Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha‐glucosidase and glucose transporters and PPARγ expression

We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihype...

Full description

Saved in:
Bibliographic Details
Published inBioFactors (Oxford) Vol. 43; no. 1; pp. 90 - 99
Main Authors Yu, Seok‐Yeong, Kwon, Young‐In, Lee, Chan, Apostolidis, Emmanouil, Kim, Young‐Cheul
Format Journal Article
LanguageEnglish
Published Netherlands 02.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco‐2 cells and 3T3‐L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal α‐glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPARγ expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co‐treatment with BADGE, a PPARγ antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPARγ in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. © 2016 BioFactors, 43(1):90–99, 2017
AbstractList Abstract We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco‐2 cells and 3T3‐L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal α‐glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPARγ expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co‐treatment with BADGE, a PPARγ antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPARγ in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. © 2016 BioFactors, 43(1):90–99, 2017
We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco‐2 cells and 3T3‐L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal α‐glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPARγ expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co‐treatment with BADGE, a PPARγ antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPARγ in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. © 2016 BioFactors, 43(1):90–99, 2017
We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco-2 cells and 3T3-L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal alpha -glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPAR gamma expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co-treatment with BADGE, a PPAR gamma antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPAR gamma in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. copyright 2016 BioFactors, 43(1):90-99, 2017
We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts antihyperglycemic effects still remain to be determined. Using intestinal Caco-2 cells and 3T3-L1 cells, here we show that GO2KA1 has dual modes of antidiabetic action by (1) inhibiting intestinal α-glucosidase as well as glucose transporters SGLT1 and GLUT2 that were distinct from the acarbose effect; (2) enhancing adipocyte differentiation, PPARγ expression and its target genes, such as FABP4, adiponectin, and GLUT4, whereas the effects were abolished by co-treatment with BADGE, a PPARγ antagonist. Moreover, GO2KA1 significantly increased glucose uptake, which was reduced in the presence of BADGE. Our data show that GO2KA1 may prevent hyperglycemia by inhibiting intestinal glucose digestion and transport and also enhance glucose uptake, at least in part, by upregulating adiponectin expression through PPARγ in adipocytes. These findings may provide potential molecular modes of action for the antidiabetic effects of chitosan oligosaccharide observed in clinical and animal studies. © 2016 BioFactors, 43(1):90-99, 2017.
Author Yu, Seok‐Yeong
Kim, Young‐Cheul
Lee, Chan
Kwon, Young‐In
Apostolidis, Emmanouil
Author_xml – sequence: 1
  givenname: Seok‐Yeong
  surname: Yu
  fullname: Yu, Seok‐Yeong
  organization: University of Massachusetts
– sequence: 2
  givenname: Young‐In
  surname: Kwon
  fullname: Kwon, Young‐In
  organization: Hannam University
– sequence: 3
  givenname: Chan
  surname: Lee
  fullname: Lee, Chan
  organization: Chung‐Ang University
– sequence: 4
  givenname: Emmanouil
  surname: Apostolidis
  fullname: Apostolidis, Emmanouil
  organization: Framingham State University
– sequence: 5
  givenname: Young‐Cheul
  surname: Kim
  fullname: Kim, Young‐Cheul
  email: yckim@nutrition.umass.edu
  organization: University of Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27388525$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFO3DAQhq2Kqiy0h75A5SMcAp54nTjHLQKKirSo4h45zoSdKmuntreFG4_AQ_QN-h59iD5JExa4VerJY803n-z599iO8w4Zew_iCITIjxvy3RFIgFdsBrrMMy007LCZqBRkxVzKXbYX41chQIq5fsN281JqrXI1Yz8XLlFLpsFElmPXoU3cd9yuKPloHPc93YyFtSsTqEV-cL7MPy_gkFPkaxwnE7b8OxlObkUNJfJumieXMCZypuemH1bmz_3DTb-xPlJrInLjWr69I0_BuDj4kDDEx8bV1eLL718cb4eAMY7Ct-x1Z_qI757OfXZ9dnp98im7XJ5fnCwuMzt-CDIQ2KEqBRiNBhC0VAaxaapSW63aAlprCsibFlWhUUgl50bIam6sLhRKuc8Ottoh-G-b8fn1mqLFvjcO_SbW02p1rmUF_4HmRQlVmasRPdyiNvgYA3b1EGhtwl0Nop7iq6f46im-kf3wpN0043JfyOe8RuB4C_ygHu_-bao_XizPHpV_AdJPqm8
CitedBy_id crossref_primary_10_1016_j_foodres_2020_109920
crossref_primary_10_3390_md18080390
crossref_primary_10_3390_molecules27092800
crossref_primary_10_1016_j_fbio_2024_103873
crossref_primary_10_1002_efd2_54
crossref_primary_10_3390_md20020096
crossref_primary_10_1016_j_ijbiomac_2021_08_154
crossref_primary_10_3390_molecules25245961
crossref_primary_10_3390_md20120784
crossref_primary_10_1016_j_biopha_2021_112336
crossref_primary_10_1007_s00044_020_02628_y
crossref_primary_10_1016_j_foodres_2023_113268
crossref_primary_10_1007_s43393_022_00127_2
crossref_primary_10_1096_fj_201802802RRR
crossref_primary_10_1002_1878_0261_12499
crossref_primary_10_1016_j_carpta_2022_100188
crossref_primary_10_3390_molecules24213915
crossref_primary_10_1016_j_molliq_2023_122734
crossref_primary_10_1016_j_jff_2022_105232
crossref_primary_10_1039_D2RA02697J
crossref_primary_10_3390_molecules26020331
crossref_primary_10_3839_jabc_2021_037
crossref_primary_10_3389_fbioe_2021_659700
crossref_primary_10_1155_2019_4568039
crossref_primary_10_1007_s13369_022_07588_6
crossref_primary_10_3390_molecules27238129
crossref_primary_10_1111_ijfs_15244
crossref_primary_10_1186_s12937_020_00647_4
crossref_primary_10_1186_s40643_022_00579_3
crossref_primary_10_3390_md19090501
crossref_primary_10_1021_acsami_9b17605
crossref_primary_10_1007_s11655_018_3053_8
crossref_primary_10_1016_j_ijbiomac_2023_123354
Cites_doi 10.1182/blood-2013-05-427708
10.1016/S1097-2765(00)80211-7
10.2337/diacare.26.10.2910
10.1074/jbc.270.22.12953
10.1007/BF00253736
10.7326/0003-4819-154-9-201105030-00336
10.1074/jbc.272.8.5283
10.3390/ijms140714214
10.1074/jbc.275.3.1873
10.1016/j.bcp.2015.05.016
10.1074/jbc.274.10.6718
10.1021/jf00027a016
10.1016/S0026-0495(03)00055-6
10.1016/j.nutres.2012.02.004
10.1177/1098612X14556559
10.1146/annurev.cellbio.16.1.145
10.1007/s10068-014-0131-3
10.1016/j.jconrel.2004.10.012
10.1016/0003-2697(66)90280-6
10.1016/S0140-6736(02)08905-5
10.1016/j.jnutbio.2009.06.012
10.1038/sj.ijo.0802853
10.1080/10408398.2012.704434
10.2337/diabetes.52.7.1655
10.1021/acs.jafc.5b00198
10.1002/pmic.200700888
10.1152/physiolgenomics.00152.2002
10.5935/0101-2800.20150061
10.4161/isl.1.2.9143
10.1096/fj.10-159723
10.1039/C4FO00469H
10.1016/j.carbpol.2016.02.077
10.1248/bpb.33.1511
10.1146/annurev.nutr.28.061807.155518
10.1371/journal.pone.0089977
10.2337/dc12-2625
10.2337/diabetes.50.9.2094
10.1016/j.intimp.2010.10.016
10.3748/wjg.15.1339
10.7717/peerj.87
ContentType Journal Article
Copyright 2016 International Union of Biochemistry and Molecular Biology
2016 International Union of Biochemistry and Molecular Biology.
Copyright_xml – notice: 2016 International Union of Biochemistry and Molecular Biology
– notice: 2016 International Union of Biochemistry and Molecular Biology.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1002/biof.1311
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef

Engineering Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1872-8081
EndPage 99
ExternalDocumentID 10_1002_biof_1311
27388525
BIOF1311
Genre shortCommunication
Journal Article
GroupedDBID ---
-~X
.GJ
05W
0R~
10A
1OC
23N
31~
33P
36B
3SF
4.4
4P2
52S
52U
52V
53G
5GY
5RE
8-1
A00
A8Z
AAESR
AAEVG
AAFNC
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABQWH
ABUBZ
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPQW
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZMO
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRHK
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
C45
CAG
COF
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IOS
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MET
MEWTI
MIO
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OIG
OVD
P2P
P2W
P4E
QB0
ROL
SUPJJ
SV3
TEORI
TUS
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
WYJ
XG1
XV2
Y6R
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c2731-10efe5701a8ea1e1835aeebb978c85d61dca612bde568e03534a0394ac865e33
ISSN 0951-6433
IngestDate Fri Aug 16 08:43:49 EDT 2024
Wed Jul 17 03:32:14 EDT 2024
Fri Aug 23 02:27:13 EDT 2024
Sat Sep 28 08:19:08 EDT 2024
Sat Aug 24 00:52:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords α-glucosidase
GLUT4
diabetes
PPARγ
Caco-2 cell
adipocyte
Language English
License 2016 International Union of Biochemistry and Molecular Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2731-10efe5701a8ea1e1835aeebb978c85d61dca612bde568e03534a0394ac865e33
Notes Conflict of interest: The authors have declared no conflicts of interest.
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27388525
PQID 1826719725
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1872828391
proquest_miscellaneous_1826719725
crossref_primary_10_1002_biof_1311
pubmed_primary_27388525
wiley_primary_10_1002_biof_1311_BIOF1311
PublicationCentury 2000
PublicationDate 2017-Jan-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan-02
  day: 02
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle BioFactors (Oxford)
PublicationTitleAlternate Biofactors
PublicationYear 2017
References 2010; 33
2015; 37
2001; 50
2015; 17
2013; 1
1966; 14
1997; 272
2004; 28
2008; 18
2015; 96
2015; 55
1993; 41
2002; 359
2003; 13
2013; 122
2016; 145
2011; 11
2008; 8
1999; 4
2000; 275
2003; 52
2014; 23
2012; 32
1995; 270
2011; 154
1982; 23
2010; 21
2014; 5
2013; 36
2013; 14
2000; 16
2010; 24
2005; 289
2005; 102
2015; 63
2008; 28
1999; 274
2003; 26
2014; 14
2014; 9
2009; 1
2009; 15
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Yamaguchi S. (e_1_2_7_17_1) 2005; 289
Kim J. G. (e_1_2_7_25_1) 2014; 14
Cho E. J. (e_1_2_7_39_1) 2008; 18
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 359
  start-page: 2072
  year: 2002
  end-page: 2077
  article-title: Acarbose for prevention of type 2 diabetes mellitus: the STOP‐NIDDM randomised trial
  publication-title: Lancet
– volume: 28
  start-page: S12
  year: 2004
  end-page: S21
  article-title: Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus
  publication-title: Int. J. Obesity Relat. Metab. Disord
– volume: 17
  start-page: 848
  year: 2015
  end-page: 857
  article-title: Effect of acarbose on postprandial blood glucose concentrations in healthy cats fed low and high carbohydrate diets
  publication-title: J. Feline Med. Surg.
– volume: 289
  start-page: E643
  year: 2005
  end-page: E649
  article-title: Activators of AMP‐activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3‐L1 adipocytes. American journal of physiology
  publication-title: Endocrinol. Metab.
– volume: 24
  start-page: 4229
  year: 2010
  end-page: 4239
  article-title: Activation of AMP‐activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl‐CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio
  publication-title: FASEB J
– volume: 23
  start-page: 313
  year: 1982
  end-page: 319
  article-title: Hepatic and peripheral insulin resistance: a common feature of type 2 (non‐insulin‐dependent) and type 1 (insulin‐dependent) diabetes mellitus
  publication-title: Diabetologia
– volume: 52
  start-page: 753
  year: 2003
  end-page: 759
  article-title: Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes
  publication-title: Metabolism
– volume: 14
  start-page: 14214
  year: 2013
  end-page: 14224
  article-title: Molecular Weight Dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: e89977
  year: 2014
  article-title: The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing
  publication-title: Plos One
– volume: 52
  start-page: 1655
  year: 2003
  end-page: 1663
  article-title: Induction of adiponectin, a fat‐derived antidiabetic and antiatherogenic factor, by nuclear receptors
  publication-title: Diabetes
– volume: 5
  start-page: 2662
  year: 2014
  end-page: 2669
  article-title: The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes
  publication-title: Food Funct.
– volume: 272
  start-page: 5283
  year: 1997
  end-page: 5290
  article-title: Functional antagonism between CCAAT/enhancer binding protein‐alpha and peroxisome proliferator‐activated receptor‐gamma on the leptin promoter
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 111
  year: 2009
  end-page: 116
  article-title: Long‐term effects of chitosan oligosaccharide in streptozotocin‐induced diabetic rats
  publication-title: Islets
– volume: 14
  start-page: 272
  year: 2014
  article-title: Effect of long‐term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action
  publication-title: BMC
– volume: 63
  start-page: 2979
  year: 2015
  end-page: 2988
  article-title: Supplementation of chitosan alleviates high‐fat diet‐enhanced lipogenesis in rats via adenosine monophosphate (AMP)‐activated protein kinase activation and inhibition of lipogenesis‐associated genes
  publication-title: J. Agri. Food Chem.
– volume: 41
  start-page: 431
  year: 1993
  end-page: 435
  article-title: Effects of chitosan hydrolyzates on lipid absorption and on serum and liver lipid concentration in rats
  publication-title: J. Agri. Food Chem.
– volume: 154
  start-page: 602
  year: 2011
  end-page: 613
  article-title: Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2‐drug combinations
  publication-title: Ann. Intern. Med.
– volume: 55
  start-page: 1642
  year: 2015
  end-page: 1657
  article-title: Slowly digestible starch—
  publication-title: a review. Crit. Rev. Food Sci. Nutr.
– volume: 102
  start-page: 383
  year: 2005
  end-page: 394
  article-title: Influence of molecular weight on oral absorption of water soluble chitosans
  publication-title: J Control. Release
– volume: 23
  start-page: 971
  year: 2014
  end-page: 973
  article-title: The reduction effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose levels in healthy individuals
  publication-title: Food Sci. Biotechnol.
– volume: 33
  start-page: 1511
  year: 2010
  end-page: 1516
  article-title: Antidiabetic effect and mechanism of chitooligosaccharides
  publication-title: Biol. Pharm. Bull.
– volume: 274
  start-page: 6718
  year: 1999
  end-page: 6725
  article-title: Novel peroxisome proliferator‐activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 399
  year: 2015
  end-page: 409
  article-title: Bariatric and metabolic surgery and microvascular complications of type 2 diabetes mellitus
  publication-title: Jornal brasileiro de nefrologia: 'Orgao oficial de Sociedades Brasileira e Latino‐Americana de Nefrologia
– volume: 11
  start-page: 121
  year: 2011
  end-page: 127
  article-title: Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress
  publication-title: Int. Immunopharmacol.
– volume: 32
  start-page: 218
  year: 2012
  end-page: 228
  article-title: Chitooligosaccharide ameliorates diet‐induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation
  publication-title: Nutr. Res.
– volume: 145
  start-page: 30
  year: 2016
  end-page: 36
  article-title: Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis‐associated colorectal cancer through AMPK activation and suppression of NF‐kappaB and mTOR signaling
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 611
  year: 1999
  end-page: 617
  article-title: PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
  publication-title: Mol. Cell
– volume: 14
  start-page: 376
  year: 1966
  end-page: 392
  article-title: A one‐step ultramicro method for the assay of intestinal disaccharidases
  publication-title: Anal Biochem
– volume: 26
  start-page: 2910
  year: 2003
  end-page: 2914
  article-title: Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow‐up
  publication-title: Diabetes Care
– volume: 50
  start-page: 2094
  year: 2001
  end-page: 2099
  article-title: PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose‐derived protein
  publication-title: Diabetes
– volume: 13
  start-page: 57
  year: 2003
  end-page: 68
  article-title: Gene expression profiling of Caco‐2 BBe cells suggests a role for specific signaling pathways during intestinal differentiation
  publication-title: Physiol. Genomics
– volume: 8
  start-page: 569
  year: 2008
  end-page: 581
  article-title: Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3‐L1 adipocyte differentiation
  publication-title: Proteomics
– volume: 16
  start-page: 145
  year: 2000
  end-page: 171
  article-title: Molecular regulation of adipogenesis
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 275
  start-page: 1873
  year: 2000
  end-page: 1877
  article-title: A synthetic antagonist for the peroxisome proliferator‐activated receptor gamma inhibits adipocyte differentiation
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 35
  year: 2008
  end-page: 54
  article-title: Sugar absorption in the intestine: the role of GLUT2
  publication-title: Annu. Rev Nutr.
– volume: 18
  start-page: 80
  year: 2008
  end-page: 87
  article-title: Chitosan oligosaccharides inhibit adipogenesis in 3T3‐L1 adipocytes
  publication-title: J. Microbiol. Biotechnol.
– volume: 270
  start-page: 12953
  year: 1995
  end-page: 12956
  article-title: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator‐activated receptor gamma (PPAR gamma)
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: 1033
  year: 2013
  end-page: 1046
  article-title: Economic costs of diabetes in the U.S. in 2012
  publication-title: Diabetes Care
– volume: 1
  start-page: e87
  year: 2013
  article-title: Prediction of morbidity and mortality in patients with type 2 diabetes
  publication-title: PeerJ
– volume: 122
  start-page: 3415
  year: 2013
  end-page: 3422
  article-title: Inflammation, obesity, and thrombosis
  publication-title: Blood
– volume: 96
  start-page: 225
  year: 2015
  end-page: 236
  article-title: Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders
  publication-title: Biochem. Pharmacol.
– volume: 15
  start-page: 1339
  year: 2009
  end-page: 1345
  article-title: Antioxidant activity of chito‐oligosaccharides on pancreatic islet cells in streptozotocin‐induced diabetes in rats
  publication-title: World J. Gastroenterol.
– volume: 21
  start-page: 841
  year: 2010
  end-page: 847
  article-title: Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARgamma transcriptional activity
  publication-title: J Nutr. Biochem.
– ident: e_1_2_7_13_1
  doi: 10.1182/blood-2013-05-427708
– ident: e_1_2_7_10_1
  doi: 10.1016/S1097-2765(00)80211-7
– ident: e_1_2_7_4_1
  doi: 10.2337/diacare.26.10.2910
– ident: e_1_2_7_14_1
  doi: 10.1074/jbc.270.22.12953
– ident: e_1_2_7_6_1
  doi: 10.1007/BF00253736
– ident: e_1_2_7_19_1
  doi: 10.7326/0003-4819-154-9-201105030-00336
– ident: e_1_2_7_37_1
  doi: 10.1074/jbc.272.8.5283
– ident: e_1_2_7_20_1
  doi: 10.3390/ijms140714214
– ident: e_1_2_7_32_1
  doi: 10.1074/jbc.275.3.1873
– ident: e_1_2_7_44_1
  doi: 10.1016/j.bcp.2015.05.016
– ident: e_1_2_7_42_1
  doi: 10.1074/jbc.274.10.6718
– ident: e_1_2_7_36_1
  doi: 10.1021/jf00027a016
– ident: e_1_2_7_16_1
  doi: 10.1016/S0026-0495(03)00055-6
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nutres.2012.02.004
– ident: e_1_2_7_7_1
  doi: 10.1177/1098612X14556559
– volume: 289
  start-page: E643
  year: 2005
  ident: e_1_2_7_17_1
  article-title: Activators of AMP‐activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3‐L1 adipocytes. American journal of physiology
  publication-title: Endocrinol. Metab.
  contributor:
    fullname: Yamaguchi S.
– ident: e_1_2_7_11_1
  doi: 10.1146/annurev.cellbio.16.1.145
– ident: e_1_2_7_26_1
  doi: 10.1007/s10068-014-0131-3
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jconrel.2004.10.012
– ident: e_1_2_7_30_1
  doi: 10.1016/0003-2697(66)90280-6
– ident: e_1_2_7_9_1
  doi: 10.1016/S0140-6736(02)08905-5
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jnutbio.2009.06.012
– ident: e_1_2_7_12_1
  doi: 10.1038/sj.ijo.0802853
– ident: e_1_2_7_8_1
  doi: 10.1080/10408398.2012.704434
– ident: e_1_2_7_38_1
  doi: 10.2337/diabetes.52.7.1655
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.jafc.5b00198
– volume: 18
  start-page: 80
  year: 2008
  ident: e_1_2_7_39_1
  article-title: Chitosan oligosaccharides inhibit adipogenesis in 3T3‐L1 adipocytes
  publication-title: J. Microbiol. Biotechnol.
  contributor:
    fullname: Cho E. J.
– ident: e_1_2_7_40_1
  doi: 10.1002/pmic.200700888
– volume: 14
  start-page: 272
  year: 2014
  ident: e_1_2_7_25_1
  article-title: Effect of long‐term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action
  publication-title: BMC
  contributor:
    fullname: Kim J. G.
– ident: e_1_2_7_28_1
  doi: 10.1152/physiolgenomics.00152.2002
– ident: e_1_2_7_5_1
  doi: 10.5935/0101-2800.20150061
– ident: e_1_2_7_33_1
  doi: 10.4161/isl.1.2.9143
– ident: e_1_2_7_18_1
  doi: 10.1096/fj.10-159723
– ident: e_1_2_7_27_1
  doi: 10.1039/C4FO00469H
– ident: e_1_2_7_21_1
  doi: 10.1016/j.carbpol.2016.02.077
– ident: e_1_2_7_23_1
  doi: 10.1248/bpb.33.1511
– ident: e_1_2_7_34_1
  doi: 10.1146/annurev.nutr.28.061807.155518
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pone.0089977
– ident: e_1_2_7_2_1
  doi: 10.2337/dc12-2625
– ident: e_1_2_7_15_1
  doi: 10.2337/diabetes.50.9.2094
– ident: e_1_2_7_22_1
  doi: 10.1016/j.intimp.2010.10.016
– ident: e_1_2_7_24_1
  doi: 10.3748/wjg.15.1339
– ident: e_1_2_7_3_1
  doi: 10.7717/peerj.87
SSID ssj0013048
Score 2.405746
Snippet We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose...
Abstract We have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 90
SubjectTerms 3T3-L1 Cells
adipocyte
Adiponectin - metabolism
alpha-Glucosidases - metabolism
Animals
Caco-2 Cells
Caco‐2 cell
Cell Differentiation - drug effects
Chitosan - analogs & derivatives
Chitosan - pharmacology
diabetes
Drug Evaluation, Preclinical
Fatty Acid-Binding Proteins - metabolism
Gene Expression - drug effects
Glucose - metabolism
Glucose Transporter Type 4 - antagonists & inhibitors
Glucose Transporter Type 4 - metabolism
GLUT4
Glycoside Hydrolase Inhibitors - pharmacology
Humans
Mice
PPAR gamma - antagonists & inhibitors
PPAR gamma - genetics
PPAR gamma - metabolism
PPARγ
α‐glucosidase
Title Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha‐glucosidase and glucose transporters and PPARγ expression
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.1311
https://www.ncbi.nlm.nih.gov/pubmed/27388525
https://search.proquest.com/docview/1826719725
https://search.proquest.com/docview/1872828391
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AAXBC3Q8qcFUVSEXPy3sX10QkMLglaoSO3JWttruqKxq8bh78Qj8BC8Ae_BQ3DmIZjZ9TpJS1FBkazIXtuJ5_PM7Ow3M4Q8EK4nsjSILJfDXNXPPW5FmcgsYbspL9zUz1VW2stXvc03_vM9ttfp_JphLU3qdD37_Me8kv-RKuwDuWKW7D9Itr0o7IDvIF_YgoRhey4Zx2UtdfBUZg0zQ9HED-A1HWPPiUP5Fr5kmFolc-VNPtt2X8QOxgLkWKeNoMv5XvLHsjyQqTQOJJaRgLcffVWVjtuSIjTHXeZg_dTCg-G8122V9GNd9nlnJ369OthY7XvYRkDTbcu5NWRZDZtuP1jz9KOm2beBif2JisyK6l17731RNYYWTcQHTRjQ-soM2TpJMcL0iRbVR1hG5BCemU7CGI14WU0akkkT-nACFfqYjYaCe2iBS6U1pNAaPAxAxdu6D4xR8boS1ByUtb7WrUoby687NZ2yKbpGbSqrYh1rE00NpyELtIPYmcOUw9Df2h7ioQtkwQ0ixrpkIe4_7Q-nq1626vbW_i1TCct2n7TXnfefTk2K5udYyknavUIuN7MbGmuoXiUdUS6SpbjkdTX6RB9SxTdWCzmL5OLA9BpcIt9mkUw1kmlVUINkegLJdE3j-BGVY2pQTAHFdIpiPH-KYqpQ_PPL1xn8UoApbfBLZ_GrDiB-f3ynU-xeI7vDjd3BptX0D7EycMqRqSkKwQLb4aHgjgDjxbgQaRoFYRayvOfkGQcHP80F64XC9pjnc9uLfJ6FPSY87zrpllUplgkFbeaEvTTNCtfxC2wxgR1V4MPziPHQXSH3jVCSI10lJtH1wN0EJZeg5FbIPSOuBB4vLszxUlSTcYJz_AD7_7G_jQkwOuJFcJ0bWtbtrTC9LmR49poS_tm_ITEYvHn-obfIpenLd5t06-OJuAOeeJ3ebQD8G7bL4AM
link.rule.ids 315,786,790,27955,27956
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antidiabetic+effect+of+chitosan+oligosaccharide+%28GO2KA1%29+is+mediated+via+inhibition+of+intestinal+alpha%E2%80%90glucosidase+and+glucose+transporters+and+PPAR%CE%B3+expression&rft.jtitle=BioFactors+%28Oxford%29&rft.au=Yu%2C+Seok%E2%80%90Yeong&rft.au=Kwon%2C+Young%E2%80%90In&rft.au=Lee%2C+Chan&rft.au=Apostolidis%2C+Emmanouil&rft.date=2017-01-02&rft.issn=0951-6433&rft.eissn=1872-8081&rft.volume=43&rft.issue=1&rft.spage=90&rft.epage=99&rft_id=info:doi/10.1002%2Fbiof.1311&rft.externalDBID=10.1002%252Fbiof.1311&rft.externalDocID=BIOF1311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-6433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-6433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-6433&client=summon