Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks

This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from senso...

Full description

Saved in:
Bibliographic Details
Published inJournal of Automation and Intelligence Vol. 3; no. 4; pp. 260 - 268
Main Authors Kai Wang, Wei Wu, Shaocheng Tong
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN2949-8554
DOI10.1016/j.jai.2024.10.002

Cover

Abstract This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from sensor-to-controller is vulnerable to deception attacks, a NN estimation technique is introduced to estimate the unknown deception attacks. In order to alleviate the amount of communication between controller-and-actuator, an event-triggered mechanism with relative threshold strategy is established. Then, an adaptive NN event-triggered secure formation control method is proposed. It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks. The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.
AbstractList This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to deception attacks. The NNs are employed to approximate unknown nonlinear functions in robotic dynamics. Since the transmission channel from sensor-to-controller is vulnerable to deception attacks, a NN estimation technique is introduced to estimate the unknown deception attacks. In order to alleviate the amount of communication between controller-and-actuator, an event-triggered mechanism with relative threshold strategy is established. Then, an adaptive NN event-triggered secure formation control method is proposed. It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks. The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme.
Author Shaocheng Tong
Kai Wang
Wei Wu
Author_xml – sequence: 1
  fullname: Kai Wang
  organization: College of Electrical Engineering, Liaoning University of Technology, Jinzhou, 121001, China
– sequence: 2
  fullname: Wei Wu
  organization: College of Science, Liaoning University of Technology, Jinzhou, 121001, China
– sequence: 3
  fullname: Shaocheng Tong
  organization: College of Electrical Engineering, Liaoning University of Technology, Jinzhou, 121001, China; College of Science, Liaoning University of Technology, Jinzhou, 121001, China; Corresponding author
BookMark eNotjstqwzAUREVpoWmaD-hOP2BXL7-WIfQRCHSTvbmWr1I5tm-QlZTSn69JuzrMwBnmgd2ONCJjT1KkUsj8uUs78KkSysw5FULdsIWqTJWUWWbu2WqaOiGE1iIXUi7Yz7qFU_QX5COeA_Qz4heFI8cLjjGJwR8OGLDlE9pzQO4oDBA9jdzSGAP1nByfL3xSTyMN3vKBGt8jD9RQnPh0bjq0kUfiLVo8XVWIEexxemR3DvoJV_9csv3ry37znuw-3rab9S6xqtAqMWUuZeO0bUpdFK7V2OoMmkbkmQMBwuVVaYxQDl2lRIl5Uc2CyZVyChTqJdv-zbYEXX0KfoDwXRP4-lpQONQQorc91hLytlDGZCoDI62rsEQhlZVVJqFpnf4FEC5wCg
ContentType Journal Article
DBID DOA
DOI 10.1016/j.jai.2024.10.002
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2949-8554
EndPage 268
ExternalDocumentID oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf
GroupedDBID -SI
-S~
0R~
AALRI
AAXUO
AAYWO
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CAJEI
EBS
FDB
GROUPED_DOAJ
M41
ROL
U1G
U5S
ID FETCH-LOGICAL-c2732-48611bf3cb8377fd3ed35abb065fa0a0f6984402fef9208e6796114622f2a2e3
IEDL.DBID DOA
IngestDate Wed Aug 27 01:28:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2732-48611bf3cb8377fd3ed35abb065fa0a0f6984402fef9208e6796114622f2a2e3
OpenAccessLink https://doaj.org/article/1a6d7244525a41cf9e8e012c1951abdf
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Automation and Intelligence
PublicationYear 2024
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
SSID ssj0003306011
Score 2.295655
Snippet This paper investigates the adaptive neural network (NN) event-triggered secure formation control problem for nonholonomic mobile robots (NMRs) subject to...
SourceID doaj
SourceType Open Website
StartPage 260
SubjectTerms Deception attacks
Event-triggered mechanism
Neural network (NN) estimation technique
Nonholonomic mobile robots
Secure formation control
Title Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks
URI https://doaj.org/article/1a6d7244525a41cf9e8e012c1951abdf
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAsS3PLAGEttx4rEgqgoJpiJ1i86xjUCiqVp34s9z5wRUJhbWWPmQX3J5z353x9g1AMIKWmW2xDdYtcFlVpVlphUY40UlVPLmPD3r6Yt6nJfzrVZf5AnrywP3E3dbgHZ4Bm2_gSraYHztMai2BVIDsC5Q9M1NviWmKAajSkelUXxvYyZD1zu8oR4U6ia5ucSvIv3pbzLZZ3sDDeTj_vYHbMcvDtnn2MGSwg-nKpM4vOg92jxVWcoiCulXaq3J17RI7vlP4iEfDOe8CxzlPAW0lG3MPzqLXz1fdbaLa77eWFp14bHjzg92Fg4xUpr9EZtNHmb302xojpC1yDhEpmpdFDbI1qLErIKT3skSrEVKESCHPGhTKxSHwQcj8trTehFlIAsRBAgvj9kIH8ifMG5cCdK2WoLOlQUcVbJCmmHL4IyE6pTd0UQ1y778RUMFqdMBhKkZYGr-gunsPy5yznYJwN5NcsFGcbXxl8gJor1K8H8BEha3pQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+neural+network+event-triggered+secure+formation+control+of+nonholonomic+mobile+robots+subject+to+deception+attacks&rft.jtitle=Journal+of+Automation+and+Intelligence&rft.au=Kai+Wang&rft.au=Wei+Wu&rft.au=Shaocheng+Tong&rft.date=2024-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-8554&rft.volume=3&rft.issue=4&rft.spage=260&rft.epage=268&rft_id=info:doi/10.1016%2Fj.jai.2024.10.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1a6d7244525a41cf9e8e012c1951abdf