaugtsr01KlDyj4oOCwPTiFeVUe_3h7b0FrHvIVmskRKO1sH7ynE8vTUHcwz6CiKis_UCXsa0F0XgNJpz086TrlFQkONzM1ThR7wiUcuT6PmTTonIgzLA0xxnUZRjq9YzTyXOHhEBGOfSJcGiGq9zn2IuL766CmMiU3AAwRpZIJ6cfYwyIc67XywgizAIeUc0Ib4PBLRykv-eHmGovHtCAfo9ToM7X6bID9Sva5oGb8KnVkVf2HSNq-7CP7tPkf4T0w1x32e2nvbHCxBeaRyZFtC8o2qOWTF7mjA4mc7Zbm8gnM4sLt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEICH2oLoQXxifS7oRSE22Ww2KXgp2lofrR5aKXoI-6oKmpZSD978Ef5Cf4m7mzRWEMFbQoYcZnd2Hux8A7CvI2RZ5Vw6fR7pBKVPqcMFlo4ijPo4lAGzl2habdrskote0CvA8aQXJuVD5AU3Yxn2vDYGPpT9yjc0VA1e8JGH3SCagVKg3ZJbhFLttnvXzWssBs-F7fBK7dhNOS70c0Iprnz_4IdPmo5RrZNpLMJCFh2iWrqcS1BQyTLMTzEDV-D-xtyo0ucTekpQp94-Q-O8Ov75_lFDdneoN2QaR5CyrX3okY0sTiN5QOMBSlgyyD6wRNrXFOi8Ct1GvXPSdLIJCY4wLTVOVPWkSwV2fVHlypBzIsGJMsAY1-UE6-yOs8hzpUdCTAXxqXRZhJk2c-JF1PfXoJgMErUOKMSMKS6VXyUekWFfL5UXRoQHJGRCUFaGg4mOYpHhw80Ui-c4BR_j2Ogztvosw14uO0yhGb9KHVpV_yES169b2D5t_Ed4F2ZvThvx1Xn7chPmsMmQ7QWULSiOR69qW4cRY76T7ZYvtgfCDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+TENG+technology%E2%80%94A+journey+from+energy+harvesting+to+nanoenergy+and+nanosystem&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Zhu%2C+Jianxiong&rft.au=Zhu%2C+Minglu&rft.au=Shi%2C+Qiongfeng&rft.au=Wen%2C+Feng&rft.date=2020-12-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1002%2Feom2.12058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |