Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks
This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from senso...
Saved in:
Published in | Journal of Automation and Intelligence Vol. 3; no. 4; pp. 260 - 268 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co., Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2949-8554 |
DOI | 10.1016/j.jai.2024.10.002 |
Cover
Abstract | This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from sensor-to-controller is vulnerable to deception attacks, a NN estimation technique is introduced to estimate the unknown deception attacks. In order to alleviate the amount of communication between controller-and-actuator, an event-triggered mechanism with relative threshold strategy is established. Then, an adaptive NN event-triggered secure formation control method is proposed. It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks. The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme. |
---|---|
AbstractList | This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from sensor-to-controller is vulnerable to deception attacks, a NN estimation technique is introduced to estimate the unknown deception attacks. In order to alleviate the amount of communication between controller-and-actuator, an event-triggered mechanism with relative threshold strategy is established. Then, an adaptive NN event-triggered secure formation control method is proposed. It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks. The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme. |
Author | Shaocheng Tong Kai Wang Wei Wu |
Author_xml | – sequence: 1 fullname: Kai Wang organization: College of Electrical Engineering, Liaoning University of Technology, Jinzhou, 121001, China – sequence: 2 fullname: Wei Wu organization: College of Science, Liaoning University of Technology, Jinzhou, 121001, China – sequence: 3 fullname: Shaocheng Tong organization: College of Electrical Engineering, Liaoning University of Technology, Jinzhou, 121001, China; College of Science, Liaoning University of Technology, Jinzhou, 121001, China; Corresponding author |
BookMark | eNotjstqwzAUREVpoWmaD-hOP2BXL7-WIfQRCHSTvbmWr1I5tm-QlZTSn69JuzrMwBnmgd2ONCJjT1KkUsj8uUs78KkSysw5FULdsIWqTJWUWWbu2WqaOiGE1iIXUi7Yz7qFU_QX5COeA_Qz4heFI8cLjjGJwR8OGLDlE9pzQO4oDBA9jdzSGAP1nByfL3xSTyMN3vKBGt8jD9RQnPh0bjq0kUfiLVo8XVWIEexxemR3DvoJV_9csv3ry37znuw-3rab9S6xqtAqMWUuZeO0bUpdFK7V2OoMmkbkmQMBwuVVaYxQDl2lRIl5Uc2CyZVyChTqJdv-zbYEXX0KfoDwXRP4-lpQONQQorc91hLytlDGZCoDI62rsEQhlZVVJqFpnf4FEC5wCg |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.1016/j.jai.2024.10.002 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-8554 |
EndPage | 268 |
ExternalDocumentID | oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf |
GroupedDBID | -SI -S~ 0R~ AALRI AAXUO AAYWO ADVLN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ CAJEI EBS FDB GROUPED_DOAJ M41 ROL U1G U5S |
ID | FETCH-LOGICAL-c2732-48611bf3cb8377fd3ed35abb065fa0a0f6984402fef9208e6796114622f2a2e3 |
IEDL.DBID | DOA |
IngestDate | Wed Aug 27 01:28:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2732-48611bf3cb8377fd3ed35abb065fa0a0f6984402fef9208e6796114622f2a2e3 |
OpenAccessLink | https://doaj.org/article/1a6d7244525a41cf9e8e012c1951abdf |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Automation and Intelligence |
PublicationYear | 2024 |
Publisher | KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Communications Co., Ltd |
SSID | ssj0003306011 |
Score | 2.295655 |
Snippet | This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 260 |
SubjectTerms | Deception attacks Event-triggered mechanism Neural network (NN) estimation technique Nonholonomic mobile robots Secure formation control |
Title | Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks |
URI | https://doaj.org/article/1a6d7244525a41cf9e8e012c1951abdf |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAsS3PLAGEttx4rEgqgoJpiJ1i86xjUCiqVp34s9z5wRUJhbWWPmQX3J5z353x9g1AMIKWmW2xDdYtcFlVpVlphUY40UlVPLmPD3r6Yt6nJfzrVZf5AnrywP3E3dbgHZ4Bm2_gSraYHztMai2BVIDsC5Q9M1NviWmKAajSkelUXxvYyZD1zu8oR4U6ia5ucSvIv3pbzLZZ3sDDeTj_vYHbMcvDtnn2MGSwg-nKpM4vOg92jxVWcoiCulXaq3J17RI7vlP4iEfDOe8CxzlPAW0lG3MPzqLXz1fdbaLa77eWFp14bHjzg92Fg4xUpr9EZtNHmb302xojpC1yDhEpmpdFDbI1qLErIKT3skSrEVKESCHPGhTKxSHwQcj8trTehFlIAsRBAgvj9kIH8ifMG5cCdK2WoLOlQUcVbJCmmHL4IyE6pTd0UQ1y778RUMFqdMBhKkZYGr-gunsPy5yznYJwN5NcsFGcbXxl8gJor1K8H8BEha3pQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+neural+network+event-triggered+secure+formation+control+of+nonholonomic+mobile+robots+subject+to+deception+attacks&rft.jtitle=Journal+of+Automation+and+Intelligence&rft.au=Kai+Wang&rft.au=Wei+Wu&rft.au=Shaocheng+Tong&rft.date=2024-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-8554&rft.volume=3&rft.issue=4&rft.spage=260&rft.epage=268&rft_id=info:doi/10.1016%2Fj.jai.2024.10.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf |